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The aim of the present paper is a synthesis of both realistic modelling of the structural behavior of
reinforced concrete (RC) shells and an adaptive finite element (FE) calculation tool suitable for the solution
of nonlinear problems involving strain-hardening and softening plasticity. In the context of incremental-
iterative analysis, an incremental error estimator is introduced. It is based on the rate of work. The
reference solution required for error estimation is obtained by means of a recovery scheme applied to stress
resultants. If the estimated error exceeds a prespecified threshold value, a new mesh is designed. Mesh
generation is performed in the 2D parametric space of the shell. After mesh refinement, the state variables
are transferred from the old to the new mesh and the calculation is restarted at the load level which was
attained by the old mesh. The usefulness of the developed adaptive analysis scheme is demonstrated by
a numerical analysis of an RC cooling tower.

1. INTRODUCTION

Approximately twenty years ago the first reports on ultimate load analysis of RC surface structures
by the FEM appeared in the open literature. During the eighties significant progress was made in the
field of constitutive modelling both in the precracking and the postcracking material domain as well
as in the area of structural analysis of real-life civil engineering structures such as cooling towers,
see, e.g., [5]. At this time, systematic investigations of the error of the results of such ultimate load
analyses were unfeasible. At the best, the rate of convergence of the obtained results was estimated
by means of uniform mesh refinement.

Beginning in the seventies, significant scientific efforts with regards to adaptive analysis were
made. Originally, these efforts were directed towards linear analysis. The bulk of pertinent error
estimators is based on modified versions of two approaches:

e The residual-type error estimator [1] employs

— the difference in the tractions at common edges of finite elements, and

— the forces resulting from local violation of the equilibrium equations for the discretized con-
tinuum. :

The displacements corresponding to the mentioned out-of-balance forces provide an estimate of
the exact error.

e The second version of error estimators applies continuity conditions across element edges to each
stress component [21]. For the estimation of the error, a smoothed (continuous) stress distribution
is computed by post-processing the FE stresses. The difference between the FE stresses and the
smoothed stresses, measured in an adequate norm, yields the estimated error.

For both modes of error estimation a spatial distribution of the error is obtained. Remeshing tech-
niques exploit this information for the generation of an improved discretization characterized by

1Dedicated to Professor Yavuz Bagar on the occasion of his 65th birthday
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increasing the number of elements in regions of large error and decreasing this number in regions
of small error. For this purpose, adaptive calculation schemes have been developed for automatic
remeshing. At the beginning of such an adaptive calculation, usually a uniform FE mesh is gener-
ated. On the basis of the distribution of the estimated error new meshes are designed until a user-
prescribed accuracy is reached.

After an extensive research in the linear range, adaptivity was extended to nonlinear analyses. The
nonlinearity of the load-displacement relations either stems from the strain—-displacement relations
(geometric nonlinearity) or from the stress—strain relations (material nonlinearity). Nonlinear FE
analyses are commonly solved by an incremental-iterative solution technique. This procedure allows
to distinguish between two different types of error measures:

e total error measures which are computed from quantities taken from the entire load history
applied so far, and

e incremental error measures employing quantities related to the considered increment.

Violation of the accuracy requirement at a certain load level leads to generation of a new mesh.
Depending on the employed error measure, the calculation is either restarted at

e the beginning of the load history for the total error, or at
e the attained load level when employing an incremental error measure.

For the latter mode of restart, a transfer of variables from the old to the new mesh is required.
In addition to the displacement field, the history variables have to be transferred for the case of
elastoplastic material response.

The focus of the present paper is on the development of an adaptive FE procedure applicable
to nonlinear shell analysis. Section 2 contains the definition of an error estimator accounting for
elastoplastic material behavior. Further, the extension of error estimation to the layer concept, which
is employed for the description of the mechanical behavior of reinforced concrete, is given. Section 3
deals with the design of the new mesh within the adaptive scheme. The transfer of variables from
the old to the new mesh, which provides the initial conditions for the restart of the calculation, is
treated in Section 4. In Section 5 the potential of the proposed calculation scheme is demonstrated
numerically by means of a study of an RC cooling tower. In Section 6, a summary of this paper will
be given. Moreover, conclusions drawn from the adaptive analysis of the RC cooling tower will be
presented.

2. ERROR ESTIMATION IN ELASTOPLASTICITY

In the early nineties, researchers began applying adaptive calculation schemes to problems charac-
terized by nonlinear material response. The underlying error estimators were obtained by

e modifying existing error estimators which were developed for the analysis of linear problems (see,
e.g., [17, 11]), or

e adding error measures to existing error estimators which were developed for the analysis of
linear problems (see, e.g., [2]). Such additional error measures account for the nonlinear material
response.

Consistent with the evolution equations of the theory of plasticity, most of the proposed er-
ror estimators were introduced in rate form. The error, total or incremental, is obtained by time
integration over the respective time interval.
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2.1. Definition of an error measure
The error measure proposed in this paper is derived from the rate of work, W, defined as W = o7&,
of the difference between the so-called recovered solution and the finite element solution?

[ 3 (- ob) (&5 - &) av- )
V=1

The superscript “h” refers to the FE solution. The superscript “*” identifies the recovered solution
obtained from smoothing of the FE solution within the framework of post-processing. The recovered
solution is a substitute for the true solution which is unknown.

As regards ultimate load analysis of RC shells, the strains are usually small even close before
reaching the ultimate load. Hence, a geometrically nonlinear theory restricted to small strains is
adequate. The total strain tensor € is decomposed into an elastic and a plastic part,

s=€e+€p. (2)

Consideration of (2) in the expression of W*~" yields

3
= J, 2 |- [(e +e57) - (e + e57)] v ®
&

It follows from Eq. (3), that three different error measures are contributing to W*_h the error in the
7 Zh] , and the error in the elastic and plastic strain rate, alJ — 61] and 6 — éfjh .

The latter two contributions mlght lead to an undesirable reduction of W*~" for dlfferent signs

of (€5 — efjh) and (€7 — €} ") . This fact is considered in the definition of the rate of the error

estimator, (€2), where W*~" is splitted into an elastic and a plastic part, We*—h and We—h.

total stresses, o}; —

(€2) := Wer—h fyypr—h (4)
with
3
s / Z oty o) 3 [Digut (67— o) || av (5)
4,751 Kl=1
and

Wpr—h / Z ’ o —o”) (éfjf* —s‘ﬁ’;h)ldv. (6)

D;jk represents the compliance tensor. It can easily be shown that the error measure proposed in
Eq. (4) gives an upper bound of wrtoie,

WH=h < Wer—h L yppr—h —; (e2) (7)

By restricting the integrals in Egs. (5) and (6) to the finite element k, the local (element) error
rate, (e k) is obtained. Summation over the elements yields the global error rate as (€2) = ey (ez)
where m, represents the number of elements of the actual finite element mesh.

An incremental error for the load increment (n + 1) associated with the time interval [t tn41]
is obtained by time integration of the error rate (4),

(I T
Al = / (e2)dt. (8)

2In contrast to W, the expression on the right-hand side of (1) is no genuine physical quantity. This expression is
defined such that all terms in the respective sum are positive quantities.
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A(e?)n41 is computed by integration in space (see Eqgs. (5) and (6)) and time (see Eq. (8)). Hence,
its value depends on both the size of the considered structure and the chosen load incrementation.
In the following, A(e?) is referred to as absolute error measure. For adaptive analysis, a relative
error measure, 7, which neither depends on the size of the considered structure nor on the chosen
load incrementation, is introduced. It is computed from the absolute error measure, A(€?), and

a reference quantity, A(u?),
A(e?)
O
"= AR (9)

The definition of the rate of the reference quantity A(u®?) follows from Eq. (4), yielding

(wh?2) = Wb 4 Wk (10)

o[y

19=1

with

hph

ofieh| av (11)

Tij 23:[ zakl%z] dVv.  and WPh / Z

1)=1

The relative local (element) error 7 is obtained by replacing A(e?) in Eq. (9) by the respective
contribution of the considered element, i.e.,

(12)

Summation over all elements of the FE mesh yields the relative global error n? = Y7, n.

After error estimation, the relative global error 7 is compared to a user-prescribed error threshold
value 7. The adaptive process, i.e., mesh refinement and restart of the calculation with the new
mesh, is initiated if the threshold value is exceeded, i.e., if

n>. (13)

2.2. Error estimation in the context of the incremental-iterative solution strategy

Time integration of the rate equations of the elastoplastic material law is performed by a backward
Euler scheme as part of the incremental-iterative solution strategy. Hence, FE results are provided
at the end of each load increment. Incremental changes within the (n + 1)-st load increment, such
as, e.g., stress increments, are computed from the respective values at ¢, and tp41, i.e., Aa’,ﬁ =
o 41 — ol Error estimation is performed after each load increment. The absolute global error A(e?)

and the reference quantity A(u?) for the (n + 1)-st load increment are computed from

3
n+1 7 / Z z] n+l z] n+1) Z [ ijkl (AUI:l,n+1 5 Aazl,n+1)] dV +

1,j=1 k.1=1
h
/ Z ‘ 2] n+1 — Oij n+1) (AEU n+1 As?j,n—fhl) l v, (14)
,j=1

and

3

A(uh’2)n+1=/v A Z [ ikt AT g1 dV+/ Z

i,j=1 k=1 ij=1

s, n+1A€” n+1) dv. (15)
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For the evaluation of o}, and Aoy, ,;, a smoothing algorithm enforcing continuity of stresses is
employed [22]. For the simulation of localization such as cracking of concrete, the analytical solution
exhibits jumps in the stress distribution (see, e.g., [8]). Accordingly, the aforementioned continuity
conditions for the stresses employed during stress recovery is replaced by a continuity condition for
the tractions [8]. The error in the incremental plastic strains, Ae?’, — AeP” | is computed from
the yield criterion. For a detailed description of both procedures the reader is referred to [10].

2.3. Extension of error estimation to the layer concept

For the simulation of the mechanical behavior of RC plates and shells, the layer concept is employed
(see Fig. 1).

For the extension of error estimation to the layer concept, stress resultants such as the axial force
n" and the bending moment m” are computed from the FE stresses according to their definitions
given in Fig. 2. Afterwards, the stress recovery scheme is applied to n" and m”, yielding n* and
m*. The recovered stresses o* are determined from n* and m* by means of an extreme value
problem with two constraint conditions. This problem is formulated for each stress component at
each integration point, using Lagrangian multipliers A, and A,

~1,% N =st Al ~Lh % ~ L%
f(aij ,...a?j : Aaiaition) = Z <0ij =] ) + A (nij - EZUU Agl)
=1 (=1
h? & Lk ol A ol
+ Am | ™ + ¥ Z 6.5 AL —  stationary . (16)
=1

In Eq. (16), n denotes the number of layers, h is the thickness, and ¢ is a normalized coordinate
orthogonal to the middle surface of the shell (see Fig. 2). Values at the considered integration point
are indicated by the symbol “ " 7.

Application of the same procedure to the increments of the axial force, An", and the bending
moment, Am”, yields the required stress increments Ac™*.

Fig. 1. Consideration of reinforcement: (a) real situation and (b) consideration of the reinforcement by steel
layers
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Fig. 2. Layer concept with piecewise constant stress distribution for the simulation of composite surface
structures. Computation of stress resultants.
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3. GENERATION OF A NEW MESH

If the error criterion is violated, i.e., if n > 7, the actual discretization has to be modified. The
FEM offers two basic possibilities of mesh adaption. One of them is change of the element size.
The other one is change of the degree of the interpolation polynomials in the approximation for
the element displacements. Based on these two possibilities of mesh adaption, several refinement
techniques were proposed. They are referred to as:

1. the h-version, where the element size is adapted during the design of a new mesh,

2. the p-version, where the degree of the interpolation polynomials (shape functions) in the approx-
imation for the element displacements is changed, and

3. the r-version, moving node points without changing the element connectivity and, consequently,
the number of degrees of freedom.

The combination of the h-version and the p-version is referred to as the hp-version [4].

The selection of the appropriate refinement technique depends on the kind of problem under
consideration. For error-controlled analysis of elastoplastic shells, the basic requirements for mesh
generation are:

e high flexibility as regards element shape and orientation of the element edges which allows an
improved representation of plastic deformations by the FE discretization,

e design of well-shaped elements even for the case of rapid changes of, e.g., the element size for
the case of the h-version of mesh refinement, and

e satisfaction of the error criterion by the new discretization, i.e., n < 7.

Since no change in the element connectivity is performed in the r-version of mesh refinement, it
neither has the required flexibility nor does it provide well-shaped elements. Moreover, because of the
fixed number of nodes, the error criterion is not necessarily satisfied by the new mesh. On the other
hand, the increase of the order of the interpolation polynomial in the context of the p-version of mesh
refinement does not reduce the error for the case of discontinuous stress and strain distributions,
such as observed during the simulation of elastoplastic material response [8]. The h-version of mesh
refiment shows the highest flexibility and, hence, is well-suited for the application to adaptive
elastoplastic analysis.

In the following subsections, the employed 2D mesh generator based on the h-version of mesh
refinement and its extension to the application to shell surfaces are described.

3.1. The h-version of mesh refinement

The design of a new mesh on the basis of the h-version of mesh refinement is characterized by
adapting the element size according to the spatial distribution of a refinement indicator. In error-
controlled mesh adaption, the local (element) error is commonly used as such an indicator. Within
the h-version of mesh refinement, two different strategies can be distinguished:

e In the first one, finite elements are uniformly refined, where mesh refinement is signalled by
the local (element) error, conserving the structure of the old mesh (see Fig. 3b). This mode of
refinement is referred to as structured mesh refinement. In Fig. 3b, two possibilities of structured
mesh refinement are illustrated. The upper mesh shows the use of 5-node elements to achieve
compatibility between the refined and the unrefined domain of the mesh. The lower mesh contains
standard element configurations consisting of 4-node elements to achieve the aforementioned
compatibility. Obviously, for both modes of structured mesh refinement, the orientation of the
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Fig. 3. Illustration of the h-version of mesh refinement: (a) old mesh, (b) new meshes obtained from
structured mesh refinement, and (c) new mesh obtained from unstructured mesh refinement

element sides of the new elements is defined by the structure of the old mesh and cannot be
prescribed by the user.

In the course of structured mesh refinement, one element of the old mesh may be divided into
2x2, 3x3, ...nxn new elements. Hence, the possible options for the size of the new element are
given by the size of the old element, ki, and the number of new elements, namely hy/2, hy/3,
e hk / n.

e The second mode of h-version of mesh refinement is based on unstructured meshes (see Fig. 3c).
Hereby, a new mesh, i.e., one with new nodal coordinates and new element connectivity, is
designed. Information concerning the new element size is provided by the so-called mesh density
function, h(x), which is computed from the distribution of the local (element) error.

In this work, the unstructured mesh refinement technique is employed. In contrast to structured
mesh refinement, it allows the adaption of the orientation of the element edges. Moreover, the size
of the new elements corresponds almost exactly to the respective value of the mesh density function.

In what follows, the evaluation of the mesh density function, h(x), and the advancing front
method are described. This technique is commonly used in unstructured mesh refinement.

3.1.1. Mesh density function

The basis for determination of the element size of the new mesh is the equal distribution of the
relative local (element) error, i.e.,

= S A(&?
Mm=M=...=0 =... = fMm, = Nocal with W%Zﬁ, (17)

where 7, denotes the relative local (element) error of the element k of the new mesh. A(e2) and
A(@"?) represent the absolute local (element) error of the element k of the new mesh and the
reference quantity related to the new discretization, respectively. The number of elements of the
new mesh, m,, is obtained from (see, e.g., [9])

2
Me
s Mk
e — - ; 18
. (ICZ:; nglobal> ( )

where m, is the number of elements of the old mesh and 7y is the relative local (element) error
related to the element k of the old mesh. In Eq. (18), fgiobal represents the user-defined relative
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global error of the new mesh, with 7jgiobal < 7. The difference between the 7g1oba1 and 7 is related to
the number of mesh refinements occurring in the course of the adaptive analysis. Values of 7giobal
close to 7 result in many mesh refinements, whereas the number of mesh refinements decreases
for flgiobal being significantly lower than 7. E.g., in the numerical example presented in this paper,
flglobal = 0.87. The element size of the new mesh, h|y , follows from the size of the element k of the
old mesh, hy , and the relative local (element) error 7y, as [8]

Rl = hk,/\’}g%’;‘k ; (19)

hly, is the size of a new element located in the element k of the old mesh?. It is assumed that the
new elements are obtained by uniform refinement of the old element.

hly, is evaluated for all elements of the old mesh and transformed to nodal values. The so-obtained
spatial distribution of the new element size is referred to as mesh density function, h(x). With the
old mesh as a background grid for the mesh generation, the value of the mesh density function, h,
can be obtained at every point of the domain.

3.1.2. The advancing front technique

A widely used algorithm for the design of an unstructured mesh is based on the advancing front
technique [16]. The front is defined as the border between refined and unrefined subdomains. After
refinement of the boundary representing the front at the beginning of mesh refinement (see Fig. 4a),
single quadrilateral elements are generated (see Fig. 4b). For both refinement of the boundary and
element design, the mesh density function is employed to control the size of the new elements.
The algorithm terminates after the front, which finally has four sides, is closed by an element
(see Fig. 4c). Generally, the refinement procedure is completed by mesh improvement and node
relaxation algorithms [20].

A detailed description of the individual steps of the refinement process and the consideration of
mesh alignment, i.e., the orientation of the element edges according to a user-defined criterion, is
given in [9].

Fig. 4. Short illustration of the advancing front technique: (a) refinement of the boundary of the domain
according to the spatial distribution of the local (element) error, (b) process of element design and, finally,
(c) closure of the front by the last element

3.2. Extension to 2!4D surface structures

For the generation of meshes for 21D surface structures, the parametric space of the surface, A
(with A C R?), is employed (see Fig. 5). The FE mesh is designed in the parametric space using

3The used notation k|, should not be confused with Ry which denotes the size of the element k of the new mesh.
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Fig. 5. Illustration of the mapping from the parametric space A to the middle surface of the shell S

the earlier described advancing front technique. Afterwards, the obtained 2D mesh is mapped onto
the middle surface of the shell, S (with & C R?). The mapping is described by a mapping function

@, given by
X = So(é‘l ) 52) ) (20)

where (£, &) € R? are the local coordinates of the parametric space. The mapping function is
assumed to be regular, i.e.,

gx ...0x%

for all points on S. The partial derivatives in Eq. (21) represent the tangent vectors at the point x
of the shell surface S, given by

ox ox
ti1 = — d to = —. 22
B Bedin 27 8 it
The vectors t; and to are the columns of the functional matrix J
d=1t1. 8. (23)
J is employed for the determination of the metric tensor G, defined by
G(&1, &) = [ st g ] =J &, &) I, &) (24)
g21 922

G is symmetric. In the following the influence of mappings on the design of elements in the para-
metric space is investigated.

Change in size:

The mesh density function on the shell surface S is a scalar function with given values at the nodes
of the old mesh. Each value of hs only depends on the location on the shell surface. The respective
value in the parametric space A also depends on the considered direction in which the element size
is required. Figure 6 illustrates the dependence of the mesh density function in A on the direction
for two example problems. For the left case, which is characterized similar shapes of A and S,
the value of the mesh density function at the considered point is hy = hs/2 and equal for the
horizontal and the vertical direction. In the right example, 4 and S have different shapes. For this
example, h4 in the horizontal direction is equal to hs, whereas h4 in the vertical direction is given
by ha = hs/2. In the course of mesh generation, the mesh density function controls the size of the
element sides and, hence, the direction of the respective element side is used for the evaluation of
h. . Such a direction is given by the unit vector in the parametric space, a4,

ay = aje; + ases with |ag| =1, (25)
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Fig. 6. Illustration of the dependence of ha on hs and on the direction of the element side: direction of
element side has (a) no influence and (b) a significant influence (up to the factor of two) on ha

where e, and e, denote the unit vectors in the directions of the local coordinates £; and & in A.
The transformation of the vector a4 on the shell surface yields

ags = a1ty + asto. (26)

The scaling of the mesh density function evaluated for the direction of a4 is obtained as the length
of ag,

f—ls |a5|
_—=——=|a5|, (27)
ha |al
where hs and h 4 are the values of the mesh density function on the surface and in the parametric
space, respectively.

Change in angle:

Mesh generation is performed in the parametric space A. However, the directions of element edges for
the design of well-shaped elements or the consideration of mesh alignment are specified on S. Hence,
the problem arising during mesh generation can be formulated as follows: Find the components of
the vector b4 (unit vector in the unknown direction) for a known vector a4 (unit vector in the
known direction) and a prescribed angle on the shell surface, as = ang(as, bs). as is given by

T
cosas = ——— . 28
|as||bs| (28)
For the evaluation of the unknown components of the vector b4, by and by,
ag = a1ty + agty and bs = bit1 + bato (29)

are substituted into Eq. (28). The so-obtained nonlinear equation for b; and by is solved in an
iterative manner. The second equation required is given by

bl = /b2eTer + beler = /62 + 3 = 1. (30)

For the special case of as = 7/2, i.e., agbs = 0, analytical expressions for the unknown vector b4
can be derived (see [18]).

Change in area:

For the evaluation of the integrals employed in error estimation, the parametric space is considered.
Therefore, the differential of the surface area, dAs, is replaced by (see, e.g., [12])

dAs = V911 922 — 12921 A4, (31)

where dA 4 denotes the differential of the surface area in the parametric space.
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Example: Cooling tower

The evaluation of the required quantities for mesh generation in the parametric space is illustrated
for the example of a cooling tower shell. The geometric properties of the cooling tower are given by

hm, — x3-coordinate of smallest radius,

hs — z3-coordinate of the top of the cooling tower,

rp, — radius at the bottom of the cooling tower (z3 = 0),
rm — smallest radius (z3 = hp,).

The axis of rotation is coinciding with the z3-coordinate axis. The surface of the cooling tower is
given in the (z1,z9, z3)-coordinate system by

23 =roout, To = rsing; and zg = &hy/(27) (32)
with
2 — h. )2
rizs) = rm\/l + (% - ) @2—"1) : (33)
Tm h’m

In Eq. (32), &; and & refer to the circumferential and meridional parametric coordinate, respectively.
The size of the parametric space is given by —7 < ¢ < 7 and 0 < & < 27. For the description of
one half of the cooling tower the range of ¢ is reduced to 0 < &; < 7. The tangent vectors on the
surface of the shell are given by

—rsiné;
gy 38; ={ reos§ (34)
} 0
and
P (0z1/0r) (0r/0z3) (0z3/0&2) i r' cos &1
ty = % = (0zy/0r) (0r/0x3) (0xz3/0&) p = ¥ r'sing; (35)
Z (8%3/8&2) 1
where
o e z3 — hpm
e e ot

The evaluation of the metric tensor G yields gi2 = g21=0. The remaining entries of the metric
tensor are given by

h 2
gii =4l a =ty ooggyl=tty = [—2-7%] [1+ ()] , (37)

The scaling function for the element size is computed using t¥ t, = 0 and Eqgs. (34) and (35),

hs
E =.lagl= la1t; + agte| = \/(a1t1 B a2t2)T(a1t1 + agts) = \/a%t{tl e a%tgtg

2
= \/a%ﬂ + a3 [;—;] 1+ (r")?]. (38)
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The required relation between the differential of the surface area and the differential in the para-
metric space is given by

g 7;—’7‘:\/1 T2 dAL. (39)

Figure 7 contains the obtained uniform* discretization of a cooling tower shell with the following
dimensions: h,, = 59.00 m, h; = 82.00 m, 7, = 27.40 m, r,, = 17.72 m. Additionally, a separation
line at 3 = 8.44 m is introduced. At this line a change in the mode of reinforcement from two
reinforcement grids to one grid occurs. Figure 7a shows the obtained mesh of the cooling tower
when neglecting the aforementioned dependence of hs/h4 on & (see Eq. (38)). h 4 is assumed to
be constant which results in elements of similar size in the parametric space A and, hence, different
element sizes on the shell surface S. An improved discretization is obtained using a variable value of
h 4 computed from a prescribed constant value hs according to Eq. (38) resulting in similar element
sizes on the shell surface S (see Fig. 7b).

=1

82.00 m

59.00 m

changing of
reinforcement

| 54.80 m | (a) )

Fig. 7. Uniformly generated meshes of a cooling tower shell with the aim of a constant element size on the
shell surface, i.e., hs=constant: (a) based on ha = constant leading to elements of different size on S, and
(b) based on hs = constant (k4 is computed from Eq. (38)) leading to a uniform mesh on §

4. RESTART OF THE CALCULATION. TRANSFER OF VARIABLES FROM THE OLD TO THE
NEW MESH

As regards the restart of the calculation after mesh refinement, two major strategies are possible:
(a) the calculation is restarted at the beginning of the load history, i.e., at ¢ =0, or
(b) the calculation is restarted at the load level attained by the old mesh, i.((e., at t = ty.

The first approach is characterized by reconsideration of the entire load history applied so far
which would be prohibitively expensive for large-scale analyses. Hence, the second approach will be
used. This approach requires the transfer of variables from the old to the new mesh. It provides the
initial condition for the restart of the computation after mesh refinement.

In addition to the displacement field u, history variables such as the plastic strains € and the
internal variables o must be transferred for the case of elastoplastic material behavior (see Fig. 8).
In general, the quantities of the new mesh obtained from the transfer of variables do not yield an
equilibrated state, i.e., F&E —Filt (g0y) # 0, where F&' and F'™* denote the vector of external and
internal forces, respectively. Hence, a global equilibrium iteration must be performed. Especially,

4The term “uniform” refers to the size of the finite elements only. Thus, uniformly generated meshes consist of
finite elements of approximately equal size.



Adaptive ultimate load analysis of RC shells 653

old mesh new mesh

transfer of displacements 1,,.,

e
plastic strains €7,

internal variables au,e,

displacements uyq
plastic strains b,
internal variables a g

Fig. 8. On the evaluation of the initial quantities for the new mesh: transfer of displacements u and history
variables e” and «

old mesh new mesh

displacements ¢y

s s e
plastic strains €f,,,

internal variables e,
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Fig. 9. On the evaluation of the initial quantities for the new mesh: transfer of displacements u, stresses o
and internal variables a. C denotes the material matrix

the transfer of the two kinematic quantities u and €? as illustrated in Fig. 8 may lead to stress states
which are far away from equilibrium. This results in a deterioration of the convergence behavior of
the equilibrium iteration.

The rate of convergence of this iteration is improved considerably if the stress field is transferred
instead of the plastic strains [7] (see Fig. 9). The non-transferred plastic strains are computed from
the transferred displacements and stresses by means of the constitutive law. In the following, the
transfer scheme illustrated in Fig. 9, will be described in detail.

4.1. Transfer of stresses (o)

Initial stress states are required at the integration points of the new mesh. Herein, averaging the
stresses from the old mesh over the proportionate area of the considered integration point P, is
proposed for the evaluation of the new stress state (see Fig. 10)

Grow — B oold(x) dA. (40)
Aip Ja,,

Ajp denotes the domain related to the integration point Pjp. oolq is given at the integration points
of the old mesh. Its spatial distribution is obtained by interpolation and extrapolation on the basis
of the element shape functions. In general, this distribution is discontinuous across element edges
(see Fig. 10) and, hence, a numerical approach seems to be appropriate for the determination
of the integral in Eq. (40). It is characterized by dividing the integration point area, A;p, into

nxn subareas, Agzj), with 4,7 = 1,2...n (see Fig. 11). Within each subarea, the value of ogq
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Fig. 10. Transfer of the stress o to the new integration point P;, by averaging over A;,. The dark-shaded
discontinuous surface represents the integral employed in the averaging process. Its base area is Aip
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Fig. 11. Illustration of the numerical integration scheme for the transfer of stresses. Division of the
integration point area A;p into 4 x 4 subareas

is set constant, corresponding to oq4(x) evaluated at the center point of the respective subarea,
Uold(xggzter)- Thus, an approximation of the integral in Eq. (40) is obtained as

n n
/ Gaa()dd  — 33 Aoy ). (41)

Aip 1=1 =1

The transfer scheme for the stresses is further improved by transferring the recovered stress
distribution obtained in the course of error estimation instead of the FE stresses of the old mesh.
Moreover, an additional stress recovery is performed on the new mesh. The result of the latter
recovery is then employed for the evaluation of the plastic strains at the integration points of the
new mesh by means of the constitutive law.

4.2. Transfer of displacements (u)

The displacement field for the new mesh is obtained by means of interpolation using the element
shape functions.
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4.3. Transfer of internal variables ()

Without a suitable preventive measure, simulations of localization by means of the FEM are not
objective. Apart from the classical discretization error, there may be a strong mesh dependence of
the results. Objectivity of the numerical results, i.e., independence of the element size, is achieved
by introducing a length scale into the material model. In the context of the fictitious crack concept,
this length scale is referred to as characteristic length £, . It is related to the element size. Figure 12
contains softening relations used for the simulation of concrete under tensile loading showing the
exponential degradation of the residual strength ¢ as a function of the internal variable a. The
plotted curves correspond to two different element sizes and, consequently, to two different values
of £.. It is shown, that for the same amount of residual strength ¢, different values are obtained for
the internal variable a.

q(e)
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softening behavior element
related to a large

element
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Fig. 12. Illustration of the influence of the element size on the material model in the context of the
fictitious crack concept: softening relations of concrete corresponding to two different element sizes

The main goal of the transfer of internal variables is to preserve the distribution of the residual
strength of the material, ¢, during the transfer. As illustrated in Fig. 12, ¢ depends on both the
internal variable o and the element size expressed through the characteristic length £.. Averaging
techniques used in the context of the transfer of state variables consider contributions of different
finite elements of the old mesh for the evaluation of the value at the integration point of the new
mesh (see, e.g., Fig. 10). Consequently, any influence of the element size on the value of the internal
variable must be eliminated before averaging can be performed. Accordingly, the characteristic
length £, which is computed from the size of the finite element, is replaced by a constant arbitrary
reference length £, (see Fig. 13). This results in similar softening relations for all elements of all
meshes designed in the course of the adaptive analysis. During the transfer of internal variables the
earlier described averaging technique is applied to the internal variable related to £, @. Hence, the
value of @ at the integration point of the new mesh is obtained by

n n

1 ij) - ij
Qpew = —— Z Z AZ('pJ)aold (xgze]n)ter) ] (42)
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Fig. 13. Transfer of internal variables: elimination of the influence of the element size on the evaluation of g
by means of a constant arbitrary reference length £,
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Fig. 14. Transfer of the internal variable to the new integration point P;, by averaging over Aip. The
dark-shaded discontinuous surface represents the integral employed in the averaging process. Its base area
1s Aip
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Fig. 15. Transfer of internal variables: evaluation of anew by relating the residual strength obtained from
the transfer of @, G(@), to the size of the new finite element
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Fig. 16. Investigation of the nature of the deficiency of the transfer of the internal variable a by means of
averaging of this quantity

However, unlike as for the transfer of stresses, where the element shape functions were employed
for the construction of a spatial distribution of the old stresses, the internal variable is assumed to
be distributed uniformly over the proportionate areas of the integration points (see Fig. 14). The
reason for this modification is the considered local (as opposed to nonlocal) evolution of the plastic
deformation. The plastic evolution at the integration point is assumed to be independent of the
neighborhood and, hence, no interpolation between different integration points can be performed.

After the transfer, apew iS obtained from @pew and the size of the new element represented by
the new characteristic length £. (see Fig. 15).

For an increase of the plastic zone resulting from remeshing, the averaging technique yields
a reduction of the value of the internal variable a. For the case of softening material behavior,
this results in an artificial increase of the residual strength and, hence, of the elastic material
domain. Figure 16 contains an illustrative 1D example used for the explanation of the reason for
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this deficiency. The old mesh is assumed to consist of three linear truss elements (with one integration
point each, located in the center of the element). The new mesh is assumed to consist of two finite
elements. Localization is assumed to occur in the center element of the old mesh. The value of
the internal variable is chosen as a = 2. Transferring the internal variable® a to the new mesh by
means of averaging, the distribution of a, which was restricted to one element of the old mesh,
is extended to both elements of the new mesh. Obviously, an extension of the localization zone
leads to a decrease of the value of the internal variable o. Hence, “artificial hardening” takes place.
It results in stress states located within the increased elastic domain. This leads to a retrieval of
elastic stiffness.

This deficiency was the motivation for an improvement of the proposed transfer scheme by adapt-
ing the internal variable to the respective yield condition, i.e., computing it from f(opew , Qnew) = 0.
For yield functions evaluated for domains of the old mesh without plastic loading, characterized by
fola < 0, apew remains unchanged as determined by the averaging technique.

4.4. Nllustrative example. Bar under tension

The academic example of a bar under tensile loading is chosen to illustrate the influence of the
transfer scheme for the internal variable @ on the load-carrying behavior. Therefore, refinement
is initiated after equal intervals of the prescribed displacement. The influence of restarting the
computation at a certain load level is investigated on the basis of the load—-displacement diagram.
For comparison, the proposed transfer scheme is applied without as well as with the additional
adaption of the internal variable according to the yield condition f(onew , Gnew) = 0.

The geometric dimensions and the material properties are given in Fig. 17. The stress-strain
diagram in the softening regime is assumed as bilinear. It is calibrated according to the fictitious
crack concept. The simulation is carried out under displacement control. The mesh is adapted after

i material properties:
- P oy E=10000 N/mm?
§ D Kf— v=0.1

P N fru=1 N/mm?

G%=0.001 Nmm/mm?

/=1 mm i_a(>

Fig. 17. Bar under tension: geometric dimensions and material properties
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Fig. 18. Bar under tension: load-displacement diagram (with the respective FE meshes) for (a) without and
(b) with additional adaption of a according to f(@new , Gnew) = 0 (change of mesh after A = 0.0005 mm)

5For the sake of simplification of the present example, for all elements of the old and the new mesh with localization
the same length was chosen. Hence, no relation of « to a fixed reference length £, is required.
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equal intervals of the prescribed displacement (A = 0.0005 mm). No error estimation is performed
for this example. The chosen meshes and their sequence of application’are illustrated in Fig. 18.
The purpose of this sequence is to simulate the change of the size of the plastic zone. The onset of
localization is triggered by the tensile strength f, in the elements containing the center of the bar
(dark-shaded elements in Fig. 18).

Figure 18 contains the obtained load-displacement curves. For the averaging technique without
the additional adaption of «, the extension of the plastic zone in the context of coarsening of the
mesh leads to a stiffening of the structural response caused by a retrieval of elastic material behavior
in the dark-shaded elements.

Box 1 summarizes the different steps of the proposed transfer scheme.

Box 1. Transfer of state variables from the old to the new mesh

1. Transfer of ugg to the new mesh by interpolation using the element shape functions
and the nodal displacements of the old mesh, yielding upey -

2. Determination of internal variables apey and stresses opeyw at the integration points of
the new mesh based on an averaging scheme characterized by numerical integration.

3. Smoothing of transferred stresses onew on the new mesh, giving o, -
4. Evaluation of plastic strains ehew according to the value of apey ,

(a) ehew =010k ey = D'anid

b) Men = ltinn) = C 0 JOF Gnesn 7.0

5. In order to decrease the unbalance of the internal forces introduced by the transfer of
variables, a zero-load increment is applied. As initial data, Upey and ehey are used. This
step is computed under the assumption of frozen plastic flow yielding new displacements
and stresses, referred to as Upew and Gpew -

6. Modification of the internal variables ouew from the respective yield criterion,
fk(Fnew s Gk pew) = 0, with fi denoting the yield function for which plastic loading
was encountered on the basis of the old mesh. Internal variables corresponding to non-
active yield functions remain unchanged as computed in step 2, i.e., Gk new = Qk new -

7. Application of the next load increment using Qe , €hew , and Gupeyw as initial quantities.

5. NUMERICAL EXAMPLE

The described adaptive procedure is applied to the simulation of the mechanical behavior of an RC
cooling tower subjected to dead load followed by quasistatic wind load. The characteristics of the
material model for reinforced concrete are briefly described in the following subsection (for details
see [6]).

5.1. Plasticity model for reinforced concrete

The different mechanical behavior of concrete in tension and compression is taken into account by
the multi-surface plasticity concept (see Fig. 19). The Drucker-Prager yield criterion is used for the
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Fig. 19. Illustration of the employed multi-surface model for the simulation of plain concrete: (a) yield
surfaces in the principal stress space and (b) hardening/softening relations

simulation of the ductile response in compression. The Rankine criterion serves for the description
of cracking.

For the description of the mechanical behavior of steel, a 1D model is used. It refers to the strain
component in the direction of the steel bar.

In reinforced concrete, usually several cracks develop until a stabilized crack pattern is formed.
The distribution of the cracks depends on the geometric properties such as bar diameter, concrete
cover, etc. The average spacing between the visible (primary) cracks of this pattern, £, , is computed
from the distribution of bond slip along the reinforcement bar. Therefore, a 1D composite model
consisting of the reinforcement bar and the related concrete area is employed [6]. The value of £,
is considered during the calibration of the material model for concrete such that the area under
the exponential softening curve of the tensile strength (see Fig. 19(b)) is equal to the ratio of the
fracture energy and the average crack spacing, i.e., th /s . For consideration of the increase in the
released strain energy because of bond slip and the development of secondary cracks, a reduced
crack spacing, £°°4, is computed by means of the aforementioned 1D model. Hence, the calibration
of the concrete model is modified by replacing G‘f /s by G? e,

5.2. RC cooling tower

The topic of analysis is the cooling tower III Ptolemais SES in Greece. The present analysis of this
cooling tower is restricted to

e the assumption that the shell is undamaged at the beginning of the simulation,
e consideration of dead load and wind load, and to
e consideration of one half of the cooling tower.

Figure 20 contains the geometric dimensions of the cooling tower and the material properties of
concrete and cold-drawn steel.

Details concerning the stiffening ring at the top and the bottom of the shell as well as the
thickness and the reinforcement of the shell are given in Fig. 21.

Except for the lower part of the shell, the structure is reinforced by only one layer of reinforcement
located in the middle surface of the shell. With the exception of the aforementioned lower part, the
thickness of the shell is 0.10 m.

For the support columns (b/d = 0.40/0.50 m), linear elastic material behavior (E =
26000 N/mm? and v = 0.2) is assumed. The parameters used for the consideration of the steel-
concrete-interaction are given in Table 1.
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Fig. 20. Cooling tower III Ptolemais SES: geometric dimensions of the cooling tower; material properties of
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Fig. 21. Cooling tower: geometric dimensions of the stiffening ring at the top and at the bottom, respectively,
of the shell; tables containing information about the thickness and the meridional (subscript “m”) and circum-
ferential (subscript “c”) reinforcement of the shell (n,, : number of meridional reinforcement bars; e. : spacing

of circumferential reinforcement)
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Table 1. Cooling tower: average crack spacing, ¢; and reduced crack spacing, 4. for the horizontal and

vertical reinforcement (as: steel area per [m|; he,efy: effective concrete thickness; ps: reinforcement ratio).

For the bond stress — bond slip relation the following parameters were used: s; = 0.6 mm, s = 0.6 mm,
83 = 1.0 mm, Tmax = 2v/fcu, 77 = 0.157max and @ = 0.4 [3]

from z3 to z3 reinforcement, as he et Ps £; K?d
[m] [m] direction [mm?/m] [mm] [%] [mm] [mm]

bottom ring circumferential 2254 280 0.81 715 67

meridional 297 73 0.41 501 65

0.00 5.52 circumferential 314 100 0.31 664 82

meridional 477 75 0.64 483 59

5.H2 8.44 circumferential 151 95 0.16 1243 49

meridional 497 75 0.66 477 59

8.44 43.00 circumferential 151 28 0.54 485 64

meridional 636 28 D:2F 61 56

43.00 52.00 circumferential 151 28 0.54 444 59

meridional 491 28 1.75 287 55

52.00 60.26 circumferential 201 28 0.72 391 56

meridional 393 28 1.40 333 53

60.26 68.56 circumferential 201 28 0.72 391 56

meridional 393 28 1.40 333 53

68.56 82.00 circumferential 151 28 0.54 444 59

meridional 235 28 0.84 428 55

top ring circumferential 314 75 0.42 496 64

meridional 172 70 0.25 507 89

The dead load of reinforced concrete is taken as g = 25 kN/m3. In accordance with [19], the
distribution of the quasi-static wind load w is assumed as

w(z,0) = ¢»(0) qe(2), (43)

where ¢,(©) characterizes the circumferential distribution of the wind load and gg(z) denotes the
pressure distribution over the heigth of the cooling tower. The circumferential distribution of the
wind load is given as (curve K1.3 of [19])

2.166

1-2.3(sin20) B8 T8,
cp(©) ={ —1.3+0.8 (sin 2(0 — 73))**® 73° < © < 96°, (44)
—0.5 .. 96°<O,

where © = (0° is the direction of the wind. The vertical distribution of the wind pressure is given
by [19] as

2 10.22
a5(2) = G (E) with 2z = 23 + 8.3 [m], (45)
where G is used as the reference wind load. It represents the wind pressure acting at z = 10 m and
© = 0°. In the simulation, at first the gravity load g is applied. Then, the wind load § is increased
until the collapse of the cooling tower is signalled by the analysis.

During mesh generation, the element sides of the shell elements connected to the support columns
are kept equal to the distance of the column heads. Otherwise the point-wise support of the shell
would introduce singularities in the stress field resulting in continuous mesh refinement and, hence,
in an undesirably high mesh density at z3 = 0.

For the discretization of the shell, the layered (thick) shell element (element 75 of MARC element
library [14]) is employed. In this analysis, the thickness of the shell is divided into 13 layers.



662 R. Lackner and H.A. Mang

5.3. Results obtained by uniformly refined meshes

In this subsection, results from single-mesh (i.e., non-adaptive) calculations based on uniformly
refined meshes are presented. The six discretizations, on which these results are based, are ranging
from 74 to 1897 finite elements (see Fig. 22). For all meshes, the size of the element sides at the
bottom stiffening ring is the same to provide compatibility between the discretization of the shell
and the support columns.

The obtained load—-displacement curves are shown in Fig. 23. u refers to the radial displacement
component of a shell point located 61 m above the bottom ring at ©=0°. Convergence of the collapse
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Fig. 22. Cooling tower: uniform finite element meshes used for single-mesh calculations (m. : number of
elements)
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Fig. 23. Cooling tower: load-displacement diagrams for the radial displacement u from single-mesh
calculations using uniform meshes (m. : number of elements)
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load is observed. For coarse meshes (m, = 74, 212, 313, and 438), restiffening of the structural
response is observed, leading to an overestimation of the collapse load. For the two finest meshes,
me = 931 and m, = 1897, the cooling tower fails because of vanishing structural stiffness which

presumably is the correct failure mode.

5.4. Results obtained from adaptive FE analyses

The error threshold value for the adaptive calculation described in this subsection is specified as
7 = 10%. The error value employed for the design of the new mesh, fgiobal , is given by 0.87. Both
error estimation and mesh refinement in the course of the adaptive analyis are performed in the
parametric (2D) space of the shell (for details see [6]).

Altogether nine FE meshes were designed by the computer in the course of the adaptive cal-
culation. As the initial (first) mesh, a uniform mesh, consisting of 73 finite elements, was taken
(see Fig. 24). No mesh refinement occurred after application of dead load. The wind load, however,
resulted in an increase of the error and, hence, in several mesh refinements. The new meshes are
characterized by a greater mesh density at the windward side of the cooling tower.

Figure 25a contains the load-displacement curve obtained from adaptive analysis. Similar to the
situation for the fine meshes in Fig. 23 (m, = 931 and m, = 1897), the vanishing of the structural
stiffness seems to be the reason for the failure of the cooling tower. The wind load at collapse is
obtained as ¢, = 1.15 kN/m?. The plotted load—displacement curve consists of contributions of all
meshes used. Remarkably, the load-displacement curve does not contain discontinuities at loading
states at which the mesh was refined. This reflects the small influence of the proposed transfer of

MU itie
mesh 1 mesh 9
Me=756

M=

Fig. 24. Cooling tower: first (initial), sixth, and ninth (final) mesh generated in the course of adaptive
ultimate load analysis based on 7 = 10% (me : number of elements)
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Fig. 25. Cooling tower: (a) load-displacement curve and (b) evolution of n obtained from the adaptive
calculation based on 7 = 10%
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variables from the old to the new mesh on the structural response. This is a desirable goal for such
a transfer scheme.

The error evolution is shown in Fig. 25b. For the error analysis the finite elements of the stiffening
rings and the support columns were disregarded. Application of the dead load, i.e., ¢ = 0, gave an
error of 7 = 8.8%. No further mesh refinement was required. Consideration of the wind load led
to a change of the load-carrying behavior of the shell from axisymmetric behavior to symmetric
behavior with respect to the plane © = 0°. This resulted in an increase of 7 and, thus, in several
mesh refinements. The sixth mesh (see Fig. 24) was found to meet the prescribed accuracy for
the load combination of dead load and proportionally increasing wind load. At a wind load of
approximately ¢ = 0.81 kN/m? another change in the load-carrying behavior of the shell was
reflected by the evolution of 1. At this load level, cracking of concrete and yielding of steel led
to a reduction of the bending stiffness of the shell. The reduced load-carrying capacity in bending
resulted in an increase of the membrane forces in the shell. Several adaptions of the FE mesh were
required until the collapse load of the cooling tower was reached. This occurred for the ninth mesh.

q=0 §=0.92 kN /m? q~q,=1.15 kN/m? Tk
2.0
1.6
y 1.2
0.8
0.4
0%

Fig. 26. Cooling tower: distribution of the local (element) error 7, for three different states of loading

Figure 26 shows the development of the local (element) error, 7y, for three different loading
states. After application of dead load, a rather uniform distributed local (element) error is observed
over the entire circumferential direction of the shell. Peak values of 7 refer to slightly distorted
elements. Application of the wind load led to a concentration of the local (element) error at the
windward side of the cooling tower. This distribution of 7 was accounted for by the newly generated
meshes characterized by an increased mesh density at the windward side of the shell. At ¢ =~ g, , the
increased number of elements at the windward side of the cooling tower results in rather low values
of ni. Mesh generation of the final mesh occurred just before the collapse of the cooling tower was
signalled by the analysis (see Fig. 25b). Hence, an almost uniform distribution of 7y, which is the
underlying condition for the design of a new mesh (see Eq. (17)), is observed.

6. SUMMARY AND CONCLUSIONS

This paper has dealt with error estimation and adaptive mesh refinement in the context of ultimate
load analysis of RC structures. The main items can be summarized as follows:
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e As regards to error estimation, the error estimator was derived from the rate of work of the
difference between the recovered solution and the FE result. The recovered solution was computed
by means of a stress recovery scheme. The extension of error estimation to the layer concept,
which was used for the simulation of the mechanical behavior of reinforced concrete surface
structures, was accomplished by the recovery of stress resultants. The respective stresses were
evaluated from the recovered stress resultants by means of an extreme value problem.

e For the generation of the new mesh, the advancing front technique was employed. The mesh
density function, which contains the element size of the new mesh, was obtained from the con-
dition of an equal distribution of the local (element) error. The extension of mesh generation to
2!/,D surface structures was accomplished by mapping to the 2D parametric space of the surface
allowing mesh refinement in this space.

e As for the calculation strategy, a restart scheme for continuation of the calculation at the attained
load level was developed. The success of this strategy depends on the transfer algorithm of the
state variables providing the initial state for the new mesh. In this paper, a transfer of the
displacements, the stresses, and the internal variables was performed. The initial state of the
plastic strains was computed by means of the constitutive law. Further, an additional update of
the internal variable on the basis of the yield criterion was performed.

From the numerical investigation of an RC cooling tower the following conclusions can be drawn:

e As regards adaptive analysis, intelligent remeshing leads to a considerable reduction of the num-
ber of finite elements for results of comparable quality as the ones obtained from uniform mesh
refinement.

e The transfer of variables which is required for the developed calculation scheme has almost no
influence on the structural response. A comparison with results obtained from the by far more
expensive strategy of returning to the begin of the load history after each mesh refinement is
contained in [13].
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