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The purpose of this paper is to create an efficient finite element for the static analysis of 3D arch structures.
It is the circural in-plane element with possibility of out-of-plane action. In the element the influences of
shear and axial forces on arch displacements are taken into account. The base is the set of exact shape
functions, which fulfil the differential equilibrium equation of 3D arch. These shape functions allow us to
obtain the exact element stiffness matrix. The element was tested in several numerical examples, results
were compared with available analytical solutions and other numerical results. A very good agreement of
the results was obtained.

1. INTRODUCTION

The present paper is a continuation of authors’ previous research presented in [2]| and [3]. It is an
expansion of our considerations for the case of 3D loading acting on the plane, curved structures.
It is still a case that much effort and space in the literature is devoted to the search of effective
finite elements, free of parasitic shear and membrane locking effects. The detailed analysis of current
bibliography dealing with it can be found in [3].

In [1] the attempt to create the 3D curved beam element with polynomial shape functions is made.
In the present paper the authors introduce to that problem the concept of so called physical shape
functions. The feature of these functions is that they contain the parameters describing the physical
and geometrical properties of the element. A very general case is considered because the stiffness
matrix yielding from these functions contains all the influences resulting from 3D characteristics of
the element. Besides the dominating effects of bending and torsional moments, the membrane and
both shear effects are taken into account. Despite the complicated form of the shape functions, which
exactly fulfil the differential equation of the deformed arch axis corresponding to the considered
element, the form of the resulting stiffness matrix is very simple.

The use of this matrix in the calculations eliminates completely the shear and membrane locking
effects. The numerical results converge very well to the exact solutions even for a very coarse element
mesh. The authors strongly hope that the presented approach can be successfully used to formulate
new type of effective shell elements.

The paper consists of four sections. The basic one is Section 2 containing the derived statically
exact shape functions as well as the element stiffness matrix. Section 3 presents the results of
numerical examples. The concluding remarks are included in Section 4. At the end the bibliography
is given.

2. 3D ARCH FINITE ELEMENT

2.1. Introduction

We consider a 2-node, 12-degree-of-freedom element with constant radius of curvature R presented
in Fig. 1. The following notation is used:
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Fig. 1. The 3D arch finite element

=1

i. « is the angle of the element (a = 2ag) and a its lenght (a = Ra),
ii. # is the angular co-ordinate of element cross-section (—ap < & < ),
iii. s is curvilinear co-ordinate (—a/2 < s < a/2).
The vector of generalized displacements has a form

a ={q1, 4,093,095, 96,97, 98+ 99, 910, q11 > Q12}"

= {u1, v1, ¢z1, U2, V2, ho2, W1, bz1, Py1, W2, P22, by2}” (1)

where: ¢r; = a @ri, k = 7,y,2; i = 1,2, u; are the nodal tangential displacements, v; — the radial
ones, w; — the out-of-plane displacements, ¢,; — the total rotations of cross-section about z-axis,
@yi — the total rotations of cross-section about y-axis and ,; — the angles of cross-section twist
(i=1,2). The following static equilibrium condition for the element is valid,

where K is the element stiffness matrix, F is a vector of generalized nodal forces corresponding
to (1),

3 T
F :{Hlal-rylamzlaH27Ty21mz?,TzlammlamylaTz2am12amy?} ) mki:Mki/aa (3)

H; are the axial forces, T); and T}; the shear forces in y and z directions, M; and My; the bending
moments acting in (z,y) and (z, z) planes, respectively and M;; are the torques.

We consider the element with constant cross-section having the following geometrical properties:
I,, I, — the second moment of area with respect to z and y-axes, I, — torsional moment of area,
A — area of the cross-section. In order to recognize the influence of internal forces on displacements
the dimensionless parameters are introduces where d,, dy characterize the shear effects in both
directions, e — the membrane effect, ¢ — the torsional effect and b — flexural effect in the second
plane. They have the following form:

BE i Sy ) i EI, 1 O R

Y o G AME win O B i o A BT, o I - e

(4)

where E and G are Young’s and Kirchoff’s moduli, s, and &, are the shear factors in respective
directions.

2.2. Element shape functions

In order to find the exact shape functions for the considered arch element we solve in an analytical
form the following basic problem.

We determine displacement functions along the s circular axis of the arch element due to unit
displacement of its both supports. The element is treated as the 3D circular beam fully clamped
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at both ends and it is six times statically indeterminate. Using the flexibility method the unknown
forces as well 12 support reactions and all functions of internal forces are determined for all cases
of support unit displacements. Then, using the principle of virtual work and reduction theorem, all
displacement functions along the 3D circular beam are obtained in which the influence of bending,
shear and axial forces are taken into account. In this way the relations between unit tangential,
radial, out-of-plane and 3 rotational nodal displacements and the continuous functions of generalized
displacements of the arch axis yield the set of 72 exact shape functions.

However the in-plane action represented by the functions of tangential displacements u(Z), radial
displacements v(Z) and cross-section rotations ¢,(Z) and the out-of-plane action characterized by
functions of out-of-plane displacements w(Z), angle of twist ¢, (&) and cross-section rotation ¢, (Z)
are fully separated. Hence only 36 shape functions are non-zero. Those, corresponding to the in-
plane action were given in our earlier papers, e.g. [2] and will not be cited here. They can be taken
from there directly provided the notation changes are observed , i.e. e and d in [2] should be replaced
by e/a? and dy/a?, respectively.

The non-zero shape functions corresponding to the out-of plane action are the out-of-plane dis-
placements w(Z) (shape functions Ny;), angles of twist ¢, (Z) (shape functions Nyz;) and total
cross-section rotations ¢, (Z) (shape functions N,y;) for the element caused by the nodal displace-
ment ¢; = 1,7 =7,8,...,12. All these functions, like those representing the in-plane action, can be
expressed in the trigonometric-algebraic form

N;si(Z) = Cs0 + Cs1Z + (Cs2 + Cs3z)sinZ + (Csq + Cs5%) cos T, (5)

where § refers to w, ¢, and ¢, element displacements and they fulfil the differential equilibrium
equation of the continuous arch [5].

The coefficients Cj; are not numbers but they depend on geometrical and physical properties of
the element: «, b, t and d, . They have the following form:

1. the function of out-of-plane displacements w(Z) due to g7 = w = 1:

Nuw7(£) = Cyro + Cuni& + (Cuwr2 + Cur73) sin + (Cyr4 + CyrsT) cOS T, (6)
By(agAz — sot) — soB3 ByA3
= C = —=
Cuwro Ds y w7l i
—C%(Bg + B4)As + 2[Bs + (1 + co) Byt
Cw72 o ) Cw73 T O,
2D
C e (B3 + By)(apAg + cosoAs) — 2s9Bat C 5% (B3 + B4)Ay4
w74 — 2D3 b w75 2D3 )

2. the function of out-of-plane displacements w(z) due to gz = ¢ = 1:

Nys(%) = Cuso + Cus1Z + (Cusz + Cusai) sin @ + (Cysa + CussT) cos T, (7)

—Ozo[CoBg S (1 T Co)B4]A3 + So[CoBg = (1 T 260)33 = (1 et Co)B4]t 4 COSot

Cuwgo = D; Dy’
b [CoBg = (1 e Co)B4]A3 i S()A4
Cuwsl = Ds ; Cuss = 5Dy
c%[COBg - (1 o 260)33 = (1 = CO)B4]A5 + 2[—6032 + (1 — 2¢o — C%)Bg, -+ (1 — C%)Bdt
Cug2 = 5Ds

so(cpAg — cpsoAs)
2D, ;
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[—0032 +(1- 2¢9)B3 + (1 — cO)B4](oz0A4 + cosoAs) + 230[6033 -(1- COB4)]t

Cuwgs = 2D
so(s§As — 2t)
2Dy .
C 24 [C()BQ i (1 = 2CO)B3 = (1 = Co)B4]A4
w85 —

2D; ;

3. the function of out-of-plane displacements w(Z) due to g9 = ¢y1 = 1:

Nyo(Z) = Cypoo + Cuo1Z + (Cuwgz + Cuw93Z) sinZ + (Cuwos + CuosT) cOS T, (8)
C N —aso(Bs + By)Asz + S%(Bg + 2B3 + By)t & ﬂz)j e coAy
w90 — D3 D4 ) w93 — 2D4 )
C i3 80(33 -+ B4)A3 C fil S()(Bg + 2B3 + B4)A4
w9l D3 ) w95 2D3 3
c 5% C%So(BQ +2B3 + B4)A5 — 230[(32 + 2B3 + B4) +¢o(Bs3 + B4)]t = co(a0A4 — coSoAs)
c 3 —so(B2 + 2B3 + By)(apAg + cos04s) + 28(2)(.33 + By)t " § COS%A5 — 2¢pt
4. the function of angles of twist ¢;(Z) due to g7 = w; = 1:
N¢x7(§3) = C¢m7o + C¢$71£’ i (C¢I72 + C¢x73.’f)) sinz + (C¢z74 -+ C¢z75(i‘) cos T , (9)
Cozro = 0, Coar1 =0, Coer3 = 0,
C _ C%(Bg + B4)A5 — 2¢co Byt C = —(Bg + B4)(O£0A4 + 0080A5)2SOB4t
¢x72 2D3 ) Ppx74 2D3 )
Cr e = (B3 + B4)A4
W T g

5. the function of angles of twist ¢, (Z) due to gg = ¢ = 1:

N¢x8 (:i) = C¢x80 + C¢z81.'ft + (C¢w82 o= C¢z8357) sin & + (C¢zg4 + C¢x85.’ﬁ) COS T, (10)
80A4
C = O, C = 0, C = 5
¢x80 ¢x81 ¢x83 9D,
C - 2[0033 == (1 o Co)B4]Cot = Cg[COBQ = (l ax 260)33 = (1 = C())B4]A5
P82 — 2D
3
5 So(a0A4 % 6080A5)
2Dy '
C as 280[—00B3 + (1 == C()B4)]t + [C()BQ = (1 = 260)B3 — (1 = C())B4](OtoA4 by CoS()A5)
¢x84 — 2D
3
R 88A5
2Dy’

C 4 [—C()B2 + (1 = 200)33 cfe (1 = Co)B4]A4
¢x85 — 2D3 )
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6. the function of angles of twist () due to g9 = ¢; = 1:

N¢zg(i‘) = Cyz90 + Cpa01T + (C¢z92 =+ C¢x93.'f) sinZ + (C¢x94 <k C¢$955) Ccos T, (11)
coA
Coz90 = 0, Coero1 = 0, Coz93 = ZOD: ;
c 7 —0(2)80(32 + 2B3 + By)As + 2¢9s0(Bs + By)t n co(apAg — cospAs)
$292 = 5D, 5D; ;
C = 30(B2 + 2B3 + B4)(O£0A4 + C()S()A5) — 23(2)(33 + B4)t N CoS%A{,
bzo4 = 5D, 5D;
C o _So(BQ + 283 +B4)A4
¢x95 — 2D3 )

7. the function of cross-section rotations ¢, (z) due to g7 = wy = 1:

N¢y7 (:f,') = C¢y70 -+ C¢y7153 + (C¢y72 + C¢y73§7) sinz + (C¢y74 + C¢y7511~:) Cos T , (12)
Byt
Cgyr0 = B Coyr1 =0, Cgyrs =0,
(B3 + B4)(010A4 o C()S()A5) — 259 Byt
Coyra2 = 3
2D;5
C i (Bs + B4)Ay C oo 1 S%(Bg + B4)As — 2¢yBy
Py73 — 2D3 ) Py74 = 2D3 )

8. the function of cross-section rotations ¢, (Z) due to gz = ¢z = 1:

N¢y8 (&) = C¢y80 + C¢y8153 - (C¢y82 + C¢yg3i') sinZ + (C¢yg4 i+ C¢yg5i‘) Ccos T, (13)
& [—CoBg 4+ (l = C())B4]t il = 80Ay4

Coyso = D, ) Ceys1 = 0, Cgyss = 2D,
C i 280[6033 e (1 g Co)B4]t + [—C()Bz + (1 e 200)33 + (1 ki Co)B4(a0A4 + CoSoA5)]

Py82 —

2Ds
= C%S()As
2D, '’

C i [C()Bz - (1 b & 2CO)B3 e (1 i C())B4]A4

¢y83 2D3 )
C = 260[6033 -, (1 - CO)B4]t + 3(2)[6032 . (1 boes s 2CO)B3 e (1 o C())B4]A5

Y84 = 2D;

so(apAg — cospAs)
2L :

9. the function of cross-section rotations ¢y () due to g9 = ¢,; = 1:

Nd,yg(f?) = C¢y90 =k C¢y91:i + (C¢y92 + C¢y9357) sinZ + (C¢y94 = C¢yg5.’f:) COSL:; (14)
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so(B3 + Ba)t coA4
Coyo0 = ey Ceyo1 = 0, Coyos = — T
C g 28%(33 + B4)t - 80(32 + 2B3 + B4)((10A4 + C()S()A5) 68A5
s 2Ds i P
2¢pso(B3 + B4)t + S(B)(BQ +2B3 + B4)As  co(apAs — cosods)
Coyos = 2Ds b y
So(Bz + 2B3 + B4)A4
Coyos = :

2D3

In all formulas (6) to (14) the following simplifying notation is used:

By = 2d 09 + t(3ag — 45 + coS0) + b(agAg — coS04s),

Bs = t(2s0 — ap + cgs0) — b(ao — cos0),
Dy = t(ap — cos0) + b(ao + cos0),

D3 = ByBy — B2,

YT A =E%7,
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Fig. 2. Graphical representation of element shape functions (data in text)
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The shape functions corresponding to the unit nodal displacement of the element node 2 can be
obtained from the symmetry and anti-symmetry conditions

NwlO(-'i') = Nw (—j:), Nwll(fé) == w8(_fi'), Nw12(~'z') =" w9(“7~")7
Ngz10(Z) = —Nga7(=2Z),  Ng11(E) = Nyas(—%), Nyz12(%) = Nggo(—%),
Ngy10(Z) = Ngyr(—2), Nyy11(%) = Ngys(—2), Nyy12(Z) = Ngyo(—7).

Figure 2 presents the functions graphically for the following data: /R = 0.1; Poisson’s ratio v = 0.3;
ky = 1.(1); a = /6.

2.3. Element stiffness matrix
According to standard FEM approach the element stiffness matrix can be obtained from the mini-

mization of the strain energy for the element with respect to nodal generalized displacements. For
the case of 3D arch this formula has the following form [1]:

0= [ Bt [ 2 Y s [EA( 2
S S

s s 2Ky ox 0s R
El, (0py  ¢z\2 GA Ow\ 2 /GIS Opr  py\2
+/ST(83 +R) ) 5252((’0‘”+83) dsf iR (83 E) dir- (15)

All functions in (15), i.e. u(s), v(s), w(s), z(s), py(s), ¥.(s), according to the superposition rule,
are expressed by the adequate shape functions and all nodal displacements. The first three terms
in (15) correspond to the in-plane action while the last three ones characterize the out-of-plane
effects. Since the shape functions for those effects are completely independent, the resulting element
stiffness matrix is likewise. It can be therefore represented as follows,

EI K 0
K L i - l: 2D(6X6) . 16
R 0 K3p(6xe) 1)

The elements of the stiffness matrix can also be easily obtained from the stiffness matrix defini-
tion. If we consider that its each component represents a respective support reaction in the element
treated as the clamped-clamped arch, evoked by given unit support displacement, a very simple
form of the stiffness matrix can be achieved in a straightforward manner. These support reactions
were obtained in the solving procedure of the shape functions (determination of the nodal and in-
ternal forces in the arch element caused by unit support displacement using the flexibility method).
The resulting submatrix Kyp for in-plane analysis was given in [3]. Here we will present only the
new submatrix Kzp . It is a symmetric one, k;; = kj; has the following components:

b - & % = —coB3 + (1 = C())B4 & P —S()(Bg + B4)
;Y A D3 P 7.8 D3 ) 7,9 D3 )
k710 = —k77, k711 = —keg, k712 = —krg,
2By — 2co(1 — ¢g)Bs + (1 — ¢p)2B
ks,s & COBz 260( Co) 3+ ( Co) 4 3 S(Q)D4 ’
D3
By — 50(1 — 2¢9) B3 — so(1 — ¢p)2B
kso = o ot Cg D e g cosoDy , kg,10 = —k7 8,
3

2By — 2¢(1 — ¢g) B 1—-¢y)%B 2

kg = — 02 Ll el B + 0, (17)
D3 D4

cos0Ba — so(1 — ¢o) B3 — so(1 — c9)?By s
kg2 = ) # L
3 4
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sj(Ba+2B3+Bi) ¢

g , iy
9,9 D, Da 9,10 7,9
k - S%(BQ + 2B3 + B4) Cg K Loy
9,12 = D; ol 9,11 = —Kg,12
k10,10 = k7,7, k10,11 = k78, k10,12 = —k79,
k111 = ksgs, k11,2 = —ksy9, k12,12 = —kg,9 .

The comparison the above results with those yielding from the standard, strain energy min-
imization approach (15) and after tedious mathematical calculations obtained the identity. Yet,
it is worthwhile to point out that despite the relatively complicated form of the element shape
functions (6) to (14) the resulting element stiffness matrix is quite simple.

3. NUMERICAL EXAMPLES

Several numerical examples were performed in order to compare the results yielding from the use
of the elaborated element with the available analytical and numerical solutions.

Example 1

For the cantilever arch presented in Fig. 3 which is loaded by the out-of-plane force at the tip point
B the out-of-plane deflection wp as well as the bending moment and torque at the support are
calculated and compared with well known analytical solutions taken from [1].

In the calculation the following data were used:

cross-section depth: h =1, included angle: oo =5l
cross-section width: b=1, Young’s modulus: E =1-107,
point load: P =1 Poisson’s ratio: v=0.

arch radius: Rl

Cross-section

h Table 1. Results of Example 1
b
— | Analytical [1] | Numerical (present)
wp 0.173 0.173
Mya 5.0 5.0
S ' Mya 50 5.0

Fig. 3. The arch layout for Example 1

Example 2

For the clamped-clamped arch shown in Fig. 4, loaded by the out-of-plane force at the centre point,
displacements at this point and the bending moments and torques are calculated and compared
with the numerical results presented in [4].
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%
l/ Table 2. Results of Example 2
C y
P — Numerical [4] | Numerical (present)
\R wp [m] 0.0098681 0.0100056
@B [rad] 0.022500 0.022522
Mot 4 M, [KNm] | 4.86 1.92
77/’3 A [ M, [kNm| | 32.81 32.75
M, [kNm| | 20.81 20.88

Fig. 4. The arch layout for Example 2

In the calculation the following data were used:

I, =216 in* = 8.99 x 10~° m?,
Ly=3560in% =47 x 10T m#;
I, =245 in* = 1.02 x 10~% m?,
A=T2in* =4565.%10"2m?,
R =108 in = 2.74 m,

second moment of area (in plane):
second moment of area (out-of-plane):
torsional moment of area:

cross section area:

arch radius:

included angle: T2
Young’s modulus: E = 4240 psi = 29.3 MPa,
Poisson’s ratio: v = 0.2045,

point load: P =11 kips = 49.0 kN.

In both above examples a very good agreement between present results and available analyt-
ical and numerical solutions was obtained. This proves that the elaborated arch element can be
succesfully used in the static analysis of 3D arch structures. It should also be emphasized that the
discrepancies between our results for Example 2 and those taken from [4] are due to the approximate
character of the latter ones. The use of our element for the static analysis of circular arches yields
the results coinciding with the exact solutions (see Example 1).

Next examples are aimed at the determining of the influence of the shear forces on the calculated
displacements in the case of out-of-plane action. For the similar in-plane analysis refer to [2, 3].

Example 3

For the cantilever arch presented in Fig. 5 loaded by the out-of-plane tip point loadr P the tip
deflection is calculated with the varying curvature ratio /R (r varies) taking into account the shear
effect and neglecting it. The comparison of those two sets of results gives the possibility to assess
the shear force influence.

Cross saction Table 3. Results of Example 3

P
@ /R wpm [ wf=" [m] [wi"/w

0.200 | 0.51480E—5 | 0.49674E—5 0.9649

5 0.100 | 0.80201E—4 | 0.79479E—4 0.9910

0.050 | 0.12745E-2 | 0.12716E—2 0.9977

s 0.025 | 0.20358E—1 | 0.20346E—1 0.9994

0.010 | 0.79486E0 | 0.79479E0 0.9999

Fig. 5. The arch layout for Example 3 0.001 | 0.79479E4 0.79479E4 1.0000
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In the calculation the following data were used:

point load: Pi="1"KkN;, Young’s modulus: E = 200 - 10® kPa,
arch radius: =11, Poisson’s ratio: =103,
included angle: > a = 7/2, shear factor: Ky = 1.(1).

Example 4

The similar analysis as in the Example 3 is performed for the clamped-clamped arch shown in Fig. 6
loaded out-of-plane at the centre by point load P. The data remain the same as above, except for
included angle: Y o = 7.

Results of numerical calculations presented in Tables 3 and 4 show that the shear effects is not
very important to be taken into account for a very wide range of arch curvature. Only for relatively
high ratio of r/R, rather unexpected in the typical civil engineering applications it becomes vital.
Hence, the similar conclusion as for the in-plane analysis, see [2] can be made that in practical cases
of arch structures the shear effect can safely neglected.

o Estasitodtion Table 4. Results of Example 4
r/R| wplml | w§™" [m] [wi="/ws
0.200 | 0.11175E—5 | 0.10272E—5 0.9192
0.100 | 0.16797E—4 | 0.16436E—4 0.9785
0.050 | 0.26440E—2 | 0.26296E—2 0.9945
0.025 | 0.42132E—1 | 0.42075E—1 0.9986
77 777 0.010 | 0.16439E0 | 0.16436E0 0.9997
0.001 | 0.16436E4 | 0.16436E4 1.0000

Fig. 6. The arch layout for Example 4

4. CONCLUSIONS

In the present paper the new 3D arch finite element for the static analysis is derived. In the first
step the analytical shape functions for the element are determined. It is found out that the in-plane
and out-of-plane effects are fully separated.

These functions are then used to obtain a very simple form of element stiffness using standard
FEM approach with minimization of 3D arch strain energy with respect to the nodal displacements.
The same resulting matrix is obtained from the definition of stiffness matrix components. It must
be emphasized that this stiffness matrix in the case of nodal loads provides the exact solution of the
static problems independent of the element mesh as it bases on the statically exact shape functions.

These functions can be used to obtain consistent mass matrix and consistent geometrical matrix,
which may provide the tool for the calculation of dynamics and stability of 3D arches. Moreover,
in our opinion, the elaborated element gives a real possibility to the further development aimed at
the analysis of shells of revolution (e.g. domes) using gridwork analogy.
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