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Dynamic model updating using neural networks

Leonard Ziemiariski and Bartosz Miller
Department of Structural Mechanics, Rzeszow University of Technology
ul. W. Pola 2, PL-35959 Rzeszéw, Poland

(Received November 3, 1999)

The paper presents an application of Artificial Neural Networks for updating a mathematical model of
the structure based on dynamic parameters. Neural networks which predict the value of selected stiffness
or concentrated masses on the basis of Frequency Response Function (FRF) have been built. Two types
of neural networks have been used for this task: multi-layer feed-forward (MLFF) networks with different
learning algorithms and networks with radial basis function (RBF). Preceding the update, the FRF is
compressed in order to reduce the number of input values necessary for updating the model.

1. INTRODUCTION

Accurate and representative computer models are necessary to predict the dynamic characteristics
of the structure under the study. A dynamic model of a structure (dynamic model may be built
with the finite element method or discrete modelling) is verified by building a physical model
(usually a laboratory model is built), testing, and comparison of responses from the dynamic model
(analytical) and physical model (experimental). There are often discrepancies between these results.
For that reason the dynamic model must be modified until a good agreement between the responses
of these models is achieved. The process of modifying the dynamic model is called updating [2, 6].
The main task in the model updating is to determine coefficient matrices M, C, K on the basis of the
response of the structure. In this paper a dynamic model updating technique using neural networks
is developed and demonstrated. Neural networks have been applied successfully to many diverse
areas of application. They are particularly applicable to problems in which plenty of examples are
available but it is difficult to specify an explicit algorithm, such as character recognition or time
series prediction, etc. [3, 9]. To solve this problem multi-layer feed-forward (MLFF) neural networks
and neural networks with radial basis function (RBF) are used [9].

In recent years a significant amount of work on generating and testing different updating methods
has been done [2, 4, 5, 6, 7]. The resulting algorithms may be split into several categories based
on whether they work in the frequency or modal domains and whether they adjust the mass and
stiffness matrices directly or make parametric changes to the model:

e direct techniques based on modal data,
e iterative techniques based on modal data,
e iterative techniques based on frequency domain data.

Direct methods require mode shape information and they reproduce the measured data exactly.
The main drawback of these methods is that the responses of all degrees of freedom are needed.
It has been shown that the direct methods are not appropriate for model updating as the results
obtained are not physically meaningful. The iterative methods improve the correlation between the
measured data and the analytical model by using penalty function. In penalty function mode shape
and eigenvalue or FRF data directly without extracting the natural frequencies and mode shapes



782 L. Ziemiariski and B. Miller

can be involved. The penalty functions are generally non-linear of the parameters and so iterative
procedure is required.

2. PROBLEM DESCRIPTION

A simple model of a 12-storey frame consisting of twelve concentrated masses coupled by springs is
considered. The model has 12 degrees of freedom (see Fig. 1).

The model updating procedure consists of the following steps: 1) generation of a set of training
data vectors based on the dynamic model, 2) training of the neural network with the training
data, 3) exposition of expected data to obtain set of changes, 4) application of the changes to the
original model in order to generate a new model, 5) repetition of the previous steps if necessary. This
procedure leads to an updated model that can be updated again using the same method [4]. The
most important question in the procedure is: “What kind of input data must be used to train the
network?” In this paper Frequency Response Functions (FRF) are used as input data vectors. The
Frequency Response Function is defined as the ratio of the Fourier transforms of the response and
the excitation force time domain signals [1]. The FRF is usually obtained by auto-correlation and
cross-correlation functions of time signals. An example of Frequency Response Function is shown in
Fig. 2.
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However, the FRFs of even small models contain too many points to use them all as an input
of a neural network. When the input vector has a high dimension, the number of learning patterns
required for adequate network generalisation is also very high. This behaviour is known as the
curse of dimensionality (for detailed discussion on that matter see [3]). Therefore it is necessary
to reduce the number of inputs of the neural network. Data reduction could be achieved in many
ways. The simplest method is discarding many of FRF data points. Another way is to work in
the modal domain, using modal analysis to obtain natural frequencies and mode shapes of the
structure |2, 4]. In this paper the input data have been reduced by the technique of compression
by a neural network [8] or by calculating geometrical characteristics of selected FRF bands. In the
previously presented updating algorithm two separate stages can be distinguished:

e extraction of model dynamical features from FRF using the so called Characteristic Replicator
(ANN designed for data compression) or calculating geometrical characteristics of five selected
FRF bands,

e building an ANN for the mathematical model updating based on a compressed FRF or geomet-
rical characteristics of FRF bands.

This algorithm has been tested on 12-storey frame model for two problems:
e updating k; stiffness (15 storey stiffness),

e updating two masses (on the 3" and 10" storey — see Fig. 1).

3. UPDATING OF k; STIFFNESS
3.1. Characteristic Replicator

The model of a 12-storey frame is considered (see Fig. 1). An assumption that the only param-
eter which is updated is the stiffness of the first storey has been made. All other parameters are
invariable. Learning and testing patterns have been calculated by numerical simulation for changes
of ky stiffness in the range of 50%-+150% (altogether 102 different values of k;). Additionally, the
location of impulse excitation and the location of FRF measurements are shifting (adequately on
the 15t 374 8th and 10 storey or on the 15, 5" 8*" and 10" storey). This approach lets calculate
1632 different FRFs, 153 out of which are randomly selected as testing patterns, the remaining ones
(1479) are the learning patterns.

The calculated FRFs contain 50 points. In order to separate the dynamic features from the FRF
a Characteristic Replicator has been built. Different networks of architecture 50-h-50 (where h is the
number of neurons in a hidden layer: 10, 8, 6, 5 or 4) have been learned to replicate at the output
the vector FRF data points given at the input. During the replication in a hidden layer, which
contains fewer neurons than the number of inputs, the compression of characteristic is performed.
For example 50-8-50 net compresses information given at the input from 50 to 8 values, and then
decompresses it back to 50 values. To obtain a network outputting a compressed FRF the output
layer of the learned 50-h-50 network has been removed. The task of the output layer has been
taken over by so far hidden layer. Networks 50-h give on the output FRF condensed into 10, 8, 6,
5 or 4 values.

The learning process of the 50-h-50 networks consisted of 2500 epochs. Figure 3 presents the re-
sults of FRF decompression by different networks for randomly chosen learning and testing patterns.
Networks are able to decompress a FRF with accurate precision after compressing it in a hidden
layer even to 4 or 5 values. It proves that it is possible to compress a FRF calculated for the mathe-
matical model without a loss of the important information and a network used for model updating
can base on condensed characteristics; there is no need to input all the 50 data point.

FRFs compressed by Characteristic Replicator are used as input vectors for neural networks
updating model. These networks have one or two hidden layers consisting of various numbers of
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Fig. 3. Frequency Response Function of the model after compression and decompression by 50-h-50

networks: a) learning pattern, b) testing pattern.
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neurons. The output of the network equals the value of first storey k; stiffness. The learning process
consists of 4000 epochs.

Figure 4a shows the relation between the number of network inputs and obtained results accuracy.
Networks fed with FRF condensed to 4, 5 or 6 values predict k; stiffness with significantly worse
precision than networks fed with FRF condensed to 8 or 10 values. Because the difference between
the results from networks with 8 and 10 inputs are not large the decision to apply 8-input network
has been made. Figure 4b shows the relation between the number of hidden neurons in 8-input
networks and the obtained results accuracy. The best results are obtained from the network with
12 neurons in first hidden layer and 8 in the second one.

The detailed results for selected 8-12-8-1 network are shown in Fig. 5. Figure 5a shows the relation
between the error of k; prediction and the percentage of occurrences of this value of error. In Fig. 5b
the horizontal axis is the k; parameter determination error, the vertical axis is the percentage of
the error occurrences.

The Characteristic Replicator has also been learned with FRF expressed in log scale or after 2500
epochs of learning it has been additionally learned with testing patterns (100 epochs of additional
learning). The Characteristic Replicator has also been learned all over again using another learning
algorithm and a grater number of learning epochs. Compressed FRF obtained from the new Char-
acteristic Replicator were used to learn and test the network updating mathematical model. The
detailed results from all tested networks are shown in Table 1.

Table 1. Collected results from MLFF networks updating k: stiffness using Characteristic Replicator

No. Network Correlation coefficient R* | Standard deviation
architecture Learning Testing Learning | Testing

1 10-4-1 0.99160 0.99059 0.03322 | 0.03939

2 10-7-1 0.99530 0.99399 0.02593 | 0.03012

3 10-12-1 0.99812 0.99779 0.01675 | 0.01737

4 10-6-6-1 0.99816 0.99791 0.01691 | 0.01916

5 10-12-8-1 0.99924 0.99871 0.01076 | 0.01144

6 8-5-1 0.98908 0.98986 0.03777 | 0.04252

T 851 0.98908 0.99011 0.03795 | 0.04172

8 8-12-1 0.99363 0.99342 0.03113 | 0.03147

9 8-6-6-1 0.99761 0.99676 0.02066 | 0.02547

10 8-12-8-1 0.99894 0.99909 0.01256 | 0.01217
11 8-6-6-1 1) 0.99762 0.99667 0.02062 | 0.02569
12 8-6-6-12) 0.99598 0.99548 0.02122 | 0.01959
13 6-4-1 0.98145 0.98036 0.04905 | 0.05034
14 5-3-1 0.96646 0.98052 0.07012 | 0.05624
15 4-3-1 0.96281 0.96180 0.06853 | 0.09144
16 4-6-1 0.98469 0.98529 0.05296 | 0.04841
17 4-6-6-1 0.98705 0.98146 0.04952 | 0.05010

) CR additionally learned with the testing patterns
?) CR. learned with FRF expressed in log scale

3.2. Using geometrical characteristics of selected frequency bands

The division of patterns into learning and testing ones was the same as for the networks based on
compressed FRF. The use of Characteristic Replicator has been given up and the FRF consisting
of 50 points has been divided into bands. Five of them have been taken to the further calculation,
the remaining ones have been given up. The selected bands are shown in Figs. 6a and b.
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Fig. 6. Bands selected from the FRF: a) learning patterns, b) testing patterns

Considering each band as a flat figure some geometrical characteristics have been calculated:

e area A,

A://dﬂ, (1)
Q

e two moments of inertia I and I,

Izz//yde, Iyz//x2d9, (2)
Q Q

e co-ordinates of centre of gravity X and Y.

XFM Xs=/—/ﬂﬂ. (3)
J[an /[ a0

Co-ordinate system for one selected band is shown in Fig. 7.

Calculated geometrical characteristics of selected bands were used as inputs to the nets updating
ky stiffness. Detailed results from selected networks basing on geometrical characteristics of FRF
bands as inputs are shown in Fig. 8.

In Fig. 8d there are shown results from the network, which had on input areas A of selected five
bands and additionally five eigenfrequencies f within these bands. The values of eigenfrequencies
were taken from FRF. The results from the networks with 10, 20 or 25 inputs are of the same
quality. Basing on this the decision of application of 10-input networks has been made. In these
networks each of five FRF bands is described by 2 parameters: area A and X, co-ordinate of centre
of gravity.
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FRF band considered
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Fig. 7. Co-ordinate system for one selected band
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Fig. 8. Results from neural network updating of ki stiffness: a) A and X, in input, b) A4, X, Y;, I, and I,
on input, ¢) X;, Y;, I, and I, on input, d) A and f on input.

The detailed results from all tested networks are shown in Table 2. In some cases instead of X
co-ordinate of the centre of gravity calculated in local co-ordinate system, different for each FRF
band, there was used X calculated in global co-ordinate system. The results from the networks
basing on geometrical characteristics are of the same quality as the results from the networks basing
on condensed FRF.

3.3. Using networks with Radial Basis Function

Networks with radial basis function have been also tried out [10]. The networks have based on
geometrical characteristics of selected FRF bands. The calculations were made with different values
of o (0.5, 0.02, 0.01, 0.001 and 0.0005). In Fig. 9a one can see the relation between o and correlation
coefficient R? between real and predicted values. The optimum value of ¢ is 0.01. Figure 9b shows
the detailed results from the network with 0=0.01.

This network has had a number of hidden neurons equal to the number of learning patterns.
The division of patterns into learning and training sets was the same as for the MLFF networks,
so the number of hidden neurons in this network was 1479. In Figs. 10a and 10b one can see the
comparison of the results from this network with the network with number of hidden neurons less
than the number of learning patterns. Next a new division of patterns into learning and training
set has been made. In order to do it every second pattern from previous learning set was moved to
testing set. The new number of learning set was 739, the testing set consisted of 892 patterns. New
networks with number of hidden neurons equal to or less than the number of learning patterns were
learned. The results are shown in Figs. 10c and 10d.

As one can notice the generalisation of network with the number of hidden neurons less than the
number of learning patterns is much better than the generalisation of the network with the number
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Table 2. Collected results from MLFF networks updating k; stiffness using characteristics of selected FRF
bands
No. | Number and type Network Correlation coefficient R* | Standard deviation
of inputs architecture | Learning Testing Learning | Testing
1 AX, Y, 15-12-8-1 0.99896 0.99882 0.01329 | 0.01393
2 AX, Y, 15-6-6-1 0.99730 0.99812 0.02069 | 0.01577
3 A X, 10-12-8-1 0.99899 0.99803 0.01340 | 0.01865
4 A X, 10-6-6-1 0.99823 0.99772 0.01761 | 0.02064
5 A X, 10-12-1 0.99523 0.99613 0.02417 | 0.02004
6 A 5-6-6-1 0.98363 0.98033 0.04868 | 0.05057
T A 5-8-1 0.93857 0.87793 0.09199 | 0.15661
8 AY; 10-12-8-1 0.99707 0.99746 0.02150 | 0.01884
9 AY, 10-6-6-1 0.98799 0.98224 0.04023 | 0.05185
10 AY, 10-12-1 0.98929 0.99092 0.04202 | 0.03809
2E1L Xy ¥ 10-12-8-1 0.99866 0.99861 0.01464 | 0.01636
12 XaY, 10-6-6-1 0.99639 0.99645 0.02175 | 0.02052
13 XX 10-12-1 0.99468 0.99542 0.02792 | 0.03031
14 AX Y, I; I, 25-12-8-1 0.99931 0.99920 0.01009 | 0.00997
15 AX, Y, I; I, 25-12-1 0.99825 0.99827 0.01770 | 0.02005
16 Xodali 20-12-8-1 0.99921 0.99860 0.01073 | 0.01626
17 X Yo Bl 20-12-1 0.99752 0.99855 0.01998 | 0.01488
18 AXs Iy 15-12-8-1 0.99904 0.99888 0.01326 | 0.01374
19 AX; I, 15-12-1 0.99866 0.99843 0.01483 | 0.01605
20 X 5-5-5-1 0.94911 0.94909 0.07472 | 0.05560
21 Xs 5-6-6-1 0.94184 0.93859 0.08049 | 0.06235
22 - 5-6-6-1 0.91453 0.94680 0.09196 | 0.05784
23 A X" 10-12-1 0.98979 0.99167 0.04313 | 0.03890
24 A X 10-6-6-1 0.99248 0.99367 0.03854 | 0.02968
25 A XS 10-12-8-1 0.99458 0.99635 0.03204 | 0.02246
26 Af 10-12-1 0.98745 0.98397 0.04161 | 0.04210
27 Af 10-6-6-1 0.98801 0.98349 0.04126 | 0.05258
28 Af 10-12-8-1 0.99543 0.99565 0.02699 | 0.02773
29 f 5-6-6-1 0.97273 0.97646 0.05127 | 0.04617
30 £ 5-8-1 0.94481 0.95173 0.07387 | 0.06842
1.0 T 100% I T 1
- P j \ b) LEARNING
804 2 8% TESTING
8 y 60%
= e 40%
8
g = | EARNING | | 20%
=i et TESTING
] ] 0% S
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Fig. 9. Correlation coefficient R? for RBF networks with different parameters
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Fig. 10. Results from RBF network updating of k; stiffness

of hidden neurons equal to the number of learning patterns. Table 3 presents the results from all
considered RBF networks.

4. UPDATING OF ms AND mjy MASSES

Next the updating of two parameters of the model simultaneously has been made. These parameters
are two masses m3 and mqo (see Fig. 1). Learning patterns have been calculated by numerical
simulation for ms and mg masses changing in the range of 50-150% (altogether 2601 different
values). Testing patterns have been calculated in the same way but with different starting values of
both masses. The number of patterns in testing set is 2601.

FRF compression is done by Characteristic Replicator of a structure 50-h-50. One- (50-10-50
and 50-8-50) and three-hidden layer networks (50-20-6-20-50) are considered. Figure 11 shows FRF
compressed and then decompressed by 50-h-50 networks for the patterns with the biggest error.

The output layer of the learned 50-h-50 network is removed and the task of the output layer
is taken over by so far the only or the last hidden layer. 50-h network outputs a FRF condensed
to 10, 8 or 6 values. Data obtained from Characteristic Replicator is used as input vectors for the
networks predicting selected parameters: masses ms and mig. The results from these networks are
shown in Fig. 12 and Table 4. ;

Figures 13b and 13c show the value of the error of masses prediction in relation to both masses.
The surfaces are very flat, which means that there are no areas of mass values where network
has difficulties with achieving precise prediction. The only areas with higher error are the surfaces
boundaries for minimal values of masses, where the error of each network prediction is higher.
Figure 13a shows the value of Characteristic Replicator error. This error is transferred to the end
networks predicting the values of both masses.
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Table 3. Collected results from RBF networks updating ki stiffness using characteristics of selected FRF
bands; [ — number of learning patterns, ¢ — number of testing patterns, h — number of hidden neurons

No. | Number of learning Network Correlation coefficient R* | Standard deviation
and testing patterns | parameter o Learning Testing Learning Testing
1 0.5 0.03558 0.09064 1.49E+4-07 | 1.45E+07
2 1 =1479 0.02 0.97315 0.97003 0.04890 0.04074
3 t =153 0.01 1.00000 0.99317 0.00000 0.04207
4 hi=1 0.001 1.00000 0.47155 0.00000 0.35668
5 0.0005 1.00000 0.35031 0.00000 0.43627
6 0.1-10 0.99828 0.99757 0.01672 0.01816
/4 0.1-5 0.99808 0.99763 0.01688 0.01458
8 0:1:-2 0.99803 0.99841 0.01705 0.01509
9 0.1-1 0.99813 0.99885 0.01674 0.01174
10 0.09-1 0.99833 0.99878 0.01560 0.01198
11 [ = 1479 0.08-1 0.99847 0.99900 0.01517 0.01098
12 1= 163 0.05-1 0.99902 0.99891 0.01206 0.01320
13 h<l 0.05-0.5 0.99903 0.99915 0.01300 0.01188
14 0.03-0.3 0.99942 0.99931 0.00978 0.01045
15 0.01-1 0.99981 0.99971 0.00567 0.00629
16 0.01-0.5 0.99980 0.99970 0.00560 0.00588
17 0.01-0.1 0.99982 0.99934 0.00532 0.00749
18 0.4-4 0.99233 0.99375 0.03965 0.03285
19 0.3-5 0.99446 0.99276 0.03171 0.03459
20 1 0.00848 0.00575 1.40E+06 | 1.39E+06
21 =139 :t =892 0.5 0.00095 0.00000 8.09E+02 | 7.81E+02
22 hsgl 0.01 1.00000 0.72443 0.00000 0.23871
23 0.001 1.00000 0.09437 0.00000 0.50194
24 1 =739, t=892 0.01-1 0.99961 0.99959 0.00747 0.00783
25 h<l 0.01-0.1 0.99961 0.99956 0.00729 0.00759
08 038
a) = ORIGINAL FRF b) == ORIGINAL FRF
06 50-10-50 06 1 - 50-10-50
pis s 50-20-6-20-50 s e 50-20-6-20-50
% = —— 50-8-50 3:% st e 50-8-50

0.2

0.0 + h A_/

8 10~ 12 0 2 4 6 8 10i . 12
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Fig. 11. Frequency Response Function of the model after compression and decompression by 50-h-50
networks: a) learning pattern, b) testing pattern.
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Fig. 12. Results from neural network updating of m3 and mjo masses a-b) 10-20-10-2, c-d) 8-16-8-2,
ef) 6-12-8-2
Table 4. Collected results from RBF networks updating ms and mio using Characteristic Replicator
No. Network Mass mq Mass mo
architecture R? Standard deviation R? Standard deviation
Learning | Testing | Learning | Testing | Learning | Testing | Learning | Testing
1 10-20-10-2 0.99585 | 0.99286 | 0.06786 | 0.07392 | 0.99547 | 0.99323 | 0.07323 | 0.08168
2 8-16-8-2 0.99276 | 0.98685 | 0.09317 | 0.09027 | 0.99103 | 0.98873 | 0.09605 | 0.07982
3 8-16-8-2 1 | 0.99183 | 0.98945 | 0.10358 | 0.10868 | 0.98709 | 0.98779 | 0.09696 | 0.08670
4 6-12-8-2 0.99288 | 0.99019 | 0.08939 | 0.08734 | 0.99007 | 0.98536 | 0.09939 | 0.09489
5 10-8-6-2 0.98938 | 0.98728 | 0.10462 | 0.09849 | 0.98894 | 0.98838 | 0.11386 | 0.08703
D network with learning set substituted with testing set
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Fig. 13. Surfaces of error for Characteristic Replicator neural network updating of ms and mio masses
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5. FINAL REMARKS

The neural network updating method developed in this paper has proved to be an effective tool to
solve the model updating problem. A strong advantage of the suggested method is the capability of
working with a limited number of measured degrees of freedom. In the presented examples only one
Frequency Response Function has been used to solve the problem of model updating. The presented
methods of extracting of dynamic features from FRF have proved to be very useful in reduction of
dimension of the input vector.

The next step is implementation of time-domain-based techniques in model updating process.
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