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In this paper we discuss two multi-scale procedures, both of mathematical nature as opposed to purely
numerical ones. Examples are shown for the two cases. Attention is also devoted to thermodynamical
aspects such as thermodynamic consistency and non-equilibrium thermodynamics. Advances for the first
aspect are obtained by adopting the thermodynamically constrained averaging theory TCAT as shown in
the case of a stress tensor for multi-component media. The second aspect has allowed to solve numerically,
with relative ease, the case of non-isothermal leaching. The absence of proofs of thermodynamic consistency
in case of asymptotic theory of homogenization with finite size of the unit cell is also pointed out.
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1. INTRODUCTION

Multi-scale methods are nowadays very popular in the community dealing with computational
methods in applied sciences and engineering. At the extreme, these methods allow to bridge the
scales from quantum mechanics to the continuum at macroscopic level [61]. In such instances the
scale bridging method is mainly of numerical nature [77]. In multi-physics problems, however, it is
often advantageous to use multi-scale procedures already at mathematical level when formulating
the model. In this case, seldom more than two or three scales are involved. This is particularly the
case of multi-physics problems with overlapping domains where diffusion, advection, adsorption,
phase change, deformation, chemical reactions and other phenomena take place. In such a case
a mathematical multi-scale approach is useful to obtain the proper form of the interaction and
exchange terms among the fields. The purely macroscopic approaches often yield to confusion and
to wrong forms of the interaction terms. Using appropriate approaches such as the hybrid mixture
theory [38] which in fact is an averaging method, or the thermodynamically constrained averaging
theory TCAT [39] allows assuring that the second law of thermodynamics is satisfied. In the hybrid
mixture theory the system thermodynamics is postulated directly at the average scale (i.e., the
macroscale) and thus does not account for some of the sub-scale deviations in thermodynamic
properties; and the thermodynamic statements do not necessarily downscale to the microscale. On
the other hand, the thermodynamically constrained averaging theory TCAT involves averaging
established micro-scale thermodynamic principles to the macroscale. In doing so, it inherently
assures consistency between micro-scale and macro-scale forms.
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Thermodynamic consistency of the mathematical model improves the performance of the ensu-
ing numerical model. This is due to the fact that unwanted and uncontrolled dissipation is elimi-
nated. The fact that thermodynamically consistent models behave better than others is known from
Computational Fluid Dynamics (CFD) where numerical dissipation is introduced for this purpose.
Numerical dissipation enters stability estimates which, physically speaking, can be understood as
energy estimates. But, if well designed, the same dissipation enters in entropy estimates and helps
to guarantee that entropy is never decreasing. For a compressible flow setting, see Hughes et al.
[48, 49]. A more mathematically oriented exposition of the concept is due to Johnson and Szepessy
[51] and Szepessy [73], where the relationship between dissipation and entropy inequalities is shown
for hyperbolic equations. More recently, the connection between entropy conditions and numerical
dissipation is being exploited by Guermond [42].
In the computational fluid-solid interaction community (FSI, interaction in the domain) the

thermodynamical consistency is investigated by Coussy [19, 20], Baggio et al. [1], Schrefler [71],
Hutter et al.[50], de Boer et al. [21], Borja [4].
We shall show how such consistency can be obtained in FSI. With an appropriate multi-scale

procedure such as TCAT, a remarkable result can be achieved which cannot be obtained with
a macro-scale continuum theory of thermodynamics [4]. As a second case, we discuss the adop-
tion of non-equilibrium thermodynamics which allows to obtain correct models, for instance in
non isothermal leaching. Such an extension from the isothermal case has not been obtained with
thermodynamic equilibrium assumptions.
Finally, another case of interest is the asymptotic theory of homogenisation which is often used

in solid mechanics problems, [5, 6, 18, 70, 80]. The expansion is usually truncated after a few terms.
What matters here in conserving the thermodynamical consistency is the size of the unit cell. As
long as it is infinitesimally small it is generally accepted that the 0(1) theory is as good as anything
else. The problem is finite size of the cell which usually appears in numerical exploitation of the
method. Here the question is still open.
We shall show some examples for mathematical and numerical multi-scale methods belonging

to stress measures in partially saturated media and their effects on drying shrinkage modelling in
concrete, to calcium leaching in concrete, and to three-scale homogenisation with application to
nuclear fusion technology.

2. SPACE AVERAGING FOR MULTIPHASE POROUS MATERIALS

The multiphase porous medium model used as example is assumed far from thermodynamic equi-
librium state. It is treated within the framework of averaging theories by Hassanizadeh and Gray
[38, 44, 45, 47], starting from microscopic level and applying the mass-, area- and volume-averaging
operators to the local form of balance equations.
The porous material is considered to be a multiphase medium where the voids of the solid

skeleton could be filled with various combinations of liquid- and gas-phases (Fig. 1). In typical

Fig. 1. Schematic representation of the moist concrete as a multiphase porous material.



Mathematical and numerical multi-scale modelling of multiphysics problems 93

situations, like for example concrete or soils, the fluids filling pore space are the moist air (mixture
of dry air and vapor), capillary water and physically adsorbed water. The chemically-bound water,
if present (like, e.g., in concrete), is considered to be part of the solid skeleton until it is released
on heating to high temperature.

2.1. Microscopic balance equations

In this section, the averaging procedure of conservation equations is summarised [38, 44, 45, 47]
which traditionally positions thermodynamic statements directly at the macroscale. This procedure
is not sufficient for obtaining a correct form of the stress tensor as shown in Subsec. 2.3. The fluid
phases and the solid are separated at microscopic level by interfaces and the latter ones by con-
tact lines. As underlined in [38], the interfaces between the constituents and their thermodynamic
properties are important to consider properly constitutive relationships; thus, they are taken into
account in defining the general form of the model. The contact lines are supposed to not posses
any thermodynamic property, even if they allow for exchange of properties between interfaces. The
solid phase is assumed to be in contact with all fluids in the pores. In the following, the bulk phases
are indicated with Greek letters (α, β = w, g, s, where w means the water, g the gas, and s the
solid skeleton), while for the interfaces and contact lines some combinations of two and three Greek
letters have been used, respectively.
For a thermodynamic property, ψ, the balance equation within the bulk α-phase may be written

as follows [38, 44]:

∂ (ραψ)

∂t
+ div (ραψ vα) = div iψ + ραbψ + ραGψ (1)1

and for the αβ-interface it has a similar form:

∂
(
Γαβψ

)

∂t
+ div

(
Γαβψwαβ

)
= div iψ + Γαβbψ + ΓαβGψ, (1)2

where ρα is the density of the α phase, Γαβ the surface excess mass density of αβ-interface, vα the
local value of the velocity field of the α phase in a fixed point in space, wαβ the local value of the
velocity field of the interface αβ, iψ is the flux vector associated with ψ, bψ the external supply of
ψ and Gψ is the net production of ψ. Fluxes are positive as outflows.
The thermodynamic quantity ψ, to be introduced into Eq. (1), can be mass, momentum, angular

momentum, energy or entropy. The relevant thermodynamic properties ψ for the different balance
equations and values assumed by iψ, bψ, and Gψ are listed in Table 1, where E is the specific

intrinsic energy, λ the specific entropy, tαm and s
αβ
m the microscopic stress tensors for the bulk

and interfaces, respectively, q the heat flux vector, Φ the entropy flux, g the external momentum
supply related to gravitational forces, h the intrinsic heat source, S the intrinsic entropy source and

Table 1. Thermodynamic properties for the microscopic mass balance equations.

Quantity ψ iψ bψ Gψ

Mass bulk phase or interface 1 0 0 0

Momentum
bulk phase vα tαm g 0

interface wαβ sαβm gαβ 0

Energy
bulk phase Eα + 0.5vα · vα tαmvα − qα g · vα + hα 0

interface Eαβ + 0.5wαβ ·wαβ sαβm wαβ − qαβ gαβ ·wαβ + hαβ 0

Entropy
bulk phase λα Φα Sα ϕα

interface λαβ Φαβ Sαβ ϕαβ
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ϕ denotes an increase of entropy. The quantities related to the solid phases have upper index α, and
those for the interfaces αβ. The constituents are assumed to be microscopically non-polar; hence,
the angular momentum balance equation has been omitted here. This equation shows, however,
that the stress tensors are symmetric.

2.2. Macroscopic balance equations

The macroscopic balance equations are obtained by applying appropriate space averaging operators
(for the so-called Representative Volume Element – RVE, Fig. 1) to the equations at micro-level,
Eq. (1), while the constitutive laws are defined directly at the upper scale, according to the so-called
Hybrid Mixture Theory (HMT) originally proposed by Hassanizadeh and Gray [45–47].
The chosen procedure does not exclude the use of a numerical multi-scale approach (i.e., numer-

ical averaging in RVE) in the formulation of the material properties, which nowadays is often used
for solving problems involving multi-physics aspects in material mechanics.
After application of HMT theory (i.e., space averaging in RVE), the set of governing equations

at macroscopic level is as follows (for a detailed description of the procedure see [38, 44, 71]).

– Mass balance equation for bulk phases and interfaces:

Dαηαρα

Dt
+ ηαραdiv vα =

∑

β

êααβ , (2)

DαβaαβΓαβ

Dt
+ aαβΓαβdivwαβ = −êααβ − êβαβ + êαβαβγ , (3)

where ηα means the volumetric fraction of the α phase, êααβ the rate of mass transfer to the bulk

phase α from interface αβ, aαβ the area of αβ interface per averaging volume, Γαβ the macroscopic

excess of surface mass density for αβ-interface, êαβαβγ the rate of mass transfer to the interface αβ
from the contact line αβγ.
The mass source terms on the right hand side (RHS) of Eq. (2) correspond to an exchange of

mass with interfaces separating individual phases (phase changes) and couple these equations with
the corresponding balance equations written for the interfaces. The last term in Eq. (3) describes
mass exchange of the interfaces with their contact line. Since we have three phases composing
the medium, there is only one contact line (which does not have any thermodynamic property).
In Eq. (3), Γαβ is used for taking into account the transition in density from one phase to an-
other.

– Momentum balance equations for the bulk phases and interfaces:

ηαρα
Dαvα

Dt
− div (ηαtα)− ηαραg =

∑

β

T̂α
αβ, (4)

aαβΓαβ
Dαβwαβ

Dt
− div

(
aαβsαβ

)
− aαβΓαβgαβ

= −
(
T̂α
αβ + êααβw

α,s
)
−
(
T̂
β
αβ + êβαβw

β,s
)
+
(
êααβ + êβαβ

)
wαβ,s + Ŝ

αβ
αβγ , (5)

where tα means the partial stress tensor of the α-phase, g the gravity acceleration, T̂α
αβ the body

momentum supply to the bulk phase α from the αβ-interfaces, sαβ the surface stress tensor, gαβ

the acceleration of the αβ interface, vα,s the relative velocity of the α-phase with respect to the
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solid phase “s”, wα,αβ the relative velocity of the α-phase with respect to αβ-interface, Ŝαβαβγ the
momentum supply to the αβ-interfaces from the αβγ-contact line.
The RHS terms in Eq. (4) describe the supply of momentum from the interfaces, i.e., related to

phase changes. In this equation, the surface stress tensor, sαβ , is symmetric.

– Energy balance equations for the bulk phases and the interfaces:

ηαρα
DαEα

Dt
− ηαtα : gradvα − div (ηαqα)− ηαραhα =

∑

β

Q̂ααβ, (6)

aαβΓαβ
DαβEαβ

Dt
− aαβsαβ : gradvαβ − div

(
aαβqαβ

)
− aαβΓαβhαβ

= −
[
Q̂ααβ + T̂α

αβ · vα,αβ + êααβ

((
Eα − Eαβ

)
+

1

2

(
vα,αβ

)2)]

−
[
Q̂βαβ + T̂

β
αβ · vβ,αβ + êβαβ

((
Eβ − Eαβ

)
+

1

2

(
vβ,αβ

)2)]
+ Q̂αβαβγ , (7)

where Eα is the internal energy of bulk phase α, qα the heat flux vector for the bulk phase α, hα

the heat source in the bulk phase α, Q̂ααβ the body supply of the heat to the bulk phase α from the

interface αβ, Q̂αβαβγ the body supply of the heat to the interface αβ from the contact line αβγ.

The source terms in Eq. (6) describe supply of heat to bulk phase from the interfaces, related
to phase changes. The terms in square brackets in Eq. (7) describe the energy supply from the
bulk phase to the interface, energy associated with momentum supply and energy related to mass
supply because of phase changes.

– Entropy balance equations for the bulk phases and for the interfaces:

The entropy fluxes are defined here as heat fluxes divided by temperature T (otherwise a constitutive
relationship is needed) and the entropy external supply due solely to external energy sources is
considered, i.e., assuming the hypothesis of simple thermodynamic processes. Thus, the entropy
balance for the bulk phases and interfaces may be expressed as follows [38, 44, 71]:

ηαρα
Dαλα

Dt
− div

(
ηα

qα

Tα

)
− ηαρα

hα

Tα
=
∑

β

Φ̂
α

αβ + Λα, (8)

aαβΓαβ
Dαβλαβ

Dt
− div

(
aαβ

qαβ

Tαβ

)
− aαβΓαβ

hαβ

Tαβ

= −
[
Φ̂
α

αβ + êααβ

(
λα − λαβ

)]
−
[
Φ̂
β

αβ + êβαβ

(
λβ − λαβ

)]
+ Φ̂

αβ

αβγ + Λαβ, (9)

where λα is the specific entropy of the α-phase, Tα the absolute temperature of the α-phase, Φ̂
α

αβ

the body entropy supply to the bulk phase α from the interface αβ, Λα the rate of net production of

entropy of the α-phase, Tαβ the absolute temperature of the αβ-interface, Φ̂
αβ

αβγ the body entropy

supply to the interface αβ from the contact line αβγ, Λαβ the rate of net production of entropy of
the αβ-interface.
The two first terms in RHS of Eq. (8) describe the entropy supply to the bulk phases from the

interfaces, while the last one is the rate of net production of entropy in the bulk phase. The terms
in parentheses in the RHS of Eq. (9) describe the supply of entropy from the interfaces and the
one resulting from the mass supply (phase change), the last but one accounts for entropy supply
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to the interface from the contact line and the last one is the rate of net production of entropy in
the interface.
The terms related to exchange of mass, momentum, energy and entropy between interfaces

via the contact lines must satisfy some restrictions, because the contact lines do not possess any
thermodynamic properties as already stated. Thus, the following relations hold:

∑

αβ

êαβwgs = 0,

∑

αβ

(
ŝαβwgs + êαβwgsw

αβ
)
= 0,

∑

αβ

[
Q̂αβwgs + ŝαβwgs ·wαβ + êαβwgs

(
Eαβ +

1

2

(
wαβ

)2)]
= 0,

∑

αβ

(
Φ̂
αβ

wgs + êαβwgsλ
αβ
)
= 0.

(10)

The full development and the final form of the model equations, specific for different multiphase
porous media is presented elsewhere: for partially saturated soils in [24, 25, 37, 69], for building
materials in [24, 25], for maturing concrete in [30, 31, 33], for concrete at high temperature in
[26–29, 32, 65], and for concrete exposed to chemical degradation in [34–36, 53, 54, 65].

2.3. Effective stress principle

When analysing the stress state and the deformation of the multi-phase porous media it is necessary
to consider not only the action of an external load, but also the pressure exerted on the skeleton
by fluids present in its voids. Hence, the total (nominal) stress tensor ttot acting in a point of the
porous medium may be split into the effective stress ηsts, which accounts for stress effects due to
changes in porosity, spatial variation of porosity and the deformations of the solid matrix, and a
part accounting for the solid phase pressure exerted by the pore fluids, [38, 40, 41, 65]:

ttot = ηsts − αP sI, (11)

where I is the second order unit tensor, α the Biot coefficient and P s is some measure of solid
pressure acting in the system, also simply called a solid pressure. The above definition of total stress
tensor has been obtained in [40, 65] from the exploitation of second Thermodynamics principle in
the form given in [41], considering equations (2)–(10).
Many different forms of P s have been proposed in the past decades in Geomechanics, but consid-

ering that concrete has a fine microstructure, i.e., the interactions between molecules of water and
concrete skeleton on micro-structural level are rather complex, the formulation by Gray and Schre-
fler [41], which takes into account the degree of contact of each fluid phase with the solid one, has
been adopted here. Only using TCAT formalism has allowed to show the conditions under which
this split (11) is thermodynamically consistent. Prior to the development of the TCAT approach
for geomechanical applications, it had been stated [4] that no continuum theory of thermodynamics
had shown the validity of this stress form. The stress equations provided by TCAT guarantee ther-
modynamic consistency that cannot be achieved by positioning the macro-scale thermodynamics
directly at the macroscale by averaging of conservation equations with rational thermodynamics.
TCAT provides not only the definition of the stress tensor and effective stress, but also the defini-
tion of the Biot coefficient and P s, ps. Including the interface in the analysis allows to interpret the
Biot coefficient as the ratio of the hydrostatic part of the total stress tensor (ttot) to the normal
force exerted on the solid surface by the surrounding fluids, i.e., −〈nstsmns〉ss

α = − ptotal

〈nstsmns〉ss
= 1− K̃T

K̃S

. (12)



Mathematical and numerical multi-scale modelling of multiphysics problems 97

This relationship accounts for different values of bulk modulus for solid phase (grain) and the

skeleton, K̃S and K̃T , respectively. Here, t
s
m is the stress tensor of the solid phase at microscopic

level, ns is the unit vector normal to the solid phase in each point, while the Macaulay brackets
〈 〉ss indicate an averaging over the solid surface. With these results, P s is selected to be the average
normal force exerted on the solid surface by the fluids in the pore space:

P s = −〈nstsmns〉ss . (13)

By considering the interfaces and by formulating the model from the micro-level, the following
form of the so-called “standard solid pressure”, ps,, is obtained [41]:

ps = xwss pw + xgss p
g + xwss γwsJsws + xgss γ

gsJsgs, (14)

where xwss and x
gs
s are the fractions of skeleton area in contact with water and gas, respectively,

while Jsws and J
s
gs are the curvature of the water/solid and gas/solid interfaces in that order. γ

ws

and γgs are surface tension-like terms. The two forms of the solid pressure are related one to each
other by means of:

ps = αP s. (15)

For further details see [38, 40, 41, 65].
By using the following simplified version of the capillary pressure, valid at thermodynamic

equilibrium and neglecting the direct contribution of the fluid-solid interfaces, we obtain:

pc ≡ pg − pw = Πf − γwgJwwg. (16)

Equation (14) can be transformed into:

ps = pg + xwss γwgJwwg − xwss Πf + xwss γwsJsws + (1− xwss ) γgsJsgs. (17)

Equation (16) considers the disjoining pressure Πf and can be applied in the hygroscopic region
(i.e., when the saturation level is lower than the solid saturation point and the water is present
only as a thin film on the skeleton surface) as well as in the non-hygroscopic region (i.e., for higher
levels of moisture content, for which saturation values exceed the solid saturation point).
In Eq. (17), one can recognize terms corresponding to the main physical phenomena leading to

concrete shrinkage: the first term on the r.h.s describes an effect of gas pressure, the second one
of capillary tension, the third one of disjoining pressure, and the last two terms, resulting from
the action of surface tension of solids on the interfaces with the pore fluids, are negligible. Taking
into account such simplifications and relation (16), the so-called “effective stress principle”, i.e.,
Eq. (11), can be rewritten in the following simplified manner [33, 41]:

ηsts = ttotal + (pg − xwss pc) I. (18)

3. MULTI-SCALE MODELLING

In the case when more specific information on the microstructure is given or available (not only
volume fractions as in most of porous materials like soils, ceramics etc...), more sophisticated
tools are needed to take it into account [52]. Materials with internal structure have in common
that each structural level plays its own role in the global response: the material behaviour is
controlled by the physical phenomena which take place at the various scales and by the interaction of
these phenomena across scales. Single-scale models, usually at macroscale, make use of constitutive
equations which should reflect the behaviour of the underlying scales. These constitutive equations
are generally of a phenomenological type. An alternative to the use of constitutive equations at
a single (macro) scale is provided by multi-scale modelling, in which the relevant physics is explicitly
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captured on multiple spatial and temporal scales [66]. The outputs of multi-scale material modelling
are usually effective properties which are used at higher scales. This analysis may also span over
several scales where the output from the preceding lower level is used as input for the subsequent
level.

In the case of material multi-scale modelling it is usually of interest to proceed from the lower
scales upward to obtain the homogenized material properties; however, it is also very important
to be able to step down through the scales until the desired scale of the real, not homogenised
material is reached. This technique is commonly known as “unsmearing” or “localisation”. Usually
in a global analysis both aspects have to be pursued.

The most common methods for scale bridging are self-consistent methods and asymptotic anal-
ysis. Self-consistent methods give estimates for effective material properties as a function of some
parameter such as for instance the volume ratio of the inclusions in a matrix. These methods go
back to the works by Voigt [75], Reuss [67] and Eshelby [22] and have been extended by Hashin
and Strikmann [43], and Mori and Tanaka [62]. These methods fail when the volume ratio is not
able to characterise sufficiently well the geometry of the microstructure. Further work can be found
in Kröner [55, 56] and Willis [76]. A new development for the non linear behaviour in the coupled
thermo-mechanical field has been recently published in [9, 12] and [57]. An alternative approach
for scale bridging is asymptotic analysis of media with periodic (or quasi-periodic) structure at
micro-level, also called asymptotic theory of homogenisation.

3.1. Asymptotic theory of homogenization

The asymptotic analysis does not only permit to obtain equivalent material properties, but allows
also to solve the full structural problem down to stresses in the constituent materials at micro
(or local) scale. It is mostly applied to linear two-scale problems, but it can be extended to non-
linear analysis and to several scales as will be shown in Subsec. 3.6. We do not intend to give here
a full account of the underlying theory. The interested reader will find in [3] and [70] the rigorous
formulation of the method, its application in many fields and further references.

In this study, composites with a regular or nearly regular structure are considered. Having
sufficiently regular heterogeneities enables us to assume a periodic structure for the composite.
It should be emphasized that in comparison with the dimensions of the body the size of these
non-homogeneities should be very small, which means that a clear scale separation is possible. For
the moment we consider just two levels, the micro (or local) and the macro (or global) level. These
levels are clearly shown in Fig. 2, where the structure is periodic and asymptotic analysis can be
successfully applied. A heterogeneous medium Ω is said to have a regular periodicity if a function f

Fig. 2. Example of a periodic structure with two levels: global on the left and local on the right.
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denoting some physical quantity of the medium (either geometrical or some other characteristics)
has the following property:

if x ∈ Ω and (x+Y) ∈ Ω then f (x+Y) = f (x) , (19)

where Y is the (geometric) period of the structure. Hence, the function f is a Y-periodic function
of the position vector x (the function f can be a scalar or vectorial or tensorial function). For
example, in a composite tissued by a periodically repeating cell Y, the mechanical behaviour is
described by the constitutional relations of the form:

σij = aijklekl (20)

and the tensor aijkl is a periodic function of the spatial coordinate x, so that:

aijkl (x+Y) = aijkl (x) . (21)

3.2. Statement of the problem and assumptions

One important assumption for asymptotic analysis is that it must be possible to distinguish two
length scales associated with the macroscopic and microscopic phenomena. The ratio of these scales
defines the small parameter (Fig. 2). Two sets of coordinates related by (22) formally express this
separation of scales between macro and micro phenomena. The global coordinate vector x refers to
the whole body and the stretched local coordinate vector y is related to the single, repetitive cell
of periodicity:

y =
x

ε
. (22)

In the asymptotic analysis the normalised cell of periodicity is mapped onto a sequence of finer
and finer structures as ε tends to 0. If the equivalent material properties as defined below are
employed, the considered fields (e.g., temperature, displacement) converge towards the homoge-
neous macroscopic solution as the micro-structural parameter ε tends to 0. In this sense, problems
for a heterogeneous body and a homogenised one are equivalent. For more details concerning the
mathematical meaning see [3] and [70].
We consider now a problem of thermo-elasticity in a heterogeneous body Ω such as that depicted

in Fig. 2 defined by the equations detailed below.

– Balance equations:

σεij,j(x) + fi(x) = 0, (23)

qεi,i − r = 0. (24)

– Constitutive equations:

σεij(x) = aεijkl(x)ekl(u
ε(x))− αεijθ, (25)

qεi = Kε
ijθ,j. (26)

– Strain definition:

eij(u
ε(x)) =

1

2

(
uεi,j(x) + uεj,i(x)

)
. (27)
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– Boundary and discontinuity conditions:

σεij(x)nj = 0 on ∂Ω1 and uεi (x) = 0 on ∂Ω2,

qεi (x)ni = 0 on ∂Ωq and θε(x) = 0 on ∂Ωθ,
(28)

[uεi (x)] = 0,
[
σεij(x)nj

]
= 0 on SJ ,

[θε(x)] = 0, [qεi (x)ni] = 0 on SJ ,
(29)

where Ω1 and Ω2 are the portions of the boundary where tractions and displacements are given
respectively, on Ωq and Ωθ heat fluxes and temperature are given, while SJ stands for the surfaces of
discontinuities of the constitutive tensors. The superscript ε is used to indicate that the variables of
the problem depend on the cell dimensions related to the global length. Square parentheses denote
the jump of the enclosed value. The other symbols have the usual meaning: u is the displacement
vector, e(u(x)) denotes the linearised strain tensor, σij(x) the stress tensor, aijkl(x) the tensor
of elasticity, Kij(x) the tensor of thermal conductivity, αij(x) the tensor of thermal expansion
coefficients, θ(x), qi(x) temperature and heat flux respectively, and r(x), fi(x) stand for thermal
sources and mass forces.
Since the components of the elasticity and thermal conductivity tensors are discontinuous, dif-

ferentiation (in the above equations and in the following) should be understood in the weak sense.
This is the main reason why most of the problems posed in the sequel will be presented in a
variational formulation.
We introduce now the second hypothesis of homogenisation theory: we assume that the peri-

odicity of the material characteristics imposes an analogous periodical perturbation on quantities
describing the mechanical behaviour of the body; hence, we can use the following representation
for displacements and temperatures:

uε(x) ≡ u0(x) + εu1(x,y) + ε2u2(x,y) + ...+ εkuk(x,y), (30)

θε(x) ≡ θ0(x) + εθ1(x,y) + ε2θ2(x,y) + ...+ εkθk(x,y). (31)

An analogous expansion with respect to powers of ε results for stresses, strains and heat fluxes:

σε(x) ≡ σ0(x,y) + εσ1(x,y) + ε2σ2(x,y) + ...+ εkσk(x,y), (32)

eε(x) ≡ e0(x,y) + εe1(x,y) + ε2e2(x,y) + ...+ εkek(x,y), (33)

qε(x) ≡ q0(x,y) + εq1(x,y) + ε2q2(x,y) + ...+ εkqk(x,y), (34)

where uk, σk,ek, θk andqk are Y – periodic, i.e., take the same values on the opposite sides of the
cell of periodicity.

3.3. Asymptotic homogenisation method

The necessary mathematical tools are the chain rule of differentiation with respect to the micro
variable and averaging over a cell of periodicity.
We introduce the assumption (30–34) into equations of the heterogeneous problem (23–29) and

make use of the rule of a differential calculus (see also [70]), i.e., if f = f(x, y) and y depends on x
(in this case y = x/ε), then:

d

dxi
f =

(
∂

∂xi
+

1

ε

∂

∂yi

)
f = f,i(x) +

1

ε
f,i(y). (35)
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This equation explains also the notation used in the following for differentiation with respect to
local and global independent variables.

Because of (35), equilibrium equations and heat balance equation split into terms of different
orders (e.g., the following Eqs. (36) and (39) are of order 1/ε). By equating the terms with the
same power of ε, for the equilibrium equation we have:

σ0
ij,j(y)(x,y) = 0, (36)

σ0
ij,j(x)(x,y) + σ1

ij,j(y)(x,y) + fi(x) = 0, (37)

σ1
ij,j(x)(x,y) + σ2

ij,j(y)(x,y) = 0, (38)

...

We have similar expressions for the heat balance equation:

q0i,i(y)(x,y) = 0, (39)

q0i,i(x)(x,y) + q1i,i(y)(x,y)− r(x) = 0, (40)

q1i,i(x)(x,y) + q2i,i(y)(x,y) = 0, (41)

...

From Eqs. (27) and (35) it follows that the main term of e in expansions (33) depends not only
on u0, but also on u1

e0ij(x, y) = u0(i,j)(x) + u1(i,j)(y) ≡ eij(x)(u
0) + eij(y)(u

1). (42)

The constitutive relationships (25) and (26) assume now the form:

σ0ij(x,y) = aijkl(y)(ekl(x)(u
0) + ekl(y)(u

1))− αij(y)θ
0, (43)

σ1ij(x,y) = aijkl(y)(ekl(x)(u
1) + ekl(y)(u

2))− αij(y)θ
1, (44)

. . .

q0k(x,y) = Kkl(y)(θ
0
,l(x) + θ1,l(y)), (45)

q1k(x,y) = Kkl(y)(θ
1
,l(x) + θ2,l(y)), (46)

. . .

It can be seen that the terms of order n in the asymptotic expansions for stresses (43), (44) and
heat flux (45), (46) depend, respectively, on the displacement and temperature terms of order n
and n+ 1. In this way the influence of the local perturbation on the global quantities is accounted
for. This is the reason why for instance we need u1 (x,y) to define via the constitutive relationship
the main term in expansion (32) for stresses.

3.4. Global solution

Referring separately to the terms of the same powers of ε, leads to the following variational for-
mulations for unknowns of successive order of the problem. Starting with the first order, it can be
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formally shown [70] that u1 (x,y) and similarly θ1 (x,y) may be represented in the following form
with separated variables:

u1i (x,y) = epq(x)(u
0(x))χpqi (y) + Ci(x), (47)

θ1(x,y) = θ0,p(x)(x)ϑ
p(y) + C(x), (48)

where the functions cpqi (y) and ϑp(y), depending only on the geometry of the cell of periodicity
and on the values of the jumps of material coefficients aijkl and Kij across SJ , are called functions
of homogenisation for displacements and temperature, respectively.

The zero order components of the equation of equilibrium (36) and of heat balance (39) in the
light of (47) and (48) yield the following boundary value problems for the functions of homogeni-
sation:

– find χpqi ∈ VY such that: ∀vi ∈ VY

∫

Y

aijkl(y)
(
δipδjq + χpqi,j(y)(y)

)
vk,l(y)(y)dΩ = 0. (49)

– find ϑp ∈ VY such that: ∀φ ∈ VY
∫

Y

Kij(y)
(
δip + ϑp,i(y)(y)

)
φ,j(y)(y)dΩ = 0. (50)

In the above equations, VY is the subset of the space of kinematically admissible functions
that contains the functions with equal values on the opposite sides of the cell of periodicity Y .
The homogenization functions are organized in six vectors χpq for the displacement field and in
three scalars ϑp for the temperature field. Functions v(y) and φ(y) are usual test functions hav-
ing the meaning of Y -periodic displacements and temperature fields respectively. They are used
here to write explicitly the counterparts of the expressions (36) and (39), in which the prescribed
differentiations are understood in a weak sense.

The solutions χpq and ϑp of the local (i.e., defined for a single cell of periodicity) boundary value
problems with periodic boundary condition (49) and (50) can be interpreted as obtained for the
cell subject to a unitary average strain epq and, respectively, unitary average temperature gradient
ϑ,p(y). The true value of perturbations are obtained after by scaling χ

pq and ϑp with true global
strains (gradient of global temperature), as it is prescribed by (47) and (48).

In the asymptotic expansion for displacements (30) and for temperature (31) the dependence on
x only is marked in the first term. The independence on y of these functions can be proved (see for
example [70]). The functions depending only on x define the macro-behaviour of the structure and
will be called global terms. To obtain the global behaviour of stresses and heat flux the following
mean values over the cell of periodicity are defined:

σ̃
0(x) =

1

|Y |

∫

Y

σ0(x,y)dY, q̃0(x) =
1

|Y |

∫

Y

q0(x,y)dY. (51)

Averaging of equations (43) and (45) results in the following, effective constitutive relationships:

σ̃
0
ij(x) = ahijklekl(u

0)− αhijθ
0, q̃0i = −khijθ0,j. (52)
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In the above equations, the effective material coefficients appear. They are computed according to:

ahijkl =
1

|Y |

∫

Y

aijpq(y)(δkpδlq + χpqk,l(y)(y))dY, (53)

khij =
1

|Y |

∫

Y

kip(y)(δjp + ϑj,p(y))dY, (54)

αhij =
1

|Y |

∫

Y

αij(y)dY. (55)

The macro-behaviour can be defined now by averaging equilibrium and flux balance equations
(37), (40) taking into account boundary conditions (28) and finally substituting in the resulting
relations the averaged counterparts of stress and heat flux (51) (it is reminded that first order terms
vanish in averaging of (37), (40) because of periodicity). Equations (25) and (26) are now replaced
by (52), discontinuity conditions (29) have no more sense since we deal now with homogeneous
thermo-elasticity.
The heterogeneous structure can now be studied as a homogeneous one with effective material

coefficients given by (53–55) and global displacements, strains and average stresses and heat fluxes
can be computed. Then we go back to Eq. (43) for the recovery of the approximation of the stress
field at local level. This last step is the above mentioned unsmearing or localization process.

3.5. Local approximation of the stress vector

We underline that the homogenisation approach results in two different kinds of stress tensors.
The first one is the average stress field defined by (52)1. It represents the stress tensor for the
homogenised, equivalent body. Once the effective material coefficients are known, the global stress
field and the heat flux may be obtained by means of a standard finite element thermo-mechanical
code.
The second stress field is associated with a family of uniform states of strains epq(x) (u

0) over each
cell of periodicity Y . This local stress is obtained by introducing Eq. (42) into (43) and results in:

σ0ij(x,y) = aijkl(y)(δkpδlq − χpqk,l(y))epq(x)(u
0)− αij(y)θ

0. (56)

Because of (36) and (49) this tensor fulfils the equations of equilibrium everywhere in Y . If
needed, the stress description can be completed with a higher order term in Eq. (32). This approach
is presented in [59] and [60].
In a similar way, the local approximation of heat flux is obtained:

q0j (y) = kij(y)(δip + ϑp,i(y)(y))θ
0
,p(x). (57)

3.6. The non linear case and bridging over several scales

Asymptotic theory of homogenisation is applicable also to non-linear situations, if applied itera-
tively. Further, it can be obviously used to bridge several scales. Here, we deal with the case where
three scales are bridged by applying in sequential manner the two-scale asymptotic analysis. In this
case, the behaviour of the components is physically non-linear and temperature dependent. Again,
we refer to thermo-mechanical behaviour and introduce a micro, meso and macro level as shown
in Fig. 3.
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Fig. 3. Example of a periodic structure with three levels: macro (on the left), meso and micro (on the right).

At the stage of micro or meso modelling, some main features of the local structure can be ex-
tracted and used then for the macro-analysis. In order to apply the asymptotic theory, the non-linear
behaviour of the components is supposed here to be piecewise linear, so that the homogenisation
we perform is piecewise linear. Only monotonic loading and/or temperature change is considered,
otherwise we should store the whole history and use an incremental analysis. Because of the chosen
material properties, we deal with a sequence of problems of linear elasticity written for a non-
homogeneous material domain and with coefficients that are functions of both temperature and
strain level.
At the top level of the hierarchy, we consider an elastic body contained in the domain Ω with

a smooth boundary ∂Ω. The governing equations are Eqs. (23–27). For the lower level, all the
formulations are formally the same with one difference: the boundary conditions are those of an
infinite body. It is worth to mention that all the macro fields at the micro level become the micro
fields at the higher structural level. The effective material coefficients and mean fields obtained
with the homogenisation procedure at the lower level enter as local perturbations at the higher
step.
Before explaining the application of the homogenisation procedure in sequential form to multi-

level non-linear material behaviour we mention the solution by Terada and Kikuchi [74] who write
a two-scale variational statement within the theory of homogenisation. The solution of the micro-
scopic problem at each Gauss point of the FE mesh for the overall structure, and the deformation
histories at time tn−1 must be stored until the macroscopic equilibrium state at current time tn is
obtained. This procedure has not been applied to bridging of more than two scales. A triple scale
asymptotic analysis is used by Fish and Yu [23] to analyse damage phenomena occurring at micro-,
meso- and macro scales in brittle composite materials (woven composites). These authors maintain
also the second order term in the displacement expansion (Eq. (10)) and introduce a similar form
for the expansion of the damage variable.
The two usual tools of homogenisation of the previous sections are used, i.e., volume averaging

and total differentiation with respect to the global variable x that involves the local variable y. The
homogenisation functions are obtained similarly to Eqs. (49) and (50), but a factor λ is introduced
in Eq. (49) to adapt the solution to the real strain level:

– find χpqi ∈ VY such that:

∀vi ∈ VY

∫

Y (λ)

Cijkl(y, λ, θ
0)
(
δipδjq + χpqi,j(y)

)
vk,l(y)dΩ = 0, σ(λ, χpqi ) ∈ P. (58)

Material properties depend upon temperature, so that a set of representative temperatures is
considered for the material input data and linear interpolation is used between the given values.
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P is the domain inside the surface of plasticity. The requirement that the stress belongs to the
admissible region P (introduced in (58)) is verified via classical unsmearing procedure, described
in the preceding section.

The modification of the algorithm required by the non-linearity is now explained. We start with
the composite cell of periodicity with given elastic components. The uniform strain is increased
step by step. Effective material coefficients are constant until the stress reaches the yield surface
in some points of the cell. The yield surface in the space of stresses is different for each material
component, being thus a function of place. The region, where the material yields, is of finite volume
at the end of the step, so it is easy to replace the material with the yielded one, with the elastic
modulus equal to the hardening one and with Poisson’s ratio tending to 0.5.

The cell of periodicity is hence changed: it is made up of one more material and we can start the
usual analysis again (uniform strain, new homogenisation functions, new stress map over the cell).
We identify then the new region where further local yielding occurs, then redefine the cell, etc.
The loop is repeated as many times as needed. In (58) the history of this replacement of materials
at the micro level is marked by λ, the level of the average stress, for which the micro yielding
occurs each time. At the end of each step we can compute also the mean stress over the cell having
(generalised) homogenisation functions (see Eq. (52)) and the effective coefficients can be computed
using Eqs. (53), (54) and (55). The algorithm is summarised in Box 1.

1. Compute effective coefficients at micro level;

2. Compute effective coefficients at meso level;

3. Apply increment of forces and/or temperature at the macro level, solve global homogeneous problem;

4. Compute global strain Emacroij : Emacroij = eij(u
0);

5. Apply Emacroij to a single meso- level cell by equivalent kinematical loading (displacement on the
border);

6. Solve the kinematical problem at the meso level on the unit cell, compute stress (unsmearing for
meso level) and strain Emacroij ;

7. Apply Emacroij to micro- level cell by equivalent kinematical loading (displacements on the border);

8. Solve the kinematical problem at the micro level for u1(z), compute stress (unsmearing for micro
level);

9. Verify yielding of the material in the physically true situation at micro level. If yes, change mechanical
parameter of the material and go to 1, if else exit.

Box 1: Algorithm for the three-scale homogenization in case of non linear material behaviour.

As mentioned previously for the two-scale analysis, an important part of multi-scale modelling
is the recovery of stress and heat flux as well as strain, temperature and displacements at the level
of the microstructure. In the linear case, it has been shown that the homogenisation functions
are obtained as a solution of a series of boundary value problems (BVPs) with periodic boundary
conditions formulated over a cell of periodicity. The vector of homogenisation functions allows also
to retrieve the local field of stress and strain on the cell of periodicity at each structural level and
for each value of the mean strain field at hand. When the material behaviour is not elastic, the
homogenisation functions cannot be applied. The local fields can be obtained numerically, e.g., by
solving a BVP for the cell of periodicity loaded with a distribution of displacements corresponding
to the mean strain field computed for the preceding level of the hierarchy (see Box 1). Because
of the three-level hierarchical structure we are dealing with, the recovery process must be applied
twice, and since material characteristics are temperature dependent and non linear, the procedure
must be applied for each representative temperature and within the context of the correct stress
state. Therefore, this part is computationally very expensive: it must be performed at the end of
each step of the global analysis until the micro-scale, to verify if yielding is taking place or evolving
at the lowest level. To speed up this procedure, artificial neural networks can be used. Interested
readers can find in [58, 13, 8] the details of this approach.
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Concerning the preservation of thermodynamic consistency in case of asymptotic expansion, it
appears to be still an open problem. It is worth to point out that with the asymptotic method we
formulate an effective constitutive relation (not only coefficients) in a fully consequential manner.
Therefore for problems like, e.g., linear thermo-elasticity, the results are thermodynamically consis-
tent, but more complicated situations should be individually analysed. In the asymptotic analysis,
as ε tends to 0 the normalized cell of periodicity is mapped onto a sequence of finer and finer struc-
tures and the considered fields (temperature, displacement) converge towards the homogeneous
macroscopic solution. However, the expansion is usually truncated after a few terms, pointing out
that what matters here is the size of the unit cell. As long as it is infinitesimally small, it is generally
accepted that the 0(1) theory is as good as anything else. The problem is the finite size of the cell
which usually appears in numerical exploitation of the method. Here the question is still open as
it is in the case of numerical multi-scale procedures like those mentioned at the beginning of this
paper.

4. NUMERICAL EXAMPLES

4.1. Drying shrinkage of concrete

In the first example, we consider drying shrinkage of young concrete where a proper choice of the
stress tensor allows avoiding the need for an experimentally obtained shrinkage coefficient (valid
only for each particular material) linking relative humidity with shrinkage strain. However, the
functional dependence of the Helmholtz free energy must be sufficiently rich to properly represent
the physical reality. The stress form obtained by Coussy [19]:

dtef = dttot + α (dpg − Swdp
c) I (59)

with a Helmholtz free energy for the solid phase depending only on Sw the water degree of satura-
tion, T the absolute temperature and Es the Lagrangian strain tensor, is not sufficient to simulate
the strain behaviour at low values of relative humidity. On the other hand, the generalised Skemp-
ton stress tensor containing the disjoining pressure, Eq. (16), where the Helmholtz free energy
depends also on the specific interface areas [40] allows following the experimentally observed strain
behaviour down to very low values of the relative humidity [33], Fig. 4. Application of the effective
stress theory by Gray and Schrefler [41] allows also for efficient analysis of such difficult problems
like for example creep phenomena in maturing concrete due to autogeneous shrinkage [30, 33], or
thermo-chemical degradation of concrete at high temperature [27, 29].

Fig. 4. Drying process of a concrete sample: comparison between experimental values and numerical results
obtained according to the theories [19] and [33].
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4.2. Leaching of concrete

The second example deals with calcium leaching of concrete which is particularly important for
containment structures for nuclear waste disposal. Equilibrium based models show convergence
problems because of the sudden appearance of large source terms which must attain equilibrium
instantaneously. Models which consider thermodynamic imbalance of the calcium in solid and liquid
phases, allowing for the description of process kinetics behave numerically much better [33–35]. The
correct evolution of the chemical process is captured through the introduction, for each chemical
component, of the relaxation time which would be zero in equilibrium type models but not in
reality and in process kinetics based models. As additional bonus of this kind of approach, it allows
for introducing non isothermal leaching by means of the thermal diffusion of ionic species and the
temperature dependence of the chemical reaction through an Arrhenius-like relationship.
As an example we show the case of non-isothermal leaching of a cubic specimen (side = 4 cm)

in direct contact with deionised water at two different temperatures: 25◦C and 60◦C. For further
information about material properties and boundary conditions used in the numerical simulation,
see [34]. Figures 5 and 6 show the calcium content in the solid skeleton and in the saline solution after
7500 days. As can be observed, calcium leaching process is strongly dependent on the temperature,
and the mathematical model, based on the Volume Averaging theory, allows efficient numerical
analysis of the chemical degradation induced by the process.

Fig. 5. Calcium concentration in the liquid solution after
7500 days at two different temperatures [34].

Fig. 6. Calcium concentration in the liquid solution after
7500 days at two different temperatures [34].

4.3. Three-scale asymptotic homogenization

The third case deals with the thermo-mechanical analysis of a superconducting strand used in
the coils of the International Thermo-nuclear Experimental Reactor (ITER), which is now under
construction. ITER is a tokamak type reactor, which uses magnetic confinement of the plasma.
To this purpose, strong magnetic fields are produced by coils formed by winding superconduct-
ing cables. Cables are formed by more than one thousand strands twisted together according to
a multi-level scheme. Strands are usually made of a resistive matrix (bronze in most cases) where
superconducting filaments are embedded. In most of ITER magnets Nb3Sn based strands will be
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used and it is well known that the critical parameters of Nb3Sn are strain sensitive; experimental
investigations on short samples of basic strands and sub-size cables already demonstrated the signif-
icant effects of residual strain on the critical parameters [72]. This Nb3Sn sensitivity to strain leads
to considerable problems in accurate performance prediction when the strands are used in large
multi-strand CIC conductors at high field. Besides damage phenomena in the filament [17, 64] and
complex stress-strain fields within the cable (and therefore in the Nb3Sn filaments) created by the
pulsing magnetic forces [2, 63], there are also interaction phenomena due to the different thermal
contraction coefficients of the various materials. Thermal strain state due to the heat treatment of
the strands plays a fundamental role on the final characteristics of the cable and its performances
in working conditions; therefore, a good estimation of these strains is compulsory.
In the strand (Fig. 7) a three-level hierarchy can be identified [5–8, 14]: the single filament

(micro-scale, on the right), groups of filaments (meso-scale, in the centre) and the superconducting
strand (macro-scale, on the left). In this example, we compute the effective characteristics and
the strain field due to the cool down of a single strand from its reaction temperature (Nb3Sn is
formed at 923 K) to the coil working condition (4.2 K). The additional strain field due to Lorentz
force, originating when the coil is energized, is analysed in [68, 78]. The problem of interaction
among many strands is left apart and can be dealt with as studied in [15, 16, 79]. We assume that
the strand components are in equilibrium at 923 K without eigenstresses or eigenstrains, which
are relaxed since the strand remains for several hours at high temperature. We have to deal with
non-linear, temperature-dependent material characteristics.

Fig. 7. Three level hierarchy in the superconducting strand. The central part of the strand itself (left) consists
of 55 groups of 85 filaments (about 4 micrometers diameter), embedded in a bronze matrix, while the outer
region is made of high conductivity copper and is separated by the inner one by a tantalum barrier. Images:

courtesy of P.J. Lee, University of Wisconsin–Madison Applied Superconductivity Center.

Asymptotic theory of homogenisation is adopted for the non linear situation and the three scales
are bridged by applying it in concurrent manner. The repeating unit cell (RUC) for the micro- and
meso-level are shown in Fig. 8. The obtained effective characteristics are presented in Fig. 9. Finally

Fig. 8. Finite element mesh of micro- (on the right) and meso- (in the middle) scale unit cell. The
discretization used for the macro level computations is shown on the left.
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Fig. 9. Homogenization results for diagonal terms of elasticity matrix: first level (green lines) and second
level (blue lines). Initial materials (bronze and Nb3Sn) are also shown.

the computed and measured residual strains, after the cool down process, are compared in Fig. 10;
it shows that the results are remarkably accurate.

Fig. 10. Computed and measured residual strain.

5. CONCLUDING REMARKS

It is not straightforward to maintain thermodynamic consistency in multiphysics and multi-scale
mathematical models. Theoretical fundamentals of two different approaches assuring thermody-
namic consistency are briefly summarised: Hybrid Mixture Theory based on space averaging, which
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can be applied for modeling chemo-hygro-thermo-mechanical problems of multiphase porous materi-
als, and Asymptotic Theory of Homogenisation, allowing analysis of hierarchical thermo-mechanical
problems.
Its importance is now generally admitted in computational mechanics and is exploited in CFD

since a long time ago. In fluid structure interaction problems with interaction in the domain, it is
pursued mainly when writing the mathematical multi-scale model. This quest for thermodynamic
consistency has led to improved models for simulating drying shrinkage through adoption of a
more appropriate stress tensor which includes disjoining pressure. Adoption of thermodynamic
non-equilibrium approach has then permitted to simulate non-isothermal leaching in concrete and
has led to models which show less convergence difficulties.
Finally, the preservation of thermodynamic consistency in case of asymptotic expansion, appears

to be still an open problem, worth to be investigated. In the asymptotic analysis, the expansion
is usually truncated after a few terms, pointing out that what matters here is the size of the unit
cell. As long as it is infinitesimally small, it is generally accepted that the 0(1) theory is as good
as anything else. The problem is the finite size of the cell which usually appears in numerical
exploitation of the method. Here, the question is still open as it is in the case of other numerical
multi-scale procedures like those mentioned at the beginning of this paper.
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