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The paper deals with the numerical modelling of solidification of two—component metal alloys. The numer-
ical model was worked out using the enthalpy formulation of solidification and the finite element method.
The work concentrated on one enthalpy formulation, namely the basic enthalpy formulation [11]. The
models of solid phase growth as well as implementation details are shown in the paper [8]. A comparison
of the results of the numerical simulation of solidification was made for three approaches to enthalpy
approximation as a function of temperature. The three approaches were called: complete, incomplete and
linear. The results of simulation, for incomplete enthalpy approximation were almost identical to the re-
sults of complete approximation. The computing time for incomplete approximation was substantially
lower than the computing time for complete approximation, and comparable to the computing time for
linear approximation.

1. INTRODUCTION

The pass from the liquid to the solid state is a process composed of many physical phenomena:
heat transfer, liquid metal movement, evolution of the latent heat of solidification, diffusion of
solute and others. Other phenomena, which mainly influence the usability value of the casting and
occur as a result of the phenomena mentioned above, also have major significance. The creation
of the structure is the most important of them. The structure is important because it determines
the usability values of sound castings and also influences the course of thermo-mechanic states
in the solidifying and cooling castings. Insufficient strength of solidifying layers could lead to the
occurrence of casting defects, which often disqualifies them.

The majority of alloys solidify over a range of temperatures. The temperature at the beginning
of alloy solidification is called the liquidus temperature (77), while the temperature at the end of
solidification is called the solidus temperature (7). If, for instance, eutectic transformation can
proceed in the solidifying alloy then eutectic temperature (Tg) can be the temperature of the end
of solidification. In this case, the last stage of solidification proceeds at a constant temperature. The
conditions of carrying away heat from the casting determine the temperature of the end of alloy
solidification, where the amount of solute is smaller than its maximal solubility in the solid phase.
There is no sharp separation between liquid and solid phases in the solidifying metal alloys. These
phases are separated from each other by a so—called “mushy zone” (solidification front) in which
both liquid and solid phases appear at the same time. The width of the mushy zone depends on
the chemical constitution of the solidifying alloy and on the velocity of solidification (solid phase
growth). The dynamic of the mushy zone determines the structure of the solidifying metal.

The finite element method is the most commonly used approach in numerical modelling and
in numerical simulation of solidification. The above method was also applied in this paper with
special respect to its suitability in connection with enthalpy formulation of solidification. The basic
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Fig. 1. Equiaxial grains in the Al-2%Cu alloy structure poured into metal form (50 x magnification)

enthalpy formulation directly takes into account the forming structure in the numerical model. This
paper takes into consideration only the possibility of the formation of equiaxial structure (Fig. 1).

Many approaches to enthalpy approximation exist in the range of solidification temperatures [1,
3, 10, 12]. In the paper the solidification of two—component alloys was analysed and three approaches
to enthalpy approximation were compared.

2. THE ENTHALPY FORMULATION OF SOLIDIFICATION

The solidification is stated by a quasi-linear heat conduction equation containing the term of heat
source, which describes the rate of latent heat evolution

i a
_a-_t— _cp at I (1)

where ) is the thermal conductivity coefficient, c is the specific heat, p is the density (subscript s
refers to the solid phase, I refers to the liquid phase, f refers to the mushy zone), L is the latent
heat of solidification and f; is the solid phase fraction. This equation, together with suitable initial
and boundary conditions, forms the basis of the thermal description of solidification.

Taking into consideration the enthalpy, defined as follows
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where Tl is the reference temperature, and cp is the heat capacity, one can pass to the class of

enthalpy descriptions of solidification process. Differentiating the enthalpy, given by Eq. (2), with

respect to time obtains the basic enthalpy formulation
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First semi-discretisation (discretisation over space) of Eq. (3) and then time integration (dis-
cretisation over time) take place. The time integration is made by one of the one- or multi-step
schemes [3, 12, 13]. Integration by a one-step scheme, for example the Euler backward scheme (EB),
obtains a system of equations in which the coefficients of the left-hand side matrix are functions of
the calculated temperatures. The application of these schemes makes it necessary to use iterative
processes in every time step. The application of forward schemes, for example the Euler forward
scheme (EF), often demands very small time steps to be used to reach a stable solution. This ex-
tends the calculation time. The calculation time can be shortened by applying two-step schemes,
for example the Dupont II scheme [3], in which the coefficients of the left-hand side matrix are
functions of extrapolated values of temperature, calculated on the basis of temperatures from the
previous time steps. Two-step schemes require knowledge of enthalpy on two earlier time levels.
That is why using a one-step scheme is indispensable in the first time step. In this paper the EB
scheme was applied in the first time step and Dupont II in the remaining time steps. To avoid the
iteration process in the first time step the so-called modified EB scheme (mEB) [13] was used. In the
mEB scheme coefficients of the left-hand side matrix are functions of known values of temperature
(in this case given by the initial conditions).

For the modified Euler backward scheme Eq. (3) takes the form [9]

MH™ + At KT = MH® + Atb™H, (5)
and for the Dupont II scheme
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where M is the mass matrix, K is the conductivity matrix, H is the enthalpy vector, T is the
temperature vector and b is the vector of the nodal heat sources, whose values are calculated on the
boundary conditions basis, N is the shape functions vector in Q domain, Nr is the shape functions
vector on I' boundary and q is the vector of heat fluxes given at the boundary nodes. Superscript (°)
denotes that material properties are calculated for extrapolated temperature
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Because enthalpies and temperatures are on the same time level on the left-hand side of Egs. (5)

and (6), the temperatures are expanded in the Taylor series. After substituting the two first terms

of these expansions into Egs. (5) and (6) one can obtain
— for mEB
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The temperature derivative with respect to enthalpy is a diagonal matrix here.
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3. THE APPROXIMATION OF ENTHALPY

By assuming that the latent heat of solidification can be evaluated in an arbitrary way, the enthalpy
for an alloy which solidifies in the range of (T}, — Ts) temperatures equals [3]

4 T
/ cps dT for Ab<<fle;
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Knowledge of the relationship between heat capacity and temperature in the solidification tem-
peratures range as well as knowledge of the solid phase fraction derivative with respect to temper-
ature is needed to determine the alloy enthalpy above the temperature of the end of solidification.
The analytical functions of the solid phase fraction with respect to temperature can be deduced
from the solution of the solute diffusion equation for two—component alloys [5]. This method re-
quires suitable simplifying assumptions for the chosen model of solid phase growth (equilibrium,
non—equilibrium or indirect) [4, 6].

Assumption that heat capacity in the range of solidification temperatures is calculated in the
same way as for the mixture of solid and liquid phases leads to

Cpf(T) = fs(T) cps + (1 — fo(T)) co1, (14)

where cps = const and cp; = const and cps # cp; . As a next step the functions describing the alloy
enthalpy in that range for particular models of solid phase growth can be deduced. For the above
assumptions concerning the heat capacity a linear dependency between enthalpy and temperature
exists at temperatures lower than Ts (or Tg) and at temperatures higher than 77, .

In the equilibrium model of solid phase growth the following equation is valid

12 ol

fS(T):l——_kTM—T’

(15)

where k is the solute partition coefficient!. Substituting this relationship into Eq. (14) and its
derivative with respect to temperature into Eq. (13)2 and making a suitable integration, obtains for
the range of solidification temperatures

H(T) = opTs + op(T — Ts) + L2 <(TL ~Ty)In %ET% EL R T)
g TA{I— ’ZZ (Tm —171")(;11\54 = 1) (16)
In the non-equilibrium model of solid phase growth the following equation is valid
e i
iy =1- (=) (7

IEquations for solid phase fraction in the solidifying two-component alloy were deduced assuming k = const
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For this model of solid phase growth the enthalpy in the range of solidification temperatures is equal
to

H(T) = cpsTg + cps(T — Tg)

k k
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where fF is the solid phase fraction at the moment when eutectic temperature is reached, calculated
according to Eq. (17).
In the indirect model of solid phase growth the following equation is valid [5]
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and D; is the solute diffusion coefficient in the solid phase, ¢y is the so—called local solidification
time, 7y is the characteristic dimension of the grain and n is the coefficient describing the grain
shape (n = 2 for plane grain (plate), n = 4 for cylindrical grain and n = 6 for spherical grain). The
relationships for solid phase fractions for both the equilibrium solidification model (for @ = 1/n)
and the non—equilibrium solidification model (for @ = 0) [5] can be deduced from Eq. (19). A certain
Q(a) correction is applied in the numerical calculation instead of a coefficient because the direct
use of a coefficient could lead inaccuracy in the results. For plane grains the above correction is
equal to [2]

o e\ B -

For the other shapes of grains it has yet to be determined.

Two cases for the determination of enthalpy are possible for the indirect model of solid phase
growth. If the solidification ends at the eutectic temperature, which happens, when after replacing
Tg into Eq. (19), the solid phase fraction is lower than 1, the enthalpy in the range of solidification
temperatures equals

H(T) = cpsTg + cpi(T — Tg)
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where fZ is calculated according to Eq. (19) in this case.
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If, after substituting eutectic temperature into Eq. (19), the solid phase fraction is bigger than 1,
then solidification ends in the (T's — T) temperature range. This temperature is equal to

Tsg =Ty — (T — T1) (nkRQ) Tk : (23)
In this case the enthalpy in the range of solidification temperatures is equal to
H(T) = cpsTsg + cp(T — Tsg)

k(1-nQ)
cpL — Ccps ki § s LRI oo S =
——— | Tsg — T + (T, — T;
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k(1-n)
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Ty — Ty,
L T T l;nliﬂ T T l;nk]:ﬂ
n Ps M — g e . (24)
1 —nkQ TM —TL TM —TL

The diagrams of enthalpy functions for Al-2%Cu alloy for the approach to enthalpy approxima-
tion shown above, i.e. the complete approximation, for all three models of solid phase growth, are
shown in Fig. 2. The diagrams for the indirect model of solid phase growth have been made for

n =2 and a = 0.15 (with the eutectic temperature being reached) and n = 2 and a = 2 (without
the eutectic temperature being reached).
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Fig. 2. Relationship of enthalpy to temperature in Al-2%Cu alloy for the complete approximation;
1 - equilibrium model, 2 — non-equilibrium model, 3 - indirect model with reaching Tr , 4 - indirect model
without reaching T

The enthalpy equations, derived above, can be simplified by making the assumption that heat
capacity in the range of solidification temperatures is the following arithmetic average,

1
cpy = 5(cps +cpr). (25)
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Substituting this relationship into Eq. (13)2 and carrying out suitable integration obtains
e for the equilibrium model of solid phase growth
Ty —Tg T-Tg

Lk {Tpp = TYTrp—Ts)’

1
H(T) = cp,Ts + E(Cps + co))(T — Ts) + psL

e for the non—equilibrium model of solid phase growth

1
H(T) = cpsTE + 5(cps + ca)(T — Tp)
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e for the indirect model of solid phase growth with T being reached

1
H(T) = cpsTE + 5(cps + ea)(T ~ Tp)
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1 —nkQ Ty — T Ty =17,
e for the indirect model of solid phase growth without T being reached

J.
H(T) = cpsTse + 5(003 +cp)(T — Tsk)
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The diagrams of enthalpy functions for this approximation, i.e. incomplete approximation, for
all three models of solid phase growth in Al-2%Cu alloy are shown in Fig. 3.

The simplest form of the relationship of enthalpy to temperature is obtained by calculating the
enthalpy value at the temperature of the end of solidification and at the temperature of the beginning
of solidification, assuming the linear dependence of enthalpy to temperature. These characteristic
enthalpy values are as following

) epsTs for T =1Tg,
cpsTs + psL + L(cps + cp) (T, —Ts)  for T =Tp.

(30)

The enthalpy values at 77, temperature are the same for all models of solid phase growth. However,
the enthalpy values for temperatures at the end of solidification are different. The enthalpy values
at T temperature in the non—equilibrium model of solid phase growth are equal to

H = cp,Tg + p,L(1 — £7), (31)

where fF value is calculated according to Eq. (17). The enthalpy value at T temperature is also
calculated according to Eq. (31) in the indirect model of solid phase growth with the eutectic
temperature being reached, but in this case the fZ value is calculated according to Eq. (19). The
temperature at the end of solidification is calculated according to Eq. (23) in the indirect model
of solid phase growth without the eutectic temperature being reached, while the enthalpy value
at that temperature is evaluated according to Eq. (30);, in which Ts is replaced by Tsg. The
diagrams of enthalpy functions for this approach to approximation, which will be called the linear
approximation, are shown in Fig. 4.

The last stage of solidification always proceeds at a constant (eutectic) temperature in the non-
equilibrium model of solid phase growth. In the indirect model of solid phase growth the solidification
can also end at a constant temperature. With the above equations it is not possible to calculate the
solid phase fraction at a constant temperature of solidification. The solid phase fraction is calculated
assuming its linear dependency, from fSE to 1, in relation to temperature [9].
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Fig. 3. Relationship of enthalpy to temperature in Al-2%Cu alloy for the incomplete approximation;
1 — equilibrium model, 2 — non-equilibrium model, 3 — indirect model with reaching T , 4 — indirect model
without reaching Tg
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Fig. 4. Relationship of enthalpy to temperature in Al-2%Cu alloy for the linear approximation;
1 — equilibrium model, 2 — non—equilibrium model, 3 - indirect model with reaching T , 4 — indirect model
without reaching Tk
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4. NUMERICAL MODEL

Equations (11) and (12) are used to assemble the system of equations in the consecutive time
step of the simulation. Equation (11) is completed with initial conditions, and both equations are
completed with suitable boundary conditions, the numerical realisation of which is presented in
paper [9]. Iterative methods are applied to solve the systems of equations because very often they
are very large. Enthalpies are obtained from the solution of these systems of equations. Next, these
enthalpies are recalculated on temperatures using one of the approaches to enthalpy approximation
shown above. Temperature, obtained in this way, serves for an analysis of the solidification process.
In dependency on the assumed model the solid phase fraction is calculated based on Eq. (15), (17)
or (19). In the case of the indirect model of solid phase growth when the liquid metal reaches 77,
temperature, the calculations are made with the aim of identifying if the solidification ends at T
or a higher temperature. The grain size determines this.

The coefficients of the dT/dH diagonal matrix from Eqgs. (11) and (12) are calculated by differ-
entiating Eq. (13) with respect to temperature. After a few transformations the following can be
obtained

1/(C,Os) for T < TS,

dT df

s 1/ (cpf - psLd—jf) for Ts<T<Ty, (32)
1/(cpr) foxro: T > Ty,

In the numerical model it was assumed that only equiaxial structure is formed in the casting. It
was also assumed that the final grain radius is the characteristic dimension of this structure. The
final grain radius depends on the average cooling velocity, i.e.

vy = 014 + Iy(T) 20315, (33)

where T' is the cooling velocity at the moment when the liquidus temperature is reached. This
formula was obtained experimentally [9].

5. THE EXAMPLES OF COMPUTER SIMULATIONS

The computer simulations were carried out for an Al-2%Cu alloy which solidified in a metal mould.
This alloy was chosen because of its wide range of solidification temperatures (49 K). The values
of material properties, used in the calculations, were taken from paper [1]. For the liquid phase
of the alloy: density 2498 kg/m?, specific heat 1275 J/kgK and thermal conductivity coefficient
104 W/mK, while for the solid phase they are 2824 kg/m3, 1077 J /kgK and 262 W /mK, respectively.
The solidification heat of the alloy is equal to 390 kJ/kg and the solute partition coefficient equals
0.125. The material properties for the mould are: density 7500 kg/m3, specific heat 620 J/kgK and
thermal conductivity coefficient 40 W/mK. Temperatures were taken from a phase diagram for the
Al-Cu alloy system. They are equal to: Thy = 933 K, T, = 926 K, Ts = 877 K and Tr = 821 K. The
initial temperature of the liquid alloy was 960 K, while the temperature of the mould was 660 K.
The analysed casting together with the mould is shown in Fig. 5. The region is divided into 8609
triangular finite elements, obtaining 4659 nodes. The fourth type boundary condition with non—-ideal
contact was assumed between the casting and the mould (the conductivity of the separating layer
was assumed to be equal to 1000 W/m? K). The third type boundary conditions were assumed on
remaining boundaries. It was assumed that ambient temperature equals 300 K and heat exchange
coefficient equals 100 W/m?K on the top and the side boundaries, and 50 W/m?K on the bottom
boundary. A time step equal to 0.05 s was used in the calculations.

The computer simulations were carried out only for the indirect model of solid phase growth.
This model was chosen because it allows calculated grain sizes in the successive calculations of
solidification to be take into account (compare Egs. (19) and (20)). In the evaluations of the a
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Fig. 5. The analysed casting in the mould

Fig. 6. The distribution of  parameter (see Eq. (21)); a) complete approximation, b) linear approximation

coefficient, it was assumed that Dty product equals 6 - 1079 m?, while the coefficient of grain shape
equals 2.

In the indirect model of solid phase growth the temperature at the end of solidification can change
in the range from the equilibrium solidus temperature to the eutectic temperature. The {2 parameter
is most important in the indirect model. It characterises the solidification of the alloy and can change
from 0 to 0.5. In this interval there is a limit value, equal to 0.1988 for the alloy analysed here, below
which the last portion of the liquid alloy solidifies at eutectic temperature. The distribution of £
parameter in the casting is shown in Fig. 6. Only results for complete and linear approximation are
shown in Figs. 6 to 10, because differences between results obtained for complete and incomplete
enthalpy approximation are insignificantly small. Substantial differences of {2 parameter values occur
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Fig. 7. The solid phase fraction distribution at the moment when the eutectic temperature was reached;
a) complete approximation, b) linear approximation

Fig. 8. The temperature field 120 s after pouring, K; a) complete approximation, b) linear approximation

in the middle zone of the casting, where the solidification ends at the eutectic temperature. The value
of £ parameter changes from 0.0548 to 0.4216 for the complete approximation (Fig. 6a), while for
linear approximation it changes from 0.1461 to 0.4216 (Fig. 6b). The top values of both approaches
to enthalpy approximation are the same because they were received for the regions being in contact
with the mould wall, solidifying with the same velocity in both cases. The distributions of the solid
phase fraction at the moment when the eutectic temperature is reached are shown in Fig. 7. The
region where solidification ends at the eutectic temperature is much larger for the complete enthalpy
approximation. Moreover, the amount of eutectic in this case (Fig. 7a) is significantly larger than

for the linear enthalpy approximation (Fig. 7b).
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Fig. 10. The calculated average radii distribution, pm; a) complete approximation, b) linear approximation

The influence of the approach to enthalpy approximation on the temperature field is shown
in Fig. 8. 120 s after pouring, noticeable differences in the temperature distributions occur. The
lowest temperature for the complete enthalpy approximation equals 835.3 K, while the highest
924.6 K (Fig. 8a). For the linear approximation these temperatures are equal to 823.8 and 869.8 K,
respectively.

At the initial stage of the casting solidification the solid phase growth is much slower for the
complete enthalpy approximation (Fig. 9a). 120 s after pouring, the solid phase fraction changes
in the range from 0.1831 to 1. For linear approximation the solid phase fraction is in the range
from 0.9463 to 1 (Fig. 9b). In spite of this, the solidification time for the whole casting is shorter for
the complete enthalpy approximation than for the linear approximation. It is equal to 195 s in the
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first case and 213 s in the second case. For the incomplete enthalpy approximation the solidification
time is also equal to 195 s, but 120 s after pouring the solid phase fraction changes from 0.1951 to 1.

The highest cooling velocity is equal to 29.88 K/s for all three approaches to enthalpy approxi-
mation. In the case of linear approximation the lowest cooling velocity is equal to 1.42 K/s and it
is insignificantly higher than for both other cases, for which it equals 0.78 K/s. For this reason the
temperatures at the end of solidification are contained in the range from 869.8 to 821 K (eutectic
temperature) for all approaches to enthalpy approximation. However, substantial differences occur
in the distribution of the equiaxed grains radii (Fig. 10). For the complete enthalpy approximation a
distinct zone in the internal region of the casting was obtained (Fig. 10a), where the grain radii are
bigger than the biggest for linear approximation (Fig. 10b). For the case of complete approximation
the equiaxed grains radii change from 32.99 to 233.86 pm, while for linear approximation from 32.99
to 130.62 pm.

Cooling curves and solid phase growth curves for selected casting nodes are shown in the following
five diagrams. The positions of these nodes are shown in Fig. 5. Cooling curves and solid phase
growth curves were made for all three approaches to enthalpy approximation in spite of the fact
that curves for complete and incomplete approximation coincide with each other for all the analysed
nodes. A big difference between solid phase growth curves for linear approximation and complete
and incomplete approximations (Figs. 11, 12 and 13) was obtained for the nodes in the central
casting region (nodes 1156, 1860 and 3399). A big difference in the course of cooling curves also
occurred for these nodes with distinct relatively long stops in the liquidus temperature for complete
and incomplete approximations. This stop is considerably shorter for node 535 (Fig. 14) and it
disappears completely in node 3519 (Fig. 15) which lies close to the mould wall.

The differences in the courses of the solid phase growth curves decrease with an increase in the
cooling velocity. For example, these differences are very large for node 1158 lying in the middle
of the thermal centre of the casting. The difference in courses of the solid phase growth curves is
substantially smaller for node 3399 lying beyond the thermal centre and is smallest for node 3519
lying close to the mould wall.
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Fig. 11. Cooling curves and solid phase growth curves for the node 1156
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The time taken to assemble the global system of equations and the global calculation time on a
computer with Pentium III processor with 500 MHz clock and 128 MB RAM memory were compared
to check the influence of the approaches to enthalpy approximation on computing time. The basic
difference occurs during the assembling of the global system of equations. This time is longest for
the complete enthalpy approximation and shortest for the linear enthalpy approximation (Fig. 16).
The extended time to assemble the system equations for the complete enthalpy approximation is
due to the need to calculate the solid phase fraction from Eq. (19) in every time step. For the same
reason the global computation time is also longest for the complete enthalpy approximation, while
for incomplete and linear approximations it is almost identical (Fig. 17).

6. CONCLUDING REMARKS

The influence of the approaches to enthalpy approximation in the range of solidification temperatures
on the results of numerical modelling of solidification was analysed in details in this work. The basic
enthalpy formulation was applied in the numerical model, which was worked out for two—component
alloys with eutectic transformation. In this formulation the enthalpies are the quantities obtained as
a result of solving systems of equations, which are then recalculated to temperatures. The calculated
radii of equiaxial grains are used in the successive calculations of solidification in the basic enthalpy
formulation. In the worked out numerical model the relationship of enthalpy to temperature depends
on the grain size in the range of solidification temperatures. As a result the solidification can end
at the eutectic temperature as well as at a certain temperature, higher than the eutectic one, but
at least equal to the equilibrium solidus temperature.

Three approaches to enthalpy approximation (complete, incomplete and linear) for three models
of solid phase growth (equilibrium, non—equilibrium and indirect) were discussed. In all three cases
the diagrams describing the relationships between the enthalpy and the temperature for equilib-
rium and non—equilibrium solid growth models can be obtained from the indirect model by using
appropriate values of the  parameter. In this way, in numerical modelling of solidification and
structure formation only one model of solid phase growth must be implemented, which of course
should give the possibility of distinguishing between the solidification courses which end at the
eutectic temperature and those which end at higher temperatures.

The results obtained for the three approaches to enthalpy approximation for two—component al-
loys and the computing times were also compared in this paper. The results of simulation, obtained
for incomplete enthalpy approximation were almost identical to the results of complete approx-
imation. The computing time for incomplete approximation was substantially smaller than the
computing time for complete approximation and comparable to the computing time for linear ap-
proximation. This means that in the numerical modelling of solidification the incomplete enthalpy
approximation should be used because of its accuracy and relatively short computing time.
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