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The paper addresses various scale-bridging modeling and discretization strategies for multiphase porous
materials, starting with a micromechanics model for ion transport within the pore space to generate ho-
mogenized diffusion coefficients. Using homogenized macroscopic properties, the theory of poromechanics
provides the modeling framework for the macroscopic representation of transport and phase change pro-
cesses as it is demonstrated for freezing of porous materials using a three-field formulation. The theory of
poromechanics is again employed as an appropriate representation of more or less intact porous materials,
in conjunction with a two-field Extended Finite Element model as a scale bridging tool to describe coupled
hydro-mechanical processes in cracked porous materials at a macroscopic level.
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1. INTRODUCTION

Computational simulations of structures made of heterogeneous porous materials such as concrete
or soil, when subjected to combined mechanical, thermal, hygral or chemical loading, require an
adequate representation of the multiphase character of the problem, considering the highly in-
teracting multi-physics (mechanical, hygric, thermal and chemical) processes acting within the
microstructure. These processes are closely related to the changing pore structure of the mate-
rial and to micro-defects eventually evolving to macro-cracks. Since, for structural simulations,
the model description eventually is formulated on a macroscopic level, methods of scale transi-
tion must be applied in conjunction with adequate discretization strategies for the solution of
the governing equilibrium and balance equations. In the framework of a true multiscale approach,
assuming that the principle of scale separation holds [40], the individual scales are described as
a series of nested boundary value problems, using appropriate (e.g., periodic) boundary conditions
(see, e.g., [17, 26]). In such multiscale finite element models (often denoted as FE2-models, if two
scales are considered), the constituents are described by means of classical continuum mechanics
models for one-phase materials, formulating appropriately the interactions between the constituents
and the contact conditions, respectively. To this end, the exact knowledge of the morphology of
the material, in particular of the geometry of the pore space, is required. This is, however, not
available in general. This difficulty motivates the description of porous materials on the basis of
an a priori macroscopic approach. With regards to up-scaling methods, three modeling frameworks
suitable for the homogenization of microscopic or submicroscopic quantities are discussed in the
paper: the Theory of Porous Media as a classical averaging method and methods of micromechanics
for the up-scaling of transport properties within the highly tortuous pore structure, ranging from
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the nanometer to the micrometer scale, and the state of (distributed) damage and the variational
multiscale method bridging scales on the level of the finite element approximations. As far as the
second aspect is concerned, the finite element method for the analysis of intact materials as well as
the Extended Finite Element Method (XFEM) [27] for the analysis of cracked multiphase materials
will be addressed.

The paper is organized within three parts. The first part will be concerned with the determination
of up-scaled transport properties for ion diffusion in cementitious materials, both for the damaged as
well as for a state characterized by a more or less diffuse distribution of microcracks. Homogenized
material properties such as diffusion coefficients or liquid permeabilities can be directly used in
durability models for multiphase solids using more classical up-scaling concepts such as the theory
of poromechanics. This theory is used as the framework for a three-phase model for frozen soils in the
second part of the paper. In the third part, the incorporation of cracks – constituting disturbances
at a small scale compared to the larger uncracked part – is accomplished using the Extended Finite
Element Method (XFEM) as a variational multiscale type approach [16] in the context of two-field
hygro-mechanical problems.

2. DIFFUSION IN INTACT AND MICRO-CRACKED POROUS MATERIALS: UP-SCALING
FROM NANO- TO MACROSCALE USING CONTINUUM MICROMECHANICS

In modeling molecular transport in porous materials using the diffusion equation on the macroscopic
level, the prerequisite for adopting a homogenized material property relevant for ion transport, de-
noted as the diffusion coefficient, is, that it captures the underlying heterogeneity of the microstruc-
ture in terms of certain microstructure characterizing variables. In heterogeneous porous materials,
such as concrete or geological materials, the microstructure is highly tortuous and covers various
scales. Table 1 contains a classification of the pore space of concrete [18, 34]. In phenomenological
approaches, the microstructure of porous material effects are captured by the volume fraction of
the pore-space and the so-called tortuosity factor [32]. The tortuosity factor used to account for the
pore connectivity, constrictivity and pore space topology was obtained experimentally, constructed
empirically or from pore network models. Recently continuum micromechanics [11] was employed
to establish a mathematical model for the tortuosity factor. An alternative approach based on the
Minkowski metric space to characterize an anisotropic pore space is presented in [5]. The tortuosity
is defined as the ratio of the lengths in the Minkowski space and Euclidean space respectively.

Table 1. Classification of concrete porosity [34].

Type
of pore

Hydr.
radius

Characteristics Type of pore water

Coarse ≥ 1 mm empty

Macro-
capillary

< 1 mm sucking, immediately refillable free macroscopic water, freezable, highly
mobile, small capillary rise.

Meso-
capillary

< 30 µm sucking within minutes, refillable within
weeks

free macroscopic water, freezable, consider-
able capillary rise within a few days

Micro-
capillary

< 1 µm no stationary state macroscopic water, freezable, strong capil-
lary attraction, but increasing internal fric-
tion

Meso-gel < 30 nm Transition from the free, macroscopic
behaviour to surface physics; filled by
condensation at 50% to 98% relative hu-
midity

pre-structured, condensed water, evapora-
tion below 50% relative humidity, not freez-
able beyond −23◦C

Micro-gel < 1 nm surface physics, filled by sorption below
< 50% relative humidity

structured surface water, strongly dis-
turbed, not freezable
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2.1. Ion diffusion in the pore space

At the lowest level of description, molecular transport in concentrated ionic pore solutions must be
described mathematically. An adequate electrolyte model for concentrated pore solutions is given
by the Onsager-Fuoss diffusion model, which provides a diffusion coefficient as [29]

DOF = [D0 +∆]

[
1 + c

dlny±
dc

]
. (1)

D0 is the diffusion coefficient for the infinitely diluted case. c
dlny±
dc
corresponds to the relaxation

effect due to the interaction of the electrostatic forces and the Brownian motion and ∆ is the
electrophoretic effect due to the viscosity induced mobility imbalance of the ions.
A five parameter concentration dependent diffusion coefficient of electrolyte solutions, which is

a synthesis of the Onsager-Fuoss diffusion model by approximating the molar activity coefficient
using the Debye-Hückel theory, has been proposed in [21]:

DOF = D0 +
A1κ

1 + κa
+

D0A3κ

(1 + κa)2
+

A1A3κ
2

(1 + κa)3
. (2)

2.2. Up-scaling framework

For up-scaling of the transport coefficients we initially consider a two-scale problem and establish
a set of relations between the scales. This framework can be applied in a straightforward manner
for multiple scales, provided that the REV in question exists. A point at the macroscopic scale,
described by the position vector, represents a Representative Elementary Volume (REV) with
a certain micro-structure at the microscopic scale, characterized by a local reference frame with
spatial positions defined in terms of the variable z. With regard to molecular transport, the driving
force for diffusion is the concentration gradient vector field ∇c. Assuming macroscopic homogeneity,
the force balance between the scales is obtained by averaging the concentration gradients at the
microscopic scale,

1

ΩREV

∫

ΩREV

(∇zc (z)) dΩREV = ∇xc (x) . (3)

We introduce a function A (z) defined on the microscopic scale, whose up-scaling from the
microscopic scale gives the identity tensor:

1

ΩREV

∫

ΩREV

(A (z)) dΩREV = I. (4)

From Eq. (3) and Eq. (4), for an arbitrary REV follows,

∇zc (z) = A (z) · ∇xc (x) . (5)

A (z) represents a localization tensor as the local concentration gradient in the REV, obtained by
post multiplication of the macroscopic concentration gradient, which, as a consequence of macro-
scopic homogeneity, is not a function of x. It can be inferred that the localization tensor has
complete information regarding the micro-structure.
The diffusion equation is constructed at the microscopic scale. It must be noted that the dif-

fusion coefficient D(z) at the scale of the micro-structure is position dependent. The link to the
macroscopic scale is accomplished at the boundary ΓRVE, where the concentration c is obtained
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from the macroscopic concentration gradient. The steady state boundary value problem can thus
be summarized as follows:

c (z) = ∇xc · z, ∀z ∈ ΓREV,

∇z · j (z) = 0, ∀z ∈ ΩREV,
(6)

j (z) = −D (z) · ∇zc (z) , ∀z ∈ ΩREV. (7)

The macroscopic flux is given by

1

ΩREV

∫

ΩREV

(j (z)) dΩREV = J. (8)

We now consider a multiphase material with N phases. Using the localization tensor Ai, the
macroscopic ion flux is given by the averaged diffusion coefficient Di in phase i

J = − 1

ΩREV




N∑

i=1

DiAi

∫

Ωi
RVE

dΩi
REV


∇xc (x) . (9)

Ai is computed by solving the Eshelby [12] matrix inclusion problem using the Eshelby tensor.

2.3. Up-scaled diffusion coefficients for cracked and un-cracked porous materials

The localization tensor is computed using the Eshelby method for a spherical pore characterizing
the isotropic distribution of pore channels with arbitrary diameters in a non-solid porous matrix
characterized by a diffusion coefficient Dh = DOFφ, where φ is the porosity, see Fig. 1. For porous
materials it can be inferred from Eq. (9) that the inverse of the phase specific localization tensor
is the phenomenological tortuosity parameter. A value of 1 for the localization tensor would mean
that the pore geometry has no effect on transport and the only quantity that affects transport is
the pore volume fraction. This geometrical character of the tortuosity is also suggested in [5]. The
localization tensor for a spherical inclusion in a matrix with the diffusion coefficient Dh = DOFφ
is obtained as,

A1
f =

3Dh

2Dh +DOF
I. (10)

Fig. 1. Diffusion coefficients in intact (un-cracked) porous materials obtained from the continuum
micromechanics model.
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Using Eq. (9), the homogenized diffusion coefficient for un-cracked porous materials idealized as
a two phase material with the diffusion coefficient in the solid phase as zero follows [35, 36]:

Duc = DOFAn
fφ. (11)

Using a similar scheme as employed in homogenizing the intact porous material; however, con-
sidering now micro-cracks modeled as oriented ellipsoidal inclusions (see Fig. 3), we obtain, for
penny shaped ellipsoids, micro-cracks embedded within an intact porous matrix as sketched in Fig.
2,

Dc

DOF
= ϕcΥ+

Duc

DOF
. (12)

ϕc denotes the crack-volume fraction (which plays a similar role as a damage variable in damage
mechanics) and Υ is an interaction tensor that considers the effect of the surrounding pores on the
micro-cracks and the orientation and topology (see [37] for details).

Fig. 2. Diffusion coefficient in cracked porous materials obtained from the continuum micromechanics
model.

Fig. 3. Micro-crack geometry idealized as a penny shaped ellipsoid.

The effect of the aspect ratio of the micro-crack is given in Fig. 4. The results are plotted for the
normalized diffusion coefficient against the pore volume fraction and the micro-crack volume frac-
tion parallel to the plane perpendicular to the unit vector e3 (see Fig. 3). It is observed, for constant
pore volume fraction, that as the aspect ratio decreases the flux increases. From this observation
it can be inferred that micro-cracks highly affect the transport properties of porous materials by
providing an increased connectivity of the porous matrix in the direction of the orientation of the
micro-cracks.
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Fig. 4. Effect of the aspect-ratio
( c

a

)

of distributed micro-cracks on the homogenized diffusion coefficient

in the plane perpendicular to e3.

(

0 ≤

(

φ, ϕc,
Dc

DOF

)

≤ 1

)

.

2.4. Application to chemo-mechanical damage of concrete

Chemically aggressive substances in contact with the cementitious matrix of concrete may lead
to the de-calcification of the cement matrix, and, consequently, to the long term degradation of
the material. Since the micro-structure and the chemical composition of the cementitious matrix
change, the macroscopic mechanical and transport properties of concrete change. The degree of dis-
solution depends on chemical conditions of the fluid as well as on environmental conditions. Cooling
towers, containments for nuclear or other waste disposal, cement-bound coatings of drinking water
reservoirs, grouted anchors and tunnel linings are examples of structures and structural compo-
nents, respectively, potentially exposed to aggressive environments connected with dissolution pro-
cesses [34]. Based on Berner’s experimental data, a chemical equilibrium model, characterized by
a relation s(c) between the calcium concentration in the pore fluid c and the calcium concentration
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of the cementitious skeleton s has been proposed by [10, 13], assuming instantaneous dissolution
processes, i.e. neglecting the kinetics of the chemical process. This phenomenological chemical equi-
librium model, together with the electrolyte diffusion model 2 was taken as the starting point for
a chemo-mechanical damage model proposed in [19].
The porosity φ can be defined as the sum of the initial porosity related to the virgin material φ0

and the chemical porosity φchem resulting from the skeleton dissolution. The actual void-fraction
contribution associated with the opening of micro-cracks is ϕac . The crack volume fraction as defined
in the proposed multi-scale micromechanics model is defined for 0 ≤ ϕc ≤ 1. Thus, it can be directly
used as the variable characterizing damage and no new damage variable needs to be defined.
However, ϕc is not the actual volume fraction of micro-cracks. The total void fraction associated
with the pore-space and micro-cracks is

φT = φ+ ϕac = φ0 + φchem + ϕac . (13)

The actual volume fraction of the cracks can be obtained from the following relation:

ϕac = ϕc − ϕcφ. (14)

Equation (14) is obtained by equating φT = φ+ϕac and the alternate definition used in the proposed
multiscale model φT = ϕc + (1− ϕc)φ and solving for the actual crack volume fraction.
The coupled mechanism of calcium leaching and mechanical damage of cementitious materials

is governed by the macroscopic mass balance of calcium ions dissolved within the aqueous pore
fluid and by the balance equation of momentum. The mass balances are described in terms of the
concentration of calcium ions Ca ++ within the pore fluid c, the molar calcium ion production from
dissociation ṡ, the total void fraction φT and the stress tensor σ.
The diffusion coefficient obtained from continuum micromechanics according to Eq. (12), con-

sidering the effect of the micro-structure, can now be used to define the chemical potential, which
can be written as

Ψc (γ, ϕ
a
c , φchem) =

1

2
γ ·Dc · γ, (15)

where γ = −∇c and the resulting mass flux of ions is obtained as the derivative of the chemical
potential Eq. (15), with respect to γ.

J =
∂Ψc
∂γ

= −Dc · ∇c. (16)

3. MULTI-PHASE MODELING USING THE THEORY OF POROUS MEDIA:
MODELING OF PHASE CHANGE IN FREEZING SOLIDS

The continuum mechanics description of porous materials as a multi-phase material whose be-
haviour is influenced by the interaction of the solid skeleton and the liquid and gaseous pore fluids
can be accomplished either by using the micro-scale or macro-scale as a point of departure. The
Theory of Mixtures [38] has been established as a suitable homogenization procedure, which allows
to treat multi-phase materials as a continuum while each constituent may be described by its own
kinematics and balance equations. The interactions between the constituents are considered by in-
teraction terms within the balance equations. Since the Theory of Mixtures contains no microscopic
information of the mixture, the enhancement by the concept of volume fractions is necessary, which
leads to the well established concept of the Theory of Porous Media (TPM). It defines the volume
fraction of each constituent dvα and the volume of the mixture dv, which provides a representation
of the local microscopic composition of multi-phase materials: φα = dvα/dv. The sum of the volume
fractions of all constituents has to be equal to one:

∑
α
φα = 1.
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3.1. Poromechanics of freezing processes

The modeling of the freezing process of the pore water contained in the pore structure of porous
materials on a macroscopic scale requires consideration of coupled thermo-hydro-mechanical pro-
cesses acting on various (lower) scales of the pore structure such as the multi-scale physics of
confined crystallization of ice phase and the cryo-suction mechanism driving the liquid towards
the frozen sites. For the macroscopic description of the mechanical behavior of water-infiltrated
materials upon freezing the theory of poromechanics [7] provides a sound up-scaling framework
and allows for a physics-oriented understanding. Within this framework the behavior of freez-
ing porous materials is described, on the macroscopic scale, by the constitutive equations, the
liquid-crystal equilibrium relation and liquid saturation curve in addition to the balance equa-
tions [41, 42].
Based upon the theory of unsaturated thermo-poro-elasticity proposed by Coussy [7], a three-

phase finite-element model, consisting of solid particle (S), liquid water (L) and crystal ice (C), is
present for the description of the freezing porous material. Consider an infinitesimal representative
element extracted from such a porous continuum. In the reference configuration the volume of the
element is dΩ0, and its porous volume is φ0dΩ0, where φ0 denotes the initial porosity. In the current
configuration the porous volume is φdΩ0, φ denoting the current porosity. It is assumed, that the
porous volume is completely filled by water, in both liquid form (index J = L) and crystal form
(index J = C). The current Lagrangian porosity φ can be written as

φ = φL + φC , with φJ = φ0 SJ + ϕJ , (17)

where φJ is the current Lagrangian partial porosity related to phase J , ϕJ is the respective
change in partial porosity and SJ is the respective current saturation satisfying SL + SC = 1. The
split of φJ in Eq. (17) suggests that the change in the partial porosities φJ results from two distinct
processes: the invasion of the porous volume by ice crystal due to phase change, and the pressure
action from the liquid and crystal phases to the internal walls of the skeleton.

3.1.1. Constitutive equations

The thermo-poroelastic constitutive equations can be derived using a thermodynamics-based ap-
proach proposed by Coussy [7]. For the same representative volume dΩ0 with an initial temperature
T0 and a (zero) reference pore pressure of atmospheric pressure, the total stress tensor σ, the partial
porosity change ϕJ and the entropy of the solid matrix ΣS are related to the strain tensor ε, the
pore pressures pJ and the temperature T via:

σij = (K − 2G/3) ǫ δij + 2Gεij − (bL pL + bC pC + 3 aK (T − T0)) δij, (18)

ϕL = bL ǫ+
pL
NLL

+
pC
NCL

− aL (T − T0), (19)

ϕC = bC ǫ+
pL
NCL

+
pC
NCC

− aC (T − T0), (20)

ΣS = ΣS0 + 3 aK ǫ− 3 (aL pL + aC pC) +
CS
T0

(T − T0). (21)

In Eq. (18) ǫ = εkk is the volumetric dilation; K and G are respectively the effective bulk mod-
ulus and shear modulus; a, aL and aC are the thermal volumetric dilation coefficients related to
the porous solid, liquid water and crystal ice, respectively; bJ and NJK are the generalized Biot
coefficient and coupling moduli, while ΣS0 and CS represent the volumetric initial entropy and
heat capacity of the skeleton. The poroelastic properties involved in Eqs. (18)–(20) have to satisfy
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compatibility [3]. Assuming that all pores deform the same when subjected to the same pore pres-
sure, the macroscopic poroelastic properties are linked to the bulk modulus kS and the thermal
volumetric dilation coefficient αS of the solid matrix according to the relations

bJ = b SJ , b = 1− K

kS
,

1

NJJ
+

1

NLC
=
b− φ0
kS

SJ ,

a = αS, aJ = αS (b− φ0)SJ ,

(22)

where b is the Biot coefficient related to the porous solid. For a micromechanics-oriented derivation
of the poromechanics coupling coefficients for partially saturated porous materials, considering
combined effects of plastic deformations and damage, we refer to [14, 25]. By adoption of the
Mori-Tanaka homogenization scheme for a matrix-inclusion composite comprising a continuous
matrix made of isotropic elastic solid and spherical voids [28], the bulk modulus K and the shear
modulus G can be expressed in the form

K =
4 kS gS (1− φ0)

3φ0 kS + 4 gS
, G =

gS (9 kS + 8 gS) (1− φ0)

6φ0(kS + 2 gS) + (9 kS + 8 gS)
. (23)

Exploring the thermodynamic equilibrium between the liquid pore water (L) and the adjacent
crystal ice (C) provides a relation between the crystal pressure pC and liquid pressure pL

pC − pL = Σf (Tf − T ) with Σf =
ρCLf
Tf

, (24)

where Tf, Σf and Lf are the bulk freezing temperature, the freezing entropy and the latent heat of
freezing, respectively. Equation (24) can be used to explain the cryo-suction process which has been
identified as the driving force of the frost heave phenomenon [8]. At a temperature below the bulk
freezing point, confined water can partially remain liquid provided that it de-pressurizes relative to
the adjacent ice crystals, provoking, in turn, a cryo-pumping of the distant liquid water.
As a further ingredient of scale transition, the liquid saturation curve for a porous material

saturated with liquid water and air (G) is inferred from the relation between the degree of liquid
saturation and a macroscopic measure of interface forces acting between the pore water and the
solid particles, generally denoted as the capillary pressure. Incorporating the van Genuchten
capillary function into the Young-Laplace law at the gas-liquid interface provides a relationship
between the liquid saturation and the pore size

SL =

(
1 +

(
2 γGL
N R

) 1

1−m

)−m

= F (R) , (25)

where γGL is the liquid-air interface energy, N is a capillary modulus, R is the mean curvature
radius of the interface and m is a constant representing the shape of the capillary curve. It implies
that the remaining liquid saturation SL equals the cumulative fraction F (R) of pore volume occu-
pied by pores having a pore entry smaller than R. Replacing the pore size R in Eq. (25) by the
Gibbs-Thomson law governing the liquid-crystal interface gives a relationship between the liquid
saturation and the temperature

SL =

(
1 +

(
Tf − T

∆Tch

) 1

1−m

)−m

, (26)

where ∆Tch is the characteristic cooling temperature related to the most frequently encountered
pore radius Rch, and m is an index indicating the pore radius distribution around Rch. Their
influences on the shape of the saturation curve are illustrated in Fig. 5.
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Fig. 5. Liquid saturation curve during freezing by influences of m (left) and ∆Tch (right).

3.2. Thermo-hydro-mechanical finite element formulation

By choosing the solid displacement, the liquid water pressure and the mixture temperature as state
variables, (1) mass balance of liquid water and crystal ice, (2) overall momentum balance and (3)
overall entropy balance are set up as the governing set of balance equations. In the context of the
finite element formulation of the model in a geometrically linear setting, the balance equations are
transformed to their variational forms. For the spatial discretization of the initial boundary value
problem, quadratic Lagrangian shape functions are used for the approximation of the displace-
ment field and linear shape functions are used for the approximations of the liquid pressure and the
temperature. With such approximations the Babuska–Brezzi stability constraint is fulfilled [4].
For the temporal discretization, a modified midpoint rule, denoted as the generalized-α method is
used, which ensures unconditional stability and second order accuracy for an appropriate choice
of its parameters [20]. The discretized weak form, evaluated at the generalized midpoint, yields
a highly nonlinear system of equations that is solved iteratively using Newton’s method. For the
sake of simplicity, the tangent stiffness matrices required to solve the linearized system of algebraic
equations are generated numerically according to the methodology presented by Lee & Park [23].
Finally, the three-phase freezing model is implemented into the object-oriented FE-code Kratos
(Dadvand et al. [9]).

3.3. Model validation

The model performance with regards to the phase change behavior and the latent heat effect
of freezing soils is investigated by comparing the numerical results with the phase-change model
presented by Lackner et al. [22], where only the thermal problem is considered. These model
results represent validated results after comparison with results from experiments (for details we
refer to [22]). A cuboidal, fully saturated sand specimen with a height of 0.09 m and a cross-
section of 0.41 × 0.41 m2 with an initial temperature Ti = 10◦C is considered. Three temperature
sensors (A, B and C) are installed at different positions in the specimen, as shown in Fig. 6, for
the monitoring of the temperature. At time t = 0 s, the top surface is instantaneously subjected
to freezing with a constant heat flux q∗ = −100 W/m2; all the other surfaces are kept thermally
isolated. The material properties involved in the validation test are listed in Table 2.
The obtained simulation results of the proposed model are compared with the validated numeri-

cal results in [22]. Both models indicate that, as soon as phase transition starts, the release of latent
heat prevents the temperature from dropping. As long as the total released energy is consumed,
a rapid temperature decrease is observed (Fig. 6 left). During the freezing process, the freezing front
propagates through the specimen from the top to the bottom until the entire specimen is frozen
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Fig. 6. Validation of model for freezing of porous materials: Temperature (left) and ice saturation (right)
evolutions observed at the three sensor positions.

Table 2. Validation of model for freezing of porous materials: Material parameters.

Properties Symbol Numerical values Units

Porosity φ0 0.42

Bulk freeezing temperature Tf 273 K

Freezing entropy Σf 1.2 MPa

Characteristic cooling ∆Tch 0.2 ◦C

Pore size distribution parameter m 0.7

ρS0 2650 kg/m3

Initial mass density ρL0 1000 kg/m3

ρC0 913 Kg/m3

λS 7.694 W/(m K)

Thermal conductivity λL 0.611 W/(m K)

λC 2.222 W/(m K)

cS 740 J/(kg K)

Heat capacity cL 4200 J/(kg K)

cC 1900 J/(kg K)

(Fig. 6 right). The comparison shows a good correlation between the numerical model for both
temperature and ice saturation evolutions. Only a slight difference appears in the ice saturation
evolution curves (Fig. 6 right) due to the adoption of different liquid saturation functions.

4. FLUID FLOW IN CRACKS PROPAGATING IN POROUS MATERIALS: UP-SCALING
FROM SINGLE CRACK TO STRUCTURAL LEVEL USING A TWO-PHASE EXTENDED

FINITE ELEMENT METHOD

For the numerical analysis of undamaged porous materials, considering the transport of ions and
liquid substances (water or moisture) through the pore space in addition to the mechanical load-
ings, the theory of poromechanics [6] as described in Sec. 3 is, by now, a well established approach.
In computational structural analyses involving discontinuities such as evolving cracks in concrete
structures, joints in rocks or shear bands in soft soils, however, the highly accelerated moisture
transport in the opening discontinuities has to be taken into account. This again requires an appro-
priate up-scaling procedure from the spatial scale of the local crack, which usually is much smaller
compared to the scale of typical finite elements used in structural analysis. In poromechanics prob-
lems, this scale transition refers to both the displacement field (discontinuity across cracks) as well
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as to the fluid flow (accelerated flow within cracks and the communication with the flow within the
bulk material).
Discontinuities such as cracks are characterized by a disturbance of the overall distribution of

the field variables within a very small length. To resolve the small and the large scale portion of
the solution, the Extended Finite Element method [27], exploiting the Partition of Unity property
of shape functions, offers the possibility to include arbitrary enhancement functions into the finite
element approximation to improve the local approximation of non-smooth distributions of field
variables, such as discontinuities of the displacement field or the fluid pressure field across cracks
[2, 15]. The Extended Finite Element Method is a variational multiscale method [16]. According
to the variational multiscale method, the approximation spaces for the relevant field variables as
well as for the associated test functions are decomposed into a coarse scale space S and a fine scale
space Ŝ, which is associated with the fine scale resolution in the vicinity of cracks. The function
spaces Ŝ are chosen according to the physical characteristics of the field variable at the fine scale,
i.e., across the cracks.

4.1. Model description

Adopting poromechanics as the modeling framework, and assuming pores to be filled by an ideal
mixture of water vapor and dry air, the two-field problem is characterized by the displacement field
u and the capillary pressure pc as degrees of freedom. Accordingly, the variables that have to be
locally enriched to better resolve the distribution in the vicinity of cracks, are the displacements
u and the capillary pressure pc which are decomposed additively: u = u + û and pc = pc + p̂c.
Likewise, this additive split is applied to the respective test functions.
For an element fully crossed by a crack, the Sign function is used for the representation of the

discontinuous displacement field across the crack.

u = u+ SSû ≈
nr∑

i=1

Niu
nr
i + SS

nc∑

i=1

Niû
nc
i , (27)

where nr is the number of nodes used for the spatial discretization of the regular displacement field
(superscript r). In coupled hygro-mechanical problems involving porous materials with cracks, the
flow of the pore fluid across the crack will be discontinuous (Fig. 7). Considering a jump of the
moisture flux across the discontinuity ∂SΩ leads to the weak form of the mass balance (for details,
we refer to [24, 30]),

∫

Ω

δpc
ṁl

ρl
dV −

∫

Ω

δ∇pc · ql dV +

∫

∂SΩ

δpc [[ql]] · nS dA =

∫

Γq

δpc q
∗
l dA. (28)

Fig. 7. Transport in porous materials across cracks as a multiscale problem.
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For the fluid flow ql in the porous medium, Darcy’s relation is used:

ql =
k

µl
· ∇pc. (29)

k denotes the macroscopic permeability tensor and µl the dynamic viscosity of the fluid. The
opening of discontinuities leads to an increase of the permeability at the discontinuity. This effect
can be simulated by splitting the macroscopic permeability tensor k into a part associated with
the bulk material kf and in a part associated with the crack k

t
c [33]. Darcy’s relation for the bulk

material yields

ql =
kf

µl
∇pc. (30)

In Eq. (30), the permeability kf of the uncracked porous medium:

kf (Sl, φ) = kr(Sl)kφ(φ)k0 (31)

depends on the relative permeability factor kr(Sl) for water [39]

kr(Sl) =
√
Sl

[
1− (1− S

1/m
l )m

]2
with 0 < m < 1, (32)

on the permeability factor kφ(φ) related to the porosity of the porous medium

kφ(φ) = 10δ with δ =
6(φ− φ0)

0.3− 0.4φ0
(33)

and on the intrinsic permeability of the fully saturated, uncracked medium k0 . In this contribution
the porosity is assumed to be constant throughout the numerical simulation (φ = φ0). Based on
the solution of the Navier-Stokes equation, a parabolic velocity profile across the cavity is assumed
(see Fig. 7). Hence, the fluid flow in tangential direction at the discontinuity yields

qtl =
w2
c

12µl
∇tpc. (34)

With this assumption, a crack permeability ktc as a function of the hydraulic crack width w = wh
can be identified. The hydraulic crack width

wh =
w2
c

R2.5
for wc ≥ wh (35)

describes the distance of parallel faces of the cavity and depends on the roughness R of the material
[1], e.g., R = 15 for concrete. The crack dependent permeability ktc is defined as follows:

ktc(Sl, w) = krc(Sl) k
t
c,0(w) , (36)

where krc denotes the relative permeability factor for water in the cavity

krc(Sl) = 8 · 10−6 exp(11.7 · Sl) (37)

and ktc,0(w) denotes the dependency of the crack width on the permeability in tangential direction
of the crack

ktc,0(wh) =
w2
h

12
. (38)
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Integration across the crack width and considering the local mass balance at the discontinuity (i.e.,
on the small scale level) provides the expression appearing in Eq. (28) for the normal component
of the moisture flux across the crack related to the fluid mass transport in the tangential direction
of the crack.
The capillary pressure is discretized using a local enhanced partition of unity approximation of

the local C1 discontinuity of the pressure across the crack:

pc = pc + p̂c ≈
NN∑

i=1

Nip
ei
c +

NE∑

j=1

Njψ
j p̂ec︸ ︷︷ ︸

Nenr
j

= Npp
e
c +Nenr

p̂ p̂ec. (39)

In Eq. (39) the function ψ is related to the distance function. Figure 8 illustrates the functions used
for the enhanced approximations of the displacement field u and the capillary pressure pc.

Fig. 8. Enhanced approximations of displacements (left) and capillary pressure (right).

4.2. Model validation

For the validation of the two-phase X-FEM model, numerical results were compared with exper-
imental results published in [31], where the water uptake in fractured brick samples with differ-
ent crack widths was measured using X-ray radiography. After the brick samples were dried out
(105◦C) the specimens were placed on water and the water uptake was measured in regular time
intervals. Table 3 contains the material properties for this validation example. After prescribing
an initial capillary pressure pinic = 10 MPa in the complete domain, which is correlated to a sat-
uration of S(pc) = 0.013, the capillary pressure at the bases of the brick samples was decreased
to pc = 0.00001 MPa (S(pc) = 1) in several time steps to avoid numerical oscillations. The mesh
of the brick sample consists of 900 quadrilateral elements using bi-quadratic shape functions for
the approximations of the displacement and the capillary pressure field. The distributions of the
saturation in the brick samples for two different crack widths, w = 0.1 mm and w = 0.01 mm are

Table 3. Material parameters.

Properties Symbol Value

Young’s modulus E 16700 MPa

Poisson’s ratio ν 0

Initial porosity φ0 0.157

Biot coefficient b 0.7

Intrinsic permeability k0 1.906 · 10−15 m2

Dyn. viscosity (water) µl 1 · 10−9 MPas

Reference pressure pr 18.6 MPa

Porosity index m 0.7
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illustrated in Fig. 9a and 9b. In Fig. 9c the experimental results are compared to the numerical
results. Here, the advancement of the saturation front is plotted over time for both investigated
crack widths. The agreement is in both cases excellent. From this comparison it can be concluded
that the accelerated moisture transport in cracked cementitious materials can be well represented
by the proposed two-phase X-FEM model.

Fig. 9. a) Distribution of the saturation at t = 150 s (w = 0.1 mm); b) distribution of the saturation at
t = 600 s (w = 0.01 mm); c) evolution of the saturation front in time: Experimental vs. numerical results.

5. CONCLUDING REMARKS

The paper has provided a synthesis of scale-bridging modeling and discretization strategies for mul-
tiphase materials. A micromechanics model was proposed to obtain macroscopic transport proper-
ties. This allows to incorporate essential topological information from the nano- to the meso-level
into a macroscopic model using, e.g., poromechanics. The theory of poromechanics, using a three-
field formulation, provided the modeling framework at the macroscopic level to describe phenomena
acting at lower scales such as the crystallization of the ice phase and the cryo-suction mechanism
involved in freezing processes of porous materials. For the up-scaling of local disturbances of the dis-
placement field and the fluid flow when cracks open and propagate in porous materials, a two-field
Extended Finite Element method, formulated in the framework of poromechanics, was proposed
as a variational multiscale type method to represent the distribution of the field variables in the
vicinity of cracks at the spatial scale of finite elements. It was shown, that this model adequately
describes the coupled hygro-mechanical processes in cracked porous materials. Exploiting the po-
tentials of each sub-model opens the perspective to further increase the ability of computational
simulations of structures made of multiphase materials to capture the essential physical mechanisms
and to reduce the phenomenological character of the underlying models.
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