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In nonlinear dissipative mechanical systems, bifurcations of chaotic attractors called boundary crises ap-
pear to be the cause of most sudden changes in chaotic dynamics. They result in a sudden loss of stability
of chaotic attractor, together with destruction of its basin of attraction and its disappearance from the
phase portrait. Chaotic attractor is destroyed in the collision with an unstable orbit (destroyer saddle)
sitting on its basin boundary, and the structure of the saddle defines the type of the crisis — regular or
chaotic one. In the paper we exemplify both types of the boundary crisis by using a mathematical model
of the symmetric twin-well Duffing oscillator; we consider the regular boundary crisis of the cross-well
chaotic attractor, and the chaotic boundary crisis of the single-well chaotic attractor. Our numerical anal-
ysis makes use of the underlying topological structure of the phase space, namely the geometry of relevant
invariant manifolds, as well as the structure of basins of attraction of the coexisting attractors. The study
allows us to establish some relevant relations between the properties of the regular and chaotic boundary
crisis, and to outline the differences that result mainly in the post-crisis system behavior.

1. INTRODUCTION

Nonlinear phenomena in mechanical systems play an important role in engineering dynamics, be-
cause their appearance may disturb a desired motion of an engineering device, or even may produce
irregular and dangerous oscillations. In the study of a behavior of dissipative nonlinear oscillators,
particular attention should be paid to crises, i.e. the bifurcations which are catastrophic, in the
sense, that the current path of a stable solution (attractor) undergoes a discontinuous change (anni-
hilation, destruction, strict loss of stability). This results in a transient trajectory making a “jump”
in a phase space to a disconnected coexisting attractor. If more than one other attractor is available,
the final outcome may depend very sensitively on how the catastrophe is realized, and in this sense
may be indeterminate.

While steady-state chaotic motion (chaotic attractor) of a system is generally less desirable than
a regular, periodic motion, it has at least the virtue of being statistically stationary and confined
to a well-defined region of phase-space. The situation near the crisis is drastically worse, because
the time-history of a system trajectory may be completely different in time intervals of arbitrary
duration.

Bifurcations of chaotic attractors called boundary crises result in a sudden loss of stability of the
chaotic attractor together with destruction of its basin of attraction and its disappearance from the
phase portrait. The key event underlying the phenomenon is a collision of the chaotic attractor with
an unstable periodic orbit (a saddle) not on the attractor, which takes place in the phase space as
the system parameter p passes through some critical value p.. For this particular unstable orbit, the
term destroyer saddle is used. Such collisions were widely reported in recent publications, e.g. [2, 5,
8, 131.

The structure of the invariant manifolds of the destroyer saddle governs many aspects of the crisis.
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If the outset (unstable manifold) of the saddle which branches away from the chaotic attractor is
not tangled prior to the crisis, we deal with the case of regular boundary crisis, and the saddle is
called reqular destroyer saddle. The outset tends to the attractor, which coexists with the chaotic
one, while the other outset tends to the chaotic attractor and forms the closure of it. In contrast, if
the outset of the destroyer saddle which branches away from the chaotic attractor is tangled (i.e. it
is after the homoclinic bifurcation) prior to the crisis, we face the phenomenon of chaotic boundary
crisis, and the saddle is called chaotic destroyer saddle. In the latter case, one of the outsets of the
destroyer saddle still tends to the chaotic attractor, while the other, tangled outset does not tend
to any coexisting attractor, but involves a non-attracting chaotic set with an infinite number of
unstable orbits and a highly complicated, horseshoe-type dynamics [5].

The collision of the destroyer saddle with the chaotic attractor implies a homoclinic bifurcation
of the saddle [7]. Thus the critical parameter p. of the boundary crisis can be determined by compu-
tation of a tangency condition of invariant manifolds of the unstable orbit. The aim of our paper is
to outline also the other characteristic properties of the system which accompany either regular or
chaotic boundary crisis, such as: geometrical equivalence of the invariant manifolds which account
for the crisis, period of the destroyer saddle, structure of the boundaries of basins of attraction,
post-crisis chaotic transients and predictability of the final outcome. We exemplify both types of
the boundary crisis phenomena by using a dissipative, symmetric twin-well potential Duffing system.
For more information and details see [9-12].

It is necessary to emphasize that the geometrical and qualitative properties of chaotic dynamics
of strongly nonlinear systems cannot be analyzed by approximate analytical methods; the analysis
necessitates numerical computations which are mainly based on numerical integration of system
trajectories. Hence, we are confined to draw the conclusions based on “numerical evidence” only.
Numerical results presented in the paper are mainly obtained by the aid of the nonlinear software
package Dynamics [4].

2. THE SYMMETRIC TWIN-WELL DUFFING OSCILLATOR AND ITS CHAOTIC ATTRAC-
TORS

We examine the boundary crisis phenomena that appear in a dissipative, externally driven, sym-
metric twin-well potential Duffing system, governed by the second order differential equation in the
form

i + ku — au + Bud = Acosar, a, >0, (1)

where u stands for a displacement, dots denote differentiating with respect to time 7, k represents
damping coefficient, and A, @ denote the amplitude and frequency of the driving force, respectively.
Thus, the quartic potential of the system
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with maximum at v = 0. The linear natural frequency of undamped, small oscillations around the
stable equilibrium position u;(9) is Qo = V2a.
By introducing the two changes of variables,
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we reduce the equation (1) to the general “standard form” [10]
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and dots denote differentiating with respect to nondimensional time ¢. The standard system (2)
satisfies the following conditions:

e the two stable equilibrium positions are located at z1,2 = %1, while the unstable equilibrium
position (hilltop) corresponds to z = 0;

e the linear natural frequency Qo = 1.

In the paper, we are confined to the region of driving frequency w in the neighborhood of the
primary nonlinear resonance, i.e. for w =~ Qy = 1. Under weak forcing there are two stable solutions,
a T-periodic orbit encircling each potential minimum. With increasing forcing, the softening effect
of the restoring force causes a familiar nonlinear response with hysteresis, resulting in a second
coexisting T-periodic orbit in each well. The response amplitude of this second periodic motion
measured from the potential minimum is larger than that of the original one; the larger amplitude
solution is called the resonant attractor, while the coexisting less amplitude solution is referred to
as the nonresonant attractor. Both single-well oscillations are separated by the unstable T'-periodic
orbit (single-well saddle). The unstable solution which corresponds to the maximum of the potential
energy is represented by the T-periodic unstable orbit (hilltop saddle).

When the forcing amplitude is large enough, the steady-state stable solution overcomes the
potential barrier; the system can either jump from one well to the other in a random-like manner,
or exhibit regular periodic oscillations that encircle both potential wells. The former response is
referred to as the cross-well chaotic attractor, when the latter one — as the cross-well T-periodic
attractor (large orbit).

Throughout our paper, we use the following notation: S!,, S. (S, S”) denote the nonresonant
and resonant attractors in the left (right) well, respectively; D' (D") are the corresponding single-well
saddles, Sy, is the cross-well T-periodic attractor (large orbit), Dy, denotes the cross-well T-periodic
saddle associated with Sy, attractor, Dy stands for the hilltop saddle.

Schematic diagram of regions of existence of the various attractors in the system parameter plane
F—w, at fixed damping (h = 0.1 throughout this study), is displayed in Fig. 1. The lines snB and snA
denote the critical thresholds of saddle-node bifurcations giving birth to resonant and nonresonant
single-well attractors, respectively. Within the triangle-like domain confined by snB, snA and PD
stability limits the system exhibits primary nonlinear resonance oscillations with hysteresis, i.e. with
two T-periodic attractors in each well (the corresponding continuous-time trajectories in a phase
plane z—% are shown in Fig. 2a). On increasing the forcing parameter F (or decreasing the driving
frequency w), the resonant attractors S.., S” undergo the first period doubling bifurcation (line
PD in Fig. 1), followed by a cascade of period-doublings, the cascade which was found in many
physical systems, and which is regarded in nonlinear dynamics as a generic route to chaos [1]. The
schematic bifurcation diagram of the period-doubling cascade in the zp—F (or zp—w) plane, where
zp denotes the Poincaré displacement on the Poincaré section plane, is shown in Fig. 2b. At the
end of the cascade, the single-well chaotic attractor is observed in a narrow band of the control
parameter, and this attractor is finally annihilated in a boundary crisis scenario, denoted by crl
line.

At F < Fy, after the boundary crisis, the single-well chaotic attractor is erased from the phase
portrait, and the system renders with only nonresonant attractor S},(S) in each well (Fig. 2¢). At
F > Fy, the boundary crisis of the single-well chaos gives rise to explosive bifurcation which leads
to the creation of the cross-well chaotic attractor [3, 14]. In the region of frequency between the two
codimension-two bifurcation points (w; < w < ws in Fig. 1), an increase of the forcing parameter F'
leads to another scenario of creating the cross-well chaos: after exceeding the saddle-node bifurcation
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Fig. 1. Schematic diagram of regions of existence of different attractors in the twin-well potential Duffing

oscillator. [JffJ} - coexistence of the T'-periodic resonant (S., /') and nonresonant (S, Sp,) single-well attractors

(region of resonant hysteresis); — cross-well chaotic attractor; &5 — T-periodic cross-well resonant attractor

(large orbit) Sz; snA, snB, snL - saddle-node bifurcations; PD — first period-doubling bifurcation of the single-

well resonant attractors; hbDy, — homoclinic bifurcation of the cross-well saddle Dr; crl, cr2 - boundary crises
of chaotic attractors
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Fig. 2. (a) coexistence of resonant and nonresonant T-periodic single-well oscillations; (b) bifurcation diagram
of the period-doubling cascade of the single-well resonant attractor; (c) boundary crisis of the single-well chaotic
attractor, in the region of forcing values F' < Fy
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denoted by snA line, the two single-well attractors lose stability in favor of the cross-well chaotic
attractor (we face here the phenomenon of intermittency [9]).

Within the domain confined by snL, snA and crl lines (dotted region) the cross-well chaotic
attractor exists as a unique attractor of the system. At the threshold value denoted by snL a pair
of the T-periodic resonant cross-well orbits appears — the attractor Sz, (large orbit) and the saddle
Dy, are born in the saddle-node bifurcation. Thus, within the region of control plane confined by
snL, snA and cr2 lines (dotted-dashed region), the cross-well chaotic attractor coexists with the
T-periodic cross-well attractor Sy,. At F' > Fy, the cross-well chaos is annihilated by a boundary
crisis, denoted by cr2 line, after which the large orbit Sy, remains the unique attractor of the system
(Fig. 3).
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Fig. 3. Boundary crisis of the cross-well chaotic attractor, in the region of forcing values F > F;; the large
orbit attractor is shown as a continuous time trajectory, while the chaotic attractor — as the Poincaré section
representation

Chaotic attractors are characterized by the fundamental period, i.e. the least period of an unstable
orbit embedded in the attractor. The unstable orbit with the fundamental period is called the
principal saddle of the chaotic attractor.

In Sec. 3 of this paper we first consider the boundary crisis of the cross-well chaotic attractor,
which is an example of the regular boundary crisis. The phenomenon was studied in detail in [9],
with an attention focused on the neighborhood of the codimension—-two bifurcation point at F' = F,
(i.e. the point of intersection of the saddle-node bifurcation snA, and the homoclinic bifurcation of
the cross-well saddle Dy, (line hbDy) in the control plane, Fig. 1). In Sec. 4 the boundary crisis
of the single-well chaotic attractor, in the region of F < F, is discussed . The latter case was
already reported by a number of researchers (e.g. [8]), and is celebrated as an example of the
chaotic boundary crisis.

3. REGULAR BOUNDARY CRISIS OF THE CROSS-WELL CHAOTIC ATTRACTOR

In this section we consider the boundary crisis of the cross-well chaotic attractor in the region of
F > F, (line cr2, point 2 in Fig. 1). The principal saddle of the chaotic attractor is the hilltop
saddle Dy, with the fundamental period 7'. In the region of control plane that precedes the crisis
threshold, the cross-well chaotic attractor coexists with the cross-well T-periodic attractor Sy, (large
orbit). At the boundary crisis denoted by cr2 line the chaotic attractor is destroyed in the collision
with the T-periodic cross-well saddle Dy, .

In Fig. 4a we show (in the z—% plane) the basin-phase portrait of the two coexisting attractors,
while in Fig. 4b — invariant manifolds of the T-periodic saddle Dy, , prior to the boundary crisis of
the cross-well chaos. It is clearly seen that the boundary of basins of attraction of the two attractors
is smooth and is defined by the insets of the saddle Dy, . The outset of Dy, which branches away from
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Fig. 4. Basins of attraction and the relevant invariant manifolds (in the = — & plane), prior to the regular
boundary crisis of the cross-well chaotic attractor; (a) basins of attraction of the two cross-well coexisting
attractors: the chaotic attractor (magenta), and the large orbit attractor Sr (green), in a large domain of the
phase plane; the Poincaré map of the cross-well chaotic attractor depicted in white; (b) the corresponding
family of the invariant manifolds of the destroyer saddle Dy ; (c) insets of the destroyer saddle Dr, and
outsets of the principal saddle of the chaotic attractor, Dy ; (d)—(f) the corresponding blown-up pictures
at the boundary crisis bifurcational parameters: (d) “collision” of the chaotic attractor with the destroyer
saddle Dy ; (e) homoclinic bifurcation of the destroyer saddle Dy ; (f) heteroclinic bifurcation of the destroyer
saddle Dy, , and the principal saddle of the chaotic attractor, Dy
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the chaotic attractor tends to the coexisting attractor Sy, , and the other outset tends to the chaotic
attractor and forms the closure of it. The conclusion is that the boundary crisis of the cross-well
chaotic attractor is regular (the destroyer is a regular saddle). Upon further change of the system
parameters, as the boundary crisis is approached, the stable manifold (basin boundary) and the
unstable manifold (closure of the chaotic attractor) of D approach each other, become tangent,
and then intersect transversely. The situation for the tangency, i.e. at the homoclinic bifurcation
of the saddle Dy, , is shown in blown-up pictures in Figs. 4d and 4e. By geometrical evidence, the
event can be also interpreted as a “collision” of the chaotic attractor with the destroyer saddle. It
follows that the boundary crisis of the cross-well chaotic attractor is catalyzed by the homoclinic
bifurcation of the T-periodic saddle Dy, (line hbDy, in Fig. 1). In fact, at F > F5, both critical lines
shown in Fig. 1, hbDy, and cr2, coincide.

In the paper we add some new observations. In Fig. 4c, the insets of the destroyer saddle Dy,
and the outsets of the principal saddle of the chaotic attractor, Dy, are shown. We notice that the
structure of the right-hand side outset of Dy, (depicted in red in Fig. 4b) and that of the outsets
of Dy (depicted in blue in Fig. 4c) are extremely close in the phase space. By numerical evidence
we realize that the both structures form the closure of the chaotic attractor and, therefore, look
exactly like the Poincaré section representation of the attractor (depicted in white in Fig. 4a). The
critical crisis parameter values were computed twice: first we determined the tangency condition of
the inset and the right-hand side outset of the saddle Dy, (Fig. 4e), and then we found the tangency
condition of the insets of Dy and the outsets of Dy, which define the heteroclinic bifurcation of
the saddles (Fig. 4f). Thus we verified that both types of the global bifurcation: the homoclinic
bifurcation of the destroyer saddle, and the heteroclinic bifurcation of the destroyer saddle and the
principal saddle of the chaotic attractor, take place at the same values of the bifurcation parameters
F,w, and therefore, they both define the criterion for the boundary crisis to occur.

After the crisis, the cross-well chaotic attractor is erased from the phase space together with its
basin of attraction; the large orbit Sz, remains the unique attractor in the system, and its basin of
attraction invades the whole phase plane (in the considered range of phase parameters). Therefore,
the ensuing trajectory of the vanishing chaotic attractor finds itself inside the regular basin of Sy,
and the final “jump” of the transient motion is predictable (the outcome is always Sz). Numerical
study reveals, however, that the post-crisis transient motion is far from regular behavior. Some of
the trajectories, in particular those which initialize from the regions of the phase space where the
transverse intersections of the stable and unstable manifolds occur (i.e. which start in the close
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Fig. 5. An example of continuous time-history of the transient response after crisis of the cross-well chaotic
attractor, under small step-increment of driving frequency
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vicinity of a non-attracting chaotic set), may have long-lasting and chaotic-like time history. An
example of such chaotic post-crisis transient response is shown in Fig. 5. It was obtained under
small step-increment of driving frequency w in the close vicinity of the boundary crisis; as a result,
the system exhibiting steady-state chaotic oscillations was suddenly set into the region of control
parameters where the chaotic attractor ceases to exist. We see that after the crisis the system
still realizes the response that looks exactly like the annihilated cross-well chaotic attractor (the
trajectory bounces around on its “remnant”) for a time that comprises about 250 driving cycles,
until the response suddenly settles onto the remote large orbit attractor Sy, .

4. CHAOTIC BOUNDARY CRISIS OF THE SINGLE-WELL CHAOTIC ATTRACTOR

In this section we consider the boundary crisis of the single-well chaotic attractor, in the region of
forcing amplitude F' < Fj (line crl, point 1 in Fig. 1). In this domain, the crisis line crl defines the
lower frequency stability limit of the region of primary resonance hysteresis, i.e. the region where
the four single-well attractors (two resonant and two nonresonant) coexist. The principal saddle of
the single-well chaotic attractor, the attractor which develops from the cascade of period-doublings
of the T-periodic resonant attractor S;.(S; ), is the T-periodic inverse saddle I).(I), i.e. the unstable
trace of the primary resonant attractor after its first period-doubling bifurcation (Fig. 2b).

To outline the relevant properties of the crisis, first we display the basins of attraction (in the
z—1 plane) of the four coexisting single-well attractors just prior to the boundary crisis (Fig. 6a).
The coexisting attractors are two nonresonant T-periodic orbits S}, , S;, and two single-well chaotic
attractors (the Poincaré maps of the latter ones are visualized as white bands). Our first observation
is that the boundaries of the basins of attraction are not smooth, but form a tangled (fractal) mixture
of all four coexisting attractors. In Fig. 6b the blown-up picture of the basins of attraction in a small
neighborhood of the right-well chaotic attractor is shown. We clearly see fractal accumulations of
the four coexisting basins on the outer side of the small regular area of the chaotic basin.

This fractal structure of the basins of four coexisting attractors was evolved gradually with an
increase of the forcing parameter F'. Sudden qualitative changes occurred at the threshold values
defined by the global bifurcations of the coexisting T-periodic saddles [10]. At low values of F, before
any global bifurcation, the basin boundary of the four coexisting attractors were smooth lines: the
insets of the single-well saddles D', D" defined the boundary between the basins of the resonant and
nonresonant attractors in the left and right well, respectively, and the insets of the hilltop saddle
Dy separated the basins of the attractors existing in each well. With increasing F' a sequence of
global bifurcations occurred; the homoclinic bifurcation of the hilltop saddle Dy was followed by the
homoclinic bifurcation of the single-well saddles D', D" and, finally, the heteroclinic bifurcation of
the saddle Dy and the single-well saddles D', D" occurred. The latter bifurcation implied a dramatic
change in the structure of the basins of attraction which became a tangled mixture of the four
coexisting basins. At a slightly higher value of F' the resonant attractors undergone a cascade of
period doublings and then evolved to the single-well chaotic attractors.

The above situation also leads to the relevant conclusion that the destroyer saddle of the bound-
ary crisis should be subharmonic (because all the T-periodic regular system saddles experienced
homoclinic bifurcation prior to the boundary crisis, none of them may be a destroyer saddle). In
fact, results of earlier investigations state that the single-well chaotic attractor is destroyed in a col-
lision with the single-well 3T-periodic saddle [8]. This 3T-periodic saddle is born (together with
the accompanying 3T-periodic attractor) in a saddle-node bifurcation that occurs at the forcing
parameter values far below the crisis (the accompanying 37-periodic attractor exists only in a very
narrow band of control parameters and is annihilated via its own period-doubling route to crisis [6]).

For the 3T-periodic destroyer saddle we use the notation 7 D37 , where the index j = 1,2, 3 iden-
tifies successive images of the 37-periodic orbit under iteration of the Poincaré map. Consequently,
in the Poincaré section representation, the invariant manifold of the saddle consists of three parts,
each of them evolving from the corresponding image point ! D3y, 2Dsp , 3 Dar .
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Fig. 6. Basins of attraction and the relevant invariant manifolds (in the z—a plane) at the chaotic boundary
crisis of the single-well chaotic attractor, in the region of forcing F' < Fi; (a) basins of attraction of the
four single-well coexisting attractors prior to the crisis: yellow depicts the basin of S;,, red — basin of S ,
green and blue — basins of the left-well and the right-well chaotic attractor, respectively; Poincaré maps of
the single-well chaotic attractors depicted in white (the grid resolution is 960 x 544); (b) blown-up picture
of the four coexisting basins in the close neighborhood of the right-well chaotic attractor; the 3 T-periodic
destroyer saddle is represented by 3 white solid circles 'Dar, 2Dar, 3Dar; (c) blown-up picture of the two
remaining basins of nonresonant attractors Sy, , Sy, , just after the crisis; (d) family of the invariant manifolds
of the subharmonic destroyer saddle Dsr , just prior to the crisis; (e) the corresponding insets of the destroyer
saddle Dar , and outsets of the principal saddle of the right-well chaotic attractor, I,
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In Fig. 6d we show the invariant manifolds of the 37-periodic saddle Dz, just prior to the
boundary crisis of the chaotic attractor (for the sake of clarity, we present only small portions of
the manifolds which correspond to a short time of numerical integration). It is clearly seen that
the outset of D3y which branches away from the chaotic attractor is homoclinically tangled (in
fact, it forms a complicated structure with an infinite number of points of manifold intersections,
which occupies the whole phase space). The other outset of D3y tends to the chaotic attractor
and forms the closure of it. The conclusion is that the approaching boundary crisis of the single-
well chaotic attractor is chaotic (the destroyer is a chaotic saddle). We also see that the stable
manifold, and the unstable manifold which forms the closure of the chaotic attractor, approach to
the tangency, i.e. to the homoclinic bifurcation. By geometrical evidence, the event can be also
interpreted as a “collision” of the chaotic attractor with the destroyer saddle — Fig. 6b (the Poincaré
map of the chaotic attractor is nearly “touching” the 3 points which represent the saddle Dsr). It
follows that, like in the regular case, the chaotic boundary crisis of the cross-well chaotic attractor
is mediated by the homoclinic bifurcation of the destroyer saddle, but the destroyer appears to be
subharmonic.

The next observation also leads to the same conclusion as in the case of the regular boundary
crisis. We computed the tangency condition of the insets of the destroyer saddle D37 , and the outsets
of the principal saddle of the single-well chaotic attractor, i.e. the T-periodic inverse saddle I, the
condition which define the heteroclinic bifurcation of both saddles — Fig. 6e. We notice that the
structure of the outset of D3y which branches towards chaotic attractor (depicted in red in Fig. 6d)
and that of the outsets of I (depicted in blue in Fig. 6e) are extremely close in the phase space,
and look exactly like the Poincaré section representation of the attractor (depicted in white in
Fig. 6b). Thus we verified that both types of the global bifurcation: the homoclinic bifurcation of
the 3T-periodic destroyer saddle, and the heteroclinic bifurcation of the destroyer saddle and the
principal saddle of the single-well chaotic attractor, take place at the same values of the bifurcation
parameters F,w, and therefore, may stand for the boundary crisis criterion.

After the crisis, the single-well chaotic attractors are erased from the phase portrait together with
their basins of attraction, and the basins of the two remaining nonresonant attractors SJ, , S” invade
the whole phase plane — Fig. 6¢c. However, due to the fractal structure of the basins of attraction
prior to the crisis, the ensuing trajectory of the vanishing chaotic attractor finds itself in a fractal
region of the two basins which is extremely sensitive to any noise in control parameters or initial
conditions. Hence, the outcome is unpredictable; the post-crisis trajectory may exhibit cross-well
chaotic transient of arbitrary duration, until it restabilizes onto the T-periodic nonresonant attractor
in the same or in the opposite well. Two examples of such post-crisis transient response with the
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Fig. 7. Two examples of continuous time-history of the transient response with an unpredictable outcome,

after annihilation of the single-well resonant attractor S, via the boundary crisis scenario; depending on how

the bifurcation is realized, the ensuing trajectory, after cross-well chaotic transient, settles onto the nonresonant
attractor in the same (S;) or in the opposite (S,,) well
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unpredictable outcome, which were obtained under small step-increments of driving frequency w in
the close vicinity of the boundary crisis, are shown in Fig. 7.

The presented properties of the boundary crisis of the single-well chaotic attractor are observed in
a wide range of the critical crisis parameter values at the region of resonant hysteresis. However, it is
worth noting that, at lower values of the control parameter F' (close to the left hand-side cusp point
in Fig. 1), there exists a narrow range of the control parameters where the crisis occurs before the
heteroclinic bifurcation of Dy and D', D”. As a result, the basin boundary of the vanishing chaotic
attractor, although not regular, involves only one coexisting basin of the nonresonant attractor; the
final outcome is determinate and confined to the same well [10].

5. CONCLUSIONS

Numerical explorations of the two examples of the boundary crisis of chaotic attractors in nonlinear,
dissipative, driven oscillator allow us to throw more light on some relations between the properties of
regular and chaotic boundary crisis. In both cases, the key mechanism underlying the phenomenon
is the collision of the chaotic attractor with the destroyer saddle sitting on its basin boundary. The
collision implies the homoclinic bifurcation of the saddle, the bifurcation which involves the unsta-
ble manifold branching away towards the chaotic attractor. Our results show that the homoclinic
bifurcation of the destroyer saddle is geometrically equivalent to the heteroclinic bifurcation of the
destroyer saddle and the principal saddle of the chaotic attractor. In fact, all three events (collision
and both bifurcations) are three different aspects of the same global bifurcation phenomena, and
define the criterion for the occurrence of the boundary crisis.

We may conclude that the main difference between the regular and chaotic boundary crisis
consists in different topological structure of the phase space that underlies the crisis event. This
manifests itself in apparently different types of the boundaries of basins of attraction of coexisting
attractors (smooth or fractal), and, consequently, results in a different period of the destroyer saddle,
as well as in another type of the post-crisis outcome (predictable or not).

In the case of regular boundary crisis, the chaotic attractor with the fundamental period 7' is
the unique attractor in the system, until the additional T-periodic attractor and the associated
T-periodic saddle are born in a saddle-node bifurcation. This splits the phase space into two basins
of attraction, with the basin boundary defined by the insets if the saddle. The basin boundary
is smooth as the T-periodic saddle does not undergone yet any global bifurcation. At crisis, the
homoclinic bifurcation of the T-periodic saddle destroys the basin of the chaotic attractor, and the
basin of the coexisting T-periodic attractor invades the whole phase space. Thus, the final outcome
is determinate. In this case we deal with the regular destroyer saddle of the same period as that of
the principal saddle of the chaotic attractor.

In the case of chaotic boundary crisis, the boundary of the basin of attraction of the chaotic
attractor prior to the crisis has fractal structure; it involves basins of coexisting attractors, none
of them being associated with the destroyer saddle. If more than one coexisting attractor is avail-
able, the post-crisis final outcome is indeterminate, as the ensuing transient trajectory finds it-
self in a fractal region of remaining basins that is very sensitive to initial conditions. The frac-
tal structure of the basin boundary results from the global bifurcations that occurred in the
system before the generation of a chaotic attractor. In the twin-well potential system and the
single-well chaotic attractor with the fundamental period T', the key event is the homoclinic bi-
furcation of the single-well saddle, which, at low values of the forcing parameter F', defines the
smooth, regular basin boundary of the resonant and nonresonant single-well attractors. As a
result, when the T-periodic resonant attractor loses its stability and develops into chaotic at-
tractor, there is no T-periodic saddle sitting on its basin boundary. Therefore, the new type of
a destroyer saddle is necessary to form a mechanism of erasing the attractor from the phase
space, namely the subharmonic one (37-periodic in our example). The subharmonic destroyer
saddle appears to be a chaotic saddle (its outset branching away from the chaotic attractor is
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homoclinically tangled), and is not associated at crisis with any coexisting subharmonic attrac-
tor.

We face the corresponding examples of the regular and chaotic boundary crisis in other systems,
as well in other regions of control space [11]. It is worth noting that the phenomenon of boundary
crisis, especially the chaotic one, still attracts an interest of applied physicists and mathematicians,
and it warrants further study.

APPENDIX

For the sake of clarity, we recall the following fundamental concepts of the nonlinear dynamics of
dissipative systems, which we make use of:

Attractor - steady-state stable solution (point, cycle or chaotic orbit);

Saddle - steady-state unstable solution (point, cycle or chaotic orbit), which repels in some phase
directions but attracts in others;

Basin of attraction of an attractor — the domain of all initial conditions in the phase plane z—z,
whose trajectories converge to that attractor.

Principal saddle of a chaotic attractor — the least-period unstable solution (a saddle) which is
embedded in the chaotic attractor.

Saddle-node bifurcation - the local bifurcation in which the control paths of stable and unstable
solution of the same period meet, and both solutions coalesce.

Stable manifold (inset) of a saddle — the invariant set of all initial conditions whose trajectories
approach the saddle as ¢ — oo; it represents the phase attracting direction of a saddle.

Unstable manifold (outset) of a saddle — the invariant set of all initial conditions whose trajec-
tories approach the saddle as ¢ — —oo; it represents the phase repelling direction of a saddle.

Poincaré section — phase-plane obtained by “stroboscopical sampling” of the phase-space coordi-
nates (z,%,t) of the trajectory z(¢) in discrete times ¢t = nT (n = 0,1,2...), where T = 27/w
is the period of driving force. Hence, in the Poincaré section, the T-periodic oscillation is repre-
sented by one point, 27-periodic — by two points etc.

Homoclinic (heteroclinic) bifurcation — tangency of stable and unstable manifolds of the sad-
dle (or two different coexisting saddles, respectively) in the phase-space, which, at further sweep
of the control parameter, implies an infinite number of transversal intersections of the manifolds,
giving rise to a highly complicated, chaotic dynamics.

Fractal structure — highly intertwined, fine-scale structure with a fractional (non-integer) dimen-
sion greater than one, which involves basins of attraction of multiple coexisting attractors. It
results from the global bifurcations of the basins (homoclinic/heteroclinic) and gives rise to sen-
sitive dependence on initial conditions, long-lasting chaotic transients, and an unpredictability
of the final outcome.
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