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Numerical simulation of freezing process using the BEM
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The boundary element method is applied for numerical simulation of the freezing process proceeding in
biological tissue under the influence of cylindrical cryoprobe. From the mathematical point of view the
problem discussed belongs to the group of moving boundaries ones for which the mushy zone sub-region
(intermediate phase) is considered. In this paper the mathematical model of the process is formulated using
the fixed domain approach and a parameter called the substitute thermal capacity determines the evolution
of latent heat. On a stage of numerical computations the generalized variant of the alternating phase
truncation method (APTM) is applied and the basic mathematical model is rebuilt by the introduction
of the enthalpy function. The boundary element method together with APTM leads to the simple and
effective numerical algorithm because the difficulties connected with the non-linear problem modelling can
be omitted. In the final part of the paper the results of computations are shown.

1. INTRODUCTION

The applications of cryosurgery take place among others for causing a local necrosis of a tissue, the
detachment of the bloodless tissue, the destruction of the cancer cells etc. and these methods of
treatment are used in dermatology, gynecology, proctology, oncology and also laryngology. In this
paper the problem of numerical modelling of freezing process proceeding in domain of biological
tissue under the cylindrical cryoprobe action is considered — Fig. 1. From the mathematical point of
view the problem discussed is described by the nonlinear Fourier-Kirchhoff equation [2, 3] in which
the additional component called the source function appears. The source function determines the
evolution of latent heat. In this paper the diffusion equation is transformed to the form corresponding
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to one domain method [3, 5, 9]. The basic differential equation is supplemented by assumed boundary
and initial conditions. The numerical solution is obtained on the basis of the BEM algorithm for
non-steady diffusion problem described in the cylindrical co-ordinate system [1]. In order to take into
account the nonlinearities resulting from the temperature-dependent thermophysical parameters of
tissue [3], the generalized variant of alternating phase truncation method [7, 8, 10] is applied. This
approach requires the ‘rebuilding’ of the mathematical model to the enthalpy convention. In the
final part of the paper the results of numerical simulations are presented and also the more general
conclusions are formulated.

2. GOVERNING EQUATIONS

The freezing process proceeding in domain of biological tissue which can be treated as a binary
solution is described by the following energy equation

o(T) % s %% [M(T) %] upi [A(T) QT—] + 1y s (1)

0z 0z ot
where T' = T(r,z,t) is the tissue temperature, ¢(T') is the volumetric specific heat, A(T') is the
thermal conductivity, Ly is the latent heat [J/m®], fs is the frozen state fraction at the point
considered. Assuming the knowledge of the function fs = fs(T') in the interval [T, T}] (the border
temperatures corresponding to the end and the beginning of freezing process) Eq. (1) can be written
in the form

[C(T) e %] %:g = %_88_7" [M(T) %%] + % [A(T) Z—Z] @)
or
() % i %53; [M(T) %ﬂ ¥ 585 [)\(T) Z—ZJ 3)

where C(T) is the substitute thermal capacity [9]. For ‘natural’ and frozen sub-regions of tissue, fs
is a constant value (0 or 1) i.e. dfg/dT = 0, and Eq. (3) describes the heat transfer process for the
whole conventionally homogenous domain.

The functions corresponding to substitute thermal capacity C(T') and thermal conductivity
A(T) [3] for the binary solution 24% methyl-cellulose and 76% water which parameters are close
to the real parameters of biological tissue are shown in Figs. 2 and 3, respectively. On the contact
surface between cryoprobe and skin the 1st type of the boundary condition is assumed, namely

(re) el T=T, (4)

where T'c is the temperature of cryoprobe surface.
For the remaining parts of the boundary (skin surface and conventionally assumed limits of the
domain considered) the no-flux condition can be accepted

or
Iy =-A—=0
(r,z) €T q o (5)
where 9T /0n is the normal derivative at boundary point (r,z). The condition
S E Tir, 2,0y =Ty =30.01°C] (6)

determines the initial temperature of tissue domain.

A similar problem was solved by Budman, Schitzer and Dayan [2| using the FEM and also
by Majchrzak and Ladyga [6]. In quoted paper [6] the BEM using disretization in time has been
used, at the same time the energy equation corresponding to Cartesian co-ordinate system has been
considered, while the ‘cylindrical’ component was treated as the additional source function.
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In this paper the other approach is presented. The bio-heat transfer processes are described
directly in the cylindrical co-ordinate system and the energy equation is rebuilt to the form in
which the enthalpy function is applied (it is necessary in order to use the numerical procedure
called the alternating phase truncation method).

The physical enthalpy per unit of volume is defined as follows,

T
H(T) = 5 C(p)dp, (M)

where T; is the arbitrary assumed reference level. The course of enthalpy function is shown in Fig. 4.
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Fig. 4. Enthalpy function

Introducing this function to Eq. (3) one has
6H o1 4d 0H 0 0H
s 0 et = e ——
5~ ror [’"“( ) (97"] 15 [“( ) az] (®)

where a(H) is the thermal diffussivity (e = A/C) and for the task considered a piece-wise constant
function a(H) is assumed

ai, H> A,
a(H) =4 a2, A2 <H<A, (9)
as, H < A,.

The Dirichlet, Neumann and initial conditions can be also rebuilt using the enthalpy function,
namely

(r,2) €T.: H = H(T, —wt),
(r,z) €To: q=—a9 =0, (10)
t=0 H = H(T):

3. BOUNDARY ELEMENT METHOD FOR CYLINDRICAL DOMAIN

In order to construct the BEM algorithm, the time grid

o= ot ettt i gt At =t — /-1, 1)

s |
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should be introduced. The boundary integral equation corresponding to the problem considered for
transition ¢/~ — ¢/ is of the form [1]

B(&, ) H(E,n,t! / / rH* (6,11, 2,1/, £) g(r, 2,1) dT dt

/ /Tq &2t t)H(rzt)dth-i-//rH & n,rzt! Y H(r, 2, t/71)d0
(12)

where (£,7) is the observation point, B(£,7n) € (0,1), € it is the interior of the domain considered,
I'=TyUTl., while H* is the fundamental solution and for the problem analyzed it is a function of
the form [1, 4]

£ 1 r2 4+ €2 + (z — n)? ré
1= L@ —opr (- ) oz =g) e

In this formula Iy(-) denotes the modified Bessel function of zero order [11]. The functions ¢ and ¢*
in Eq. (12) are equal

q(r;2,1) = —agg%%t_)’ (14)
¢ &, 2t ) = —a OH* (&, 775;" z,t,1)

One can find that

; $ o) a i _T2+£2+(z—n)2)
q (5777,7",2,75 at) = Sﬁ[a(tf—t)P/Z # p( 4a(tf‘t)

(o aon) - i)

+ (=6 (%) cosﬂ} (15)

where I;(-) is the modified Bessel function of the first order [11], while cos a, cos 3 are the directional
cosines of normal vector at the boundary point (r, z). We consider the constant elements with respect
to time, namely

N e r ozt
e e e ()

and then Eq. (12) takes the form

B(¢,n) H(,m, ) + /F rg(r, 2, YU (€, n,r, 2) dT

= [ rHGa Y Wien A+ [ [ 1B (€ nnz 0 6 He, 26 d0 (17)
; % Q
where
tf
B rvahis |1 Bz i ) 0 (18)
=
and

tf

Wenna = [ aennatna, (19)
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The integration with respect to time can be done in analytic way. So

1 oo 1 Sw
- 2 —— ) 1 d 20
U(é)ﬂ)"‘az) Zam/;:Atw 2exp< 2’!‘6) 0(w) w ( )
and

W(,n,rz2) = m {[r cosa + (z — n) cos (] /_r§_ o exp(—%) Ip(w) dw

2a At

- §cosa/::_ w? exp(—%) I (w) dw}

2aAt

where
s=r*+£+(z—n)’ (21)

In order to determine the integrals (20) and (21), the Bessel functions Ip(w) and I;(w) should be
written in the form of the series. So

( w 2n
. ((i!))Q , w < 3.75,
Tilsa) =R = (22)
| ex[z)f:z)) |:1 + Z:l n{t(lg(ggn] , w > 3.75,
where
fi(n) =1...(2n - 3)%(2n — 1)? (23)
and
, w\ 2n+1
el
ZO W—m‘, w S 375,
L(w)=< " (24)
exp(w) o~ fa(n)
s 1 +:4:,1 n!(8w)”] . w> 3.75,
where
foln) = (-1)"(4 —13)(4 - 3%)...[4— (2n - 1)?]. (25)

In this place the following situations should be taken into account. If the lower limit of integration
(Egs. (20), (21)) is greater than 3.75, then the functions Ipand I should be substituted by series
for w > 3.75 (formulae (22b) and (24b)). If the lower limit of integration is smaller than 3.75, then
the interval of integration should be expressed by the sum

&S srhinke
[QaAt ] oo) = [2aAt ; 3.75] U (3.75, 00) (26)

and calculating the first integral we substitute the functions Ipand I by series (22a) and (24a),
while for the second one we use the formulae (22b) and (24b). The details concerning these problems
and final formulae can be found in [4]. On the stage of numerical computations the boundary T' is
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divided into N constant boundary elements I'; , 7 = 1,2,..., N, while the interior 2 is divided into L
constant internal cells. So, one obtains the following system of algebraic equations (i = 1,2,...,N)

N N L
Blbosm) HGsmot1)+ ) Gijalrj, 2558y = Yo Zg Hrgy 25, Y6 Y Py Hirgu, t971) . (27)
Jj=1

g=1 =1
where
Gy = [ rUlEum,n2)dry, (28)
¥
Zij = / ’I‘W(&',Th‘,’l",Z) dFj (29)
i
and
Py = // B (G, 2t 601 ) A (30)
i
The system (27) can be also written in the form
N N L
Yozl = Y G Biri 50 + D P H (a3 (31)
j=1 J=1 =1
where
Zij i1#£]
=g ) 3 anpal o) 32
E {—B(fi,m) = — iz Zij» =] (32)

The system of equations (31) allows to determine the enthalpy values on boundary I'y and heat
fluxes on I',. The enthalpy field at internal nodes for time ¢/ is calculated using the formula

N N &
H(&G,m) = )_ Zij Hrj, 2, ) = ) _ Gijalrs, 2z,t) + Y Py Hiry, 2, t570). (33)
j=1

= =1

4. ALTERNATING PHASE TRUNCATION METHOD

The APTM consists in an approximate solution of the freezing problem by conventional reduction
of the domain considered to a homogenous one, thermophysical parameters of which are constant.
The basic algorithm of this method was reported by /Rogers, Berger and Ciment [10], while its
generalization by Mochnacki and Kapusta [8] and next by Majchrzak and Mochnacki [7]. The
APTM is especially effective as a supplement to the BEM algorithm, because the computations are
realized for homogenous domains and generally the problem is reduced to the linear one.

In the paper a situation corresponding to the course of enthalpy presented in Fig. 4 is discussed.
Let us consider a multiphase domain § being the composition of sub-domains Q; U Q5 U 3. The
limits of enthalpy corresponding to isotherms 77 and T3 are denoted as A; and A; (see Fig. 4).
Additionally, it is assumed that the enthalpy field for time ¢/~! is known, while the enthalpy for
time ¢/ = ¢/=1 4 At is searched. For every time step At three boundary-initial problems are solved.
The first concerns the natural state, the second the intermediate phase whereas the last deals with
the frozen region. The successive solutions are in a certain way modified.

The first stage of the computations concerns the hottest phase (unfrozen tissue). The given
enthalpy distribution in the domain © at time ¢/~! is transformed in this way

Vi(r,z,t/~!) = max [Al : H(r,z,tf_l)] ! (34)
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This new pseudo-initial condition corresponds to a structural reduction of the whole area 2 to the
unfrozen domain. Next, the transition t/~! — #/ is calculated assuming that the diffusion coefficient
a(H) = a; = const. The solution for time ¢/ : Vi*(r, z, t/) is corrected according to the formula

Vl(r,z,tf) = Vl*(r,z,tf) + H(r,z,tf_l) £ Vl(r,z,tf—l). (35)

If we consider the second stage corresponding to intermediate phase then the results of previous
computations V;(r, z,t/) are known and they are transformed to the new pseudo-initial condition,
namely

Vg(r,z,tf*l) = min {Al , max [Ag, Vl(r,z,tf)]} : (36)

The transition /=1 — ¢/ for the intermediate phase is calculated and the result obtained V(r, 2, th)
is corrected in following way

Vo(r, 2, t0) = Vi (r, 2,80 ) + Vi(r, 2,7 ) — Va(r, 2,8/ 7). (37)

At the last stage (frozen state) the pseudo-initial condition in the form
Va(r,z,t/~!) = min {Ag Wl 2 tf)] (38)

is assumed and for a(H) = a3 the solution for time ¢/ : Vi*(r, z,t/) is found. The enthalpy field for
time ¢/ results from the formula

H('razatf) = Va*(TaZ,tf) St VZ(Tazatf) 5% V3(T7Zatf_1)' (39)

The transition t/=1 — ¢/ requires the solution of three linear diffusion problems in structurally
homogenous domains, but in this way the well known difficulties associated with a strongly non-
linear mathematical model can be eliminated. It should be pointed out that each step of time in the
APTM is done three times, i.e. it is necessary to join the boundary conditions adequately because
they should act only during one interval At. In this connection for two of the stages the boundary
" should be insulated.

5. RESULTS OF COMPUTATIONS

The cryoprobe of radius 7.5 [mm]| being in ideal thermal contact with biological tissue is considered.
The external radius of domain: R = 15 [mm], its altitude: Z = 15 [mm)]. In successive simulations, the
cryoprobe surface temperature was assumed as T, = —90°C, —145°C and —190°C. The following
thermophysical parameters for successive sub-domains have been accepted a; = 1.444 - 107 [m?/s],
ay = 2.673-1078 [m?%/s], a3 = 1.036 - 107% [m%/s]. The border temperatures between unfrozen region
and intermediate phase and between intermediate phase and frozen region are equal 71 = —1°C,
Ty = —8°C, respectively. The initial temperature of tissue: Ty = 37°C.

The cylindrical fragment of biological tissue was covered by the mesh containing 40 constant
boundary elements and 100 constant internal cells — as in Fig. 5. In order to avoid the singularity
for r = 0, the axis of symmetry has been surrounded by a small cylinder of radius 107° [mm]. Along
this artificial internal boundary the adiabatic condition can be accepted. Figures 6-8 illustrate the
temporary shapes of sub-regions for the cryoprobe surface temperature T, = —190°C and times
60 [s], 120 [s] and 180 [s].

Summing up, it seems that the composition of the boundary element method and the alternating
phase truncation method constitute the very effective tool of numerical simulation of freezing pro-
cess. The solution obtained in this way is very close to the results presented in [2] and [6], but the
FEM application [2] leads to the system of equations with the very big number of unknown param-
eters, while the solution presented in [6] requires the introduction of additional iterative procedures
resulting from the introduction of the artificial heat source in energy equation.
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The problem of biological tissue freezing can be also treated as the inverse one. One can analyze
the optimal choice of cryoprobe parameters in order to assure the required course of freezing process.
The authors of this paper intend to take up also this subject in future.
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