Computer Assisted Mechanics and Engineering Sciences, 7: 735-742, 2000.
Copyright © 2000 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Parallel evolutionary optimization of structures

Georg Thierauf and Jianbo Cai
Department of Civil Engineering, University of Essen, 45117 Essen, Germany

(Received November 3, 1999)

By introducing a variable coding technique, a parallel optimization method based on a combination of
GAs and ESs is presented. The advantages of both GAs and ESs, like coding of genetic information and
adaptation of optimization parameters, are enhanced by this new method.

1. INTRODUCTION

Enhanced by the availability of high-speed parallel computing technique, zero-order and direct opti-
mization methods gained renewed interest since the early eighties. Influenced by this development,
stochastic search methods and Darwinian methods have been the subject of many publications dur-
ing the past fifteen years. Among these, the genetic algorithms (GAs) and the evolution strategies
(ESs) are two of the most discussed search strategies.

In the following, the basic concepts of GAs and ESs are first briefly described. Subsequently, by
introducing a variable coding technique, a parallel optimization method based on a combination of
GAs and ESs is presented.

2. THE BASIC GENETIC ALGORITHM

The basic genetic algorithm was proposed in 1975 by Holland [4] and Dejong [2]. A genetic algorithm
can be considered as an iterative scheme, where each iteration cycle forms a generation of an
evolutionary process.

Encoded representation of the design variables

As a main property of GAs the fact of using binary encoded individuals (genotype level) has to be
noted. The components z; of the vector

X=(ml,£()2,...,$i,...,.’lfn)T (1)

are considered as genes.

A component z; can be represented by a substring with a length of m. The encoded components
can be considered as chromosomes. A vector of design variables, usually called an individual, is
characterized by a string of chromosomes:

B::ik:0d 409120 Ak vl 01,0

~ .-
o

1 x2 Tn

For a discrete design variable, the length m of the substring depends on the number of the
feasible discrete values of the variable. In case of m = 4, for example, 16 discrete values can be
represented by the substrings (0 0 0 0) to (1 1 1 1). For a continuous design variable, the length m

736 G. Thierauf and J. Cai

of the substring depends on the required precision A., then the length m of the binary substring
may be estimated from the following relationship [6]:

9™ > [(zy — z1)/Ac + 1]. 2)

Here, z7, and zy are the lower and upper bounds of a continuous variable z; . It is obvious that
a continuous variable is treated as a discrete one by dividing its feasible region [z, zy]| into 2™
discrete values.

Mating, crossover and mutation

In the v-th generation, a population of y individuals, characterized by their genes (chromosomes)
exists:

biigsid@o s ko BesdD B:isd iy
gopampsl qysagy Mg ke gt B
1 11 R S e

The p individuals are mated at random. As a result of mating, a crossover of chromosomes takes
place. The crossover of two individuals A and B results in A* and B*. In a two-site crossover the
chromosomes between two arbitrarily set borderlines are exchanged, e.g.

(before crossover)

A=(@©11]0 o P O
- g b 1 B e P-Aq e
(after a two-site crossover)

A = (011 |1 1 5.3
B* = 1 90710 ... 19 0.

As rare and secondary events, mutations occur: With a low probability, certain chromosomes in
the genetic code of individuals, selected at random, are exchanged from 1 to 0 or inversely, e.g.:

from A = (0 1 1 1 ... 111 1)

n

I Sl R e S B B

After crossover and mutation p new individuals are generated. The y old individuals die out.

Reproduction
For a specific optimization problem of the form

minimize f(X)

3
subject to GOAP OB RN (3)

the fitness of each individual must be defined. For an admissible point X the value of the objective

function can be used for the definition of its fitness. In general it is difficult to generate admissible
points in a random process. For this reason, a penalty transformation

minimize f(X)+p Y _ ®[g:(X)] (4)
=1

Parallel evolutionary optimization of structures 737

can be used, where ® is an appropriate penalty function [5] and p is a penalty coefficient.
With considering Eq. (3), the fitness of an individual X; can be defined as follows [8]:

Fj:(fmax'*‘fmin)—fjv (5)

where fiqa: is the maximal value of the objective function between the p individuals and fy, is
the minimal one. According to their fitness values, each of the y new individuals gets « copies into
the mating pool of the next generation, where « is calculated as follows, with rounding off:
Fj
0= =p—— - (6)
i Z‘l;—_‘l Fj/:u’

A good individual X; (with a; > 1) will get more than one copy in the next generation and a bad
one gets no copy. This process is called reproduction following the Darwinian principle “survival
of the fittest”. After reproduction a mating pool of the (v + 1)-th generation with p individuals is
formed, which has a higher average fitness value than that of the v-th generation.

3. THE BASIC MULTI-MEMBERED EVOLUTION STRATEGY

The evolution strategies were first proposed by Rechenberg [9] in 1964. Applications to optimization
of technical systems were proposed by Rechenberg in 1973 [10]. A comprehensive description is given
by Schwefel [11].

In the following we first restrict ourselves to a basic form of the multi-membered evolution.

Recombination and mutation

A main property of ESs that differs from GAs is that ESs work with real values of the variables
(phenotype) instead of encoded binary strings.
In the v-th generation a population of i design points, called p parent vectors, are given:

B =l B Xy v Xf) (1)
with

X{ = [z, T12, -+ Tin]

XT = [z, 322, - Ta) @)

X/f, = [xllﬁl’ zan’ "L‘p‘sn]

From these p parent vectors, A new design points, called offspring vectors, will be generated.
For every offspring vector a temporary parent vector X = [Z1,Zo,... ,@n]T should be first built
by means of recombination. For a continuous problem five recombination cases which can be used
selectively are given by Hoffmeister and Baeck [3]:

(x4, or zp; randomly (A)
5 (@ai+) (B)
Ti =1 Ty (©) 9)
Tq, OF Tp;; randomly (D)
| 5(ai + Zbj0) (E)

where ; is the i-th component of the temporary parent vector X , Ta; and zp; are the i-th
components of the vectors X/ and X,f) which are two parent vectors randomly chosen from the

738 G. Thierauf and J. Cai

population. In case (C) of Eq. (9), #; = zy;; means that the i-th component of X” is chosen
randomly from the i-th components of all x4 parent vectors.
For discrete optimization problems the following recombinations are employed [1]:

(Tq,0r Tp; randomly (A)
Tpji (B)
&; = ¢z, or xp;; randomly (C) (10)
T, Or Zp; randomly (D)
| Zm,i or Tpj; randomly (E)

where the vector X/ is not chosen at random but as the best of the y parent vectors in the v-th
generation. In cases (D) and (E) of Eq. (10) the information from the best parent can be used which
results in a better convergence for many problems.

From the temporary parent X an offspring vector X jo can be created by means of mutation as
follows:

xP =X + z, (11)

where Z; = #5025 7105 zj,n]T is a vector of random change. For continuous problems the com-
ponents z;; are random numbers from a normal distribution [11]:

1 (254 = §z’)2)
Zi:) = ———— ex R L s R R 19
p(],l) \/mai p(20_12 ()
where ¢; is the expectation, which should have the value zero, and o? is the variance, which should
be small. '
For a discrete problem, the components of the random change vector Z; have the form [1]

(k4+1)dz; (Il <n) randomly chosen components,
250 = (13)

0 n—1 other components,

where 0x; is the current difference between two adjacent values in the discrete set and x is a
Poisson-distributed integer random number with the distribution

p(k) = (o) I (14)

where «y is the deviation of the random number x and should range from 0.001 to 0.1. A uniformly
distributed random choice decides which I components should be changed for a mutation according
to Eq. (13). For structural optimization problems, according to our research, a suitable [value
ranges from 8 to 12 [1].

Selection

Now we have a population of (14 + A) individuals. Following the Darwinian principle “survival of
the fittest” p best individuals will be selected according to their fitness for surviving to the next
generation. The fitness of an individual is defined as its value of the objective function.

There are two variants of the multi-membered evolution strategy: (u + A)-ES and (i, A)-ES. In
the case of (u+ A)-ES, all the p+ A individuals are ordered according to their fitness values, and in
the case of (1, A\)-ES (A > p), only the X offspring vectors of the v-generation are ordered according
to their fitness values. The first set of the y elements are chosen as the parent vectors of the next
generation.

Parallel evolutionary optimization of structures 739

4. GAS AND ESS, A COMPARISON

With respect to the major working scheme both algorithms, evolution strategies and genetic algo-
rithms, are identical, but the details of their implementations establish some significant differences,
especially the parameter representations and the selection schemes. In their research, Hoffmeister
and Baeck [3], have made a detailed comparison between GAs and ESs. In the following, the results
in [3] will be briefly described. Subsequently, with respect to the applications of both algorithms in
engineering optimization, some aspects will be discussed.

Many differences between ESs and GAs directly or indirectly stem from a substantial difference
in the underlying “genetic” representation used by the algorithms. While in general GAs operate
on fixed-sized bit strings which are subsequently mapped to the values of the object variables, ESs
work on real-valued vectors. This must not be confused with real-valued “strings” which in a second
stage are mapped to the object variables in question. Instead, ESs are operating completely on a
phenotypic level, hence they can utilize much more knowledge about the application domain.

When considering the working schemes of GAs and ESs it is apparent that both algorithms have
different handling of reproduction rates. With proportional selection in GAs there is a dynamic
assignment of reproduction rates to the individuals with respect to their relative fitness, even the
worst individual has a minor chance to reproduce. The reproduction rates may differ significantly
allowing a super-individual to dominate the next generations quickly, thus leading to early con-
vergence. In ESs there is a static assignment of reproduction rates the p best individuals within a
population with no respect to their relative fitness, i.e. every selected individual reproduces with a
rate of 1/p.

Although ESs and GAs use mutation and recombination (crossover), the role of these genetic
operators is different. While in GAs mutation only serves to recover lost alleles, in ESs mutation
implements some kind of hill-climbing search procedure with self-adapting step sizes o (or 7). When
an ES is trapped on a local optimum the step sizes are reduced to get closer to the optimum. Due
to normally (or Poisson-) distributed mutations, occasionally large changes are realized which may
give the chance to escape from the basin of attraction of a local optimum. In both algorithms
recombination serves to virtually enlarge the population, and thus the covered search space. In ESs
it is also an effective means to lessen the tendency of ESs to reduce the search space in order to
achieve a higher rate of convergence.

In GAs the effect of a single bit (small) mutation on the genotype level is not easily predictable
on the phenotypic level and depends considerably on the used coding function. For a binary coding
function, a single mutation causes a position-dependent change Az € {2l¢, ..., 2%, ... 2™e} of
an object variable where ¢ refers to the mutated position and ¢ € R denotes the resolution of the
coding scheme of the object variables.

In basic GAs recombination is realized by one- or two-site crossover which provides only a limited
mixing of information (building blocks) and which does not take into account the internal substring
boundaries imposed by the coding function. Recombination as realized in ESs (see Egs. (9) and (10))
achieves a much better mixing of the genetic information which implicitly obeys the boundaries
between object variables since it operates on the real-valued vectors.

The main differences between ESs and GAs are listed by Hoffmeister and Baeck in Table 1 [3].

For engineering optimization problems, according to our experience [1], the following aspects
should be considered.

Due to the discrete nature of the binary representation schemes, GAs are suitable for solving
discrete optimization problems. A continuous problem can only be translated in to a discrete problem
according to the required solution precision A, (see Eq. (2)). The smaller the value A, (namely
the higher the accuracy), the longer is the length of the binary string, and then, the slower is
the convergence. ESs have different mutation schemes for continuous and discrete variables (see
Egs. (12), (13) and (14)), and no limitation for both continuous and discrete problems.

In GAs mutation plays a secondary role in the optimization process. The improvements of the
population are mainly gained by the operator crossover. In point of view of linear algebra, a crossover

740 G. Thierauf and J. Cai

Table 1. Differences of GAs and ESs

Genetic algorithms Evolution strategies

Genotype level of individuals Phenotype level of individuals

(binary coding) (real-value representation)

No knowledge about the objective | Knowledge of the dimension of the
function’s properties objective function (i.e. number of variables)
Parameter space restrictions for No parameter restricts apart

coding purpose from machine-dependencies

Dynamic preservative Static, extinctive selection

or static preservative selection (equal probabilities); more or less selective
Recombination serves as the Mutation serves as the

main search operator main search operator

Secondary role of mutation Different recombination schemes

No collective self-learning Collective self-learning

of parameter settings of strategy parameters

is nothing else than a linear combination of given vectors. To avoid an improvement in a subspace,
the minimal number of given vectors (namely the base for the vector space of dimension n) should at
least equal to the number of the design variables n. This forms the lower limit of the population size
for GAs. In ESs, mutation works as a main operator, and there is no lower limit to the population
size. Hence, by using a (1+1)-ES (two-membered evolution strategy), good results can be obtained
for many problems.

5. A COMBINED ALGORITHM

The basic idea to build a combined algorithm is to introduce a new coding technique into GAs.
In the basic GAs the base of the binary coding is 2. Each position of a binary code can only take
the values 0 or 1. As an improvement Lin et al. [7] introduce a decimal coding technique into GAs.
Thus, the length of a substring can be sufficiently reduced. In each portion of a decimal code 10
values from 0 to 9 can be taken. Based on this idea, we extend the decimal coding into a “variable
coding”. For a discrete problem, we take nq, the number of the feasible discrete values of a variable,
as the base of the coding. Then, the length of a substring is always 1, and for each position ng values
can be taken. It is obvious, this is the way of ESs for representation of discrete variables. The same
way can be used for the continuous variables. A significant benefit is that the mutation can be used
as a main search operator. Thus, in the combined algorithm, we use the variable representation and
the operator mutation from ESs and the operators crossover and reproduction from GAs.

The combined algorithm can be formulated as follows.

In the v-th generation a population of 4 design points, called p individuals, are given:

PV=(X1,X2,...,X,L) (15)
with

Lty By e osT TG

Xgted e p. Bas 4. LRt (16)

Xy = [z, 2p2, -0 Tyn]-

Parallel evolutionary optimization of structures 741

The p individuals are mated at random. As a result of mating, a crossover of chromosomes (one-
or two-site) takes place. After crossover p new individuals are obtained:

)EH o Bniedne v by
Xoki= [11_}2’1) .1—,'2’2 REREXSRY 532,”] 2 (17)
Xﬂ = [i‘u,l,fﬂ’g, 5 S48 5 a_"u,n]-

For each individual X;, a mutation according to (12) or (13) can be taken and the following
individuals are generated:

):(1 Ay p s 819 50 g Brals
Xy = llariBao. o0y S0l 18)
L b o R AR
According to their fitness values (see Eq. (5)) each of the y individuals (X1, ..., Xu) gets «

(see Eq. (6)) copies into the mating pool of the next generation which form the g initial individuals
PY*! of the (v + 1)-th generation.

6. PARALLEL SUB-EVOLUTION-STRATEGY

Similar to ESs and GAs, the combined algorithm works simultaneously with a population of design
points in the space of variables. This inherent parallelism allows for an implementation in a parallel
computing environment.

With an increasing size of the population, the probability to obtain a global optimum increases
almost proportionally. However, large scale problems with an increasing size of population also
require much computing time. Following an idea of natural evolution, a parallel sub-evolution-
strategy (PSES) was suggested by the authors [1]. The idea of PSES or of the “islands model”
can be used for the parallelization of the combined algorithm. The population can be divided into
several smaller subpopulations which can undergo their evolution separately and in parallel. In order
to prevent the development of evolutionary niches, migration between the subpopulations must be
allowed.

In the parallel implementation on a n-processor computer, the whole population is divided into n
subpopulations, each processor runs the combined algorithm on its own subpopulation. Periodically
some good individuals will be selected and copies of them will be sent to one of its neighbers
(migration). Every subpopulation also receives copies from its neighbors, which replace its own
“bad” individuals.

The information exchange will be carried out in a determined sequence, For example, from
processor 7 —1 to 4 and from ¢ to +1 [1]. During an optimization process, except for the information
exchange, the job on every processor runs independently and a local search can be stopped according
to its own termination criterion. If a job on a processor terminated normally, it sends a signal to its
neighbours. To keep the cyclic exchange working, exchange between the processor and its neighbours
is carried out until all computations are terminated.

7. CONCLUDING REMARKS

Evolution strategies and genetic algorithms work with the same searching scheme, but the details
of their implementations establish some significant differences, especially the parameter represen-
tations and the selection schemes. With respect to applications of both algorithms in engineering

742 G. Thierauf and J. Cai

optimization, because of the real value representation of variables, evolution strategies seem to have
a better flexibility.

In the new algorithm presented above, the variable representation and the operator mutation
from evolution strategies are combined with the operators crossover and reproduction from genetic
algorithms. In this way, the advantages of both evolution strategies and genetic algorithms, like cod-
ing of genetic information, unlimited size of population and adaptation of optimization parameters,
are included in the new algorithm.

REFERENCES

[1] J. Cai. Discrete Optimization of Structures under Dynamic Loading by Using Sequential and Parallel Evolution
Strategies (in German). Doctoral Dissertation. Department of Civil Engineering, University of Essen, Germany,
1995. :

[2] K.A. Dejong. Analysis of the Behaviour of a Class of Genetic Adaptive Systems. Ph. D. Thesis, University of
Michigan, Ann Arbor, MI. 1975

[3] F. Hoffmeister, T. Baeck. Genetic Algorithms and Evolution Strategies: Similarities and Differences. Technical
Report No. SYS-1/92, University of Dortmund, 1992.

[4] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, Mich., 1975.

[5] U. Kirsch. Structural Optimization — Fundamentals and Applications. Springer-Verlag, Berlin, 1993.

[6] C.-Y. Lin, P. Hajela. Genetic algorithms in optimization problems with discrete and integer design variables.
Eng. Opt., 19: 309-327, 1992.

[7] S--S. Lin, C. Zhang, H.-P. Wang. On mixed-discrete nonlinear optimization problems: A comparative study.
Eng. Opt., 23: 287-300, 1995.

[8] S. Rajeev, C.S. Krishnamoorthy. Discrete optimization of structures using genetic algorithms. J. Struct. Engry.,
ASCE, 118(5): 1233-1250, 1992.

[9] I. Rechenberg. Cybernetic Solution Path of an Ezperimental Problem. Royal Aircraft Establishment, Library
Translation 1122, Farnborough, England, 1965 (in German: 1964).

[10] I. Rechenberg. Evolution Strategy: Optimization of Technical Systems According to the Principles of Biological
Evolution (in German). Frommann-Holzboog, Stuttgart, 1973.

[11] H.-P. Schwefel. Numerical Optimization of Computer Models. Wiley & Soms, Chichester, 1981 (translated from
German, 1977).

