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On the base of Hopfield-Tank neural network the Panagiotopoulos approach is briefly discussed. The
approach is associated with the analysis of quadratic programming problem with unilateral constraints.
Then modifications of this approach are proposed. The original Panagiotopoulos approach is illustrated
by the analysis of crack detachment in an elastic body [11]. Efficiency of the proposed modifications is
shown on a numerical example of an angular plate. Finally some special conclusions are expressed.

1. INTRODUCTION

In recent years artificial neural networks (ANNs) have been successfully applied to the analysis of
numerous problems of mechanics, cf. [13]. ANNs are a basis to formulate new algorithms also for
analyzing problems related to mathematical programming. This especially concerns the Hopfield—-
Tank neural network [5], designed for the analysis of Quadratic Programming (QP) problems. In
this type of neural network Hopfield’s ideas were generalized on continuous variables and founded
a theoretical background in theory and methods of solution of ordinary differential equations.

The above mentioned ideas were developed by P.G. Panagiotopoulos and his associates for the
analysis of many problems of solid mechanics, related especially to fracture mechanics and plastic-
ity [13]. In papers [7, 11] it was proved that QP problems with unilateral constraints can be solved
by the HT analogues with a corresponding amplifier (activation function). In this way the Pana-
giotopoulos approach was proposed, i.e. the mechanical problem was formulated as a QP problem
with unilateral constraints

min{%QTKQ—PTQ Q> 0} (1)

and solved (1) by means of HT network.

The Panagiotopoulos approach opens the door to the efficient analysis of many direct and inverse
problems of mechanics, cf. [10], but the algorithms sketched by him, need more precise development.
This paper proposes some improvements of the Panagiotopoulos algorithm.

Similarly as in [7, 11] we omit the storage phase of the HT network, taking the stiffness matrix
Q and the vector of nodal forces P in (1) from the linear FE method. The numerical analysis is
restricted to the plane stress problem. In the frame of these assumptions it is shown that besides
unilateral constraints a non-incremental FE analysis is performed. This is possible due to change of
algebraic boundary-value FE problem to an initial-value problem associated with the evolutionary
equations of the HT analogue.
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2. HOPFIELD TYPE NEURAL NETWORKS

In Fig. 1a scheme of the Hopfield neural network is shown with notation corresponding to that in
the papers by Panagiotopoulos. The network is of recurrent type and we are interested only in the
retrieval phase of the network operation. This means that all weights T;; and biases I; are known for
i,j =1,...,N. The iteration process of computation of variables V;(t) is initiated by introduction of
initial values V;(0). The iteration process is then continued recurrently due to feed back connections
shown in Fig. 1.

u, V(1) V,(0)

u V(1) V,(0)

ey Bl Gl VA(0)

Fig. 1. Scheme of Hopfield neural network

The first Hopfield networks were formulated for discrete (binary or bipolar) variables, cf. [3].
Then the Hopfield-Tank network was designed for continuous variables [5] and continuous, real
time type independent variable ¢. This approach corresponds to the circuit analogue of the HT
network in which I; and V;(t) are currents and voltages [4, 9].

In order to assure stable convergence of the iteration process the self feedback of neurons is
usually cancelled and symmetry of weight matrix is assumed [4],

Ti=0, T;=Ts for i,j=1,...,N. 2)

The network dynamics can be described by means of mechanical type variables. Hopfield defined
the network energy function E(t) which in case of the HT network takes the form

1 1 v
E=— Y Y T+ 5 [ B0 - L%, ®)
5 % ¥ 1 JO =
t -y % i
where summing up is for 4,7 = 1,..., N and R; are resistance type parameters and F; are activation
functions corresponding to the following formulae, cf. Fig. 1,
Vi(t) = Fi(wi(®),  wi=) Ti;Vi(t) + L. (4)
J

The equilibrium solutions can be computed each time by means of the evolutionary equations
[4, 6]

du;\  OF
o) =i i0 %

)
t
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where C; are capacity type parameters. After substitution (3) to (5) the following form of evolu-
tionary equations is obtained,

du,- i
C"E = —Eui(t)'*"zj:ﬂjvj(t)+lia (6)

Vi(t) = F;(u;(t)) e £ AR B (7)

The iteration process ends at the stable, equilibrium state of the network. This state is defined
by the following criterion,
du;

min E(t) <<= d’(i 0,09, (8)

In computations time ¢ is discretized and criterion (7) takes the form

AS L i ’u,i(ts+1) ~ ui(ts) 5 V; # (9)

where s is the number of iteration step.

3. PANAGIOTOPOULOS APPROACH
In papers |7, 11] the following substitutions were proposed
—K,;j for 1 76 j )
T. = 1 i
1) { _Kl] + E forPi= 4.3 (10)

ViZQi, IiZPi for i,jzl,...,N.
Relations (9) were completed by two assumptions:
L Oo=1., Ri=1 |

2. selection of activation functions:

e identity function for bilateral constraints

Vs = Qs = us, (11a)
e bilinear function for unilateral constraints
B ) iy for uy >0,
Vi =Qr = Fr(uy) = {0 RN (11b)

After the above substitutions and assumptions are taken into account evolutionary Eq. (6) takes
the form

=3 K0, +8, (12)
J

dui
dt

where u; depends on type of constraints:

e bilateral constraints

Qs = ug, (133.)

e unilateral constraints

e T for u. >0,
Q_{O forn, < 8. (13b)
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It was proved in [7, 11] that the iteration process is convergent for both the bilateral con-
straints (13a) and unilateral constraints (13b). Condition (7) implies the equilibrium state of the
FE system

?1_?:0 —5 R=KQ+P =0, (14)

where R € RY is the vector of residual forces.

The Panagiotopoulos approach described above is in fact a change of the algebraic boundary-
value problem (14) into an initial value problem, corresponding to the set of ordinary differential
equations (12). These equations describe the retrieval phase of the HT network operation. The
storage phase of the network, cf. [4], is associated with correspondence of the network parameters
T;; and I; to values of the FE stiffnesses K;; and nodal forces P;. These values can be computed
by a FE code, satisfying boundary conditions related to the bilateral constraints.

It was shown in [7, 11] that the speed of iteration process increases if the unilateral constraints
are active. That is why it is worthwhile to eliminate bilateral degrees of freedom. In what follows a
condensed FE system is considered and instead of Eqgs. (12) the following equations are analyzed,

duy 3% :
E=T1=—;kqug'+m for j,1=1,...,n, (15)

where: ki, p; — parameters of a FE condensed system of n < N degrees of freedom, ¢; € R" -
nodal displacement corresponding to a great number of unilateral DOFs.

4. IMPROVEMENTS OF PANAGIOTOPOULOS APPROACH

Equations (15) correspond to the simplest HT analogue for the solution of the system of algebraic
equation. This is related to the steepest descent gradient method, cf. [9]. It is much more efficient
to apply the conjugate gradient method which leads to the following equations

du
Y e + By (16)
for
rTrt
re=kq—p; =, 17
t t 4 % A (17)

where: u, ry, ry_1 € R".
The next improvement corresponds to a more general formulation of unilateral constraints,

J g for (u'm); <ay,
fi {al for (u'n); > ay, (18)

where ng = {n,,n:}s — vector normal to boundary of body at the node with normal displacement g .

Equations (15) were analyzed in |7, 11] by means of the 4-th order Runge-Kutta method. In our
computations we have used the Runge-Kutta-Fehlberg formulae of the 5-th and 6-th order with
automatic step control, cf. [2]. This approach seems to be superior for the analysis of linear elastic
problems, i.e. for matrices k and p independent of iteration time ¢.
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5. NUMERICAL ANALYSIS
5.1. Crack detachment in elastic body

The analysis of crack detachment was carried out in [11]. This problem is discussed briefly below
as an example of application of the original Panagiotopoulos approach, described in Section 3.

In this example all the bilateral degrees of freedom (node displacements) were eliminated and
stiffness matrix K was condensed to matrix k of dimension (36x36). This corresponds to 18 pairs
of the contact (unilateral) nodes of the crack interface, cf. Fig. 2b. Equations (15) were numerically
integrated by the 4-th order Runge-Kutta method assuming At = 0.5. The stable results ¢;(s+1) =
gi(s) for i = 1,...36, were achieved after 250 steps for several random choices of the initial values
¢i(0). Displacement and major stress fields, corresponding to s = 250 are shown in Figs. 2c,d.
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Fig. 2. a) Geometry and loads of elastic body, b) FE mesh in the crack vicinity, c,d) displacement and
major stress fields

5.2. Angle plate in plane stress state

When considering the analysis of an angle plate problem we have made an extended numerical
analysis in order to examine the improvements to Panagiotopoulos’ approach as well as discuss
details of numerical analysis which were not mentioned in papers [7, 11].

Two load programs have been considered, corresponding to the increase and then decrease of the
load parameter within 11 load increments:

I) 0 — X\ b7 10*(—)\1/10),

II) 0 — (A/10) — (=Xp). (19)



762 7. Waszczyszyn and E. Pabisek

al‘
oot
—
»
\é
*

S E=2.1x10° N/mm?
] 1 12 |13 Aibia
b=}

1 43 p+=0.2 N/mm

.
g
o
3
=

21 22 |23

24 25

180mm

26 27 |28

29 30

9%20

36 37 |38

39 40

[eme,
41 42 14349 51 64- 56 59 61 64 66 69 71 74 76 79 81 84 86
44 45 52 7 62 77
g 5 67 72 82 87 *
N 46 47 |48 50 |53 55 |58 60 |63 65 [68 70 |73 75 |78 _80 |83 _85 |88 %

20mm :

5%20=100mm 4x20=80mm

Fig. 3. Geometrical data and FE mesh of considered angular plate

Three variants of constraints correspond to the following values of fissures a; and az, as shown
in Fig. 3,

1) a3 =3.00mm, ap=0.02mm,
2) a3 =0.03mm, ap=0.02mm, (20)
3) ap =0.03mm, a=0.00mm.

Two cases of condition to n DOFs have been assumed where Nos. of nodes corresponding to
unilateral constraints in v directions are as follows:

a), .pamd. i Nos=1,70,;. .88,

b) n=20, Nos=1,46,47,...,88. (21)

In case b) the constraints can be active at node 1 and at all lower boundaries of the plate (cf. Nos.
of FE nodes in Fig. 3). In case a) the constraints can act at node 1 and the part 68-88 of the lower
boundary. :

The iteration procedure has been continued until the following error condition was fulfilled,

max {| ui(s) —ui(s = 1) |, |vis) —uils —1) |} <e. (22)

The value of admissible error ¢ was estimated numerically to have closed loops of displacement
trajectories for all nodes 4 after the load programs (19) were computed. In the considered plate it
was evaluated to be e = 1-1077.

The computations were performed by a special computer program based on the ANKA code [14],
using 8-node isoparametric, plane stress FEs. The iteration process started from the initial values
1:(0) =0 for i = 1, sm
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In Table 1 the number of iterations is put together for different cases associated with selected
combinations of (20) and (21). Symbols cg and g correspond to the conjugate-gradient and gradient
formulae (16) and (15), respectively.

It is evident that the conditions of bilateral DOFs and application of cg method significantly
decrease iteration. The same concerns the influence of the unilateral constraints, i.e. the bigger
number of those constraints the lower the number of iterations. These conclusions fully agree with
those in [7, 11].

The equilibrium paths for selected nodes of the plate are shown in subsequent Figs. 4-6. The
figures correspond to cases listed in Table 1. Graphics for cases 4a and 4b are the same since the
unilateral constraints do not occur at nodes 46-65.

Table 1. Number of iterations for different cases

Case Scheme Load programs | Without condensation
I II load pro. I
3 cg | 3974 4538 966904
a
g | 5500 | 6298
y
; I cg | 3573 | 3816 160534
a
g | 4823 | 5151
=
’
5 cg 622 643 174782
a
g | 850 871
e
y
4 cg | 2718 4479 174799
g | 5395 | 5690

0
-0.05 0 0.05 0.1 005 0.2 0:25
v; [mm]

Fig. 4. Equilibrium paths for case 1a
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Fig. 6. Equilibrium paths for case 3a=3b

In case la there is no activation of unilateral constraints at node 1. The activation of unilateral

constraints at nodes 70-88 is weakly reflected in displacements v, and v3 but a strong nonlinearity
of displacements vgs and wgg is visible. The restraint of displacement at node 1 causes a strong
nonlinearity of the plate deformation, cf. Figs. 5 and 6.

The most interesting result seems to correspond to the non-incremental increase/decrease of

loads. The same final configuration, related to the load parameter A1 = 10 can be obtained in one
load increment or in ten increments 10 % (\;/10). The same concerns unloading to A; = 0.

6. SOME FINAL REMARKS AND CONCLUSIONS

A number of conclusions from the papers by Panagiotopoulos et al. has been confirmed in this
paper. The main conclusions are:
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i. The higher the number of unilateral constraints the lower the number of iterations is needed to
find a stable solution of evolutionary equations;

ii. Condensation of bilateral DOFs increases significantly the efficiency of iteration algorithm;

iii. In case of linear state equations the neural analogue enables us to achieve the top value of load
parameter in one load step (without load incremental steps), i.e. the iteration process adopts
itself to the activation of unilateral constraints;

iv. A change of simplest gradient algorithm into the conjugate gradient algorithm shortens the
iteration process of about 1.27-1.98 times.

The Panagiotopoulos approach was used successfully also to the analysis of elastoplastic struc-
tures [1], theory of plasticity [12] and delamination problems [8]. In all the papers by Panagiotopoulos
and his associates it was stated that the HT analogue application is much superior to the appli-
cation of various mathematical programming algorithms, especially for problems with variational
inequalities [10].
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