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The paper deals with transient heat conduction in functionally gradient materials. The spatial variation
of the temperature field is approximated by using alternatively two various mesh free approximations,
while the time dependence is treated either by the Laplace transform method and/or by the polynomial
interpolation in the time stepping method. The accuracy and convergence of the numerical results as well
as the computational efficiency of various approaches are compared in numerical test example.
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1. INTRODUCTION

In the last two decades, the mesh-free methods became popular in various branches of computational
physics and engineering because of avoiding certain inappropriateness of discretization techniques
based on elements (generation of meshes, remeshing, large distortions of elements, separation of
continua, etc). Another important aspect considered in this paper is the local integral equation
(LIE) formulation reflecting the integral form of the physical balance principles. The LIE combined
with mesh-free approximations enables us to develop completely element-free formulations. Since
no fundamental solutions are employed, the formulations are quite general without any restrictions,
e.g., due to material non-homogeneities.

It is well known that the shape functions in mesh-free approximations are not available in closed
form and certain computational procedure must be performed for getting them. This handicap yields
prolongation of the computational time what is mainly criticized. Fortunately, this disadvantage
can be overcome by using local weak formulation with analytical integration. In such a formulation,
however, higher-order derivatives are required. Since the accuracy of such derivatives calculated by
standard differentiation is not satisfactory, especially near the boundary of the analyzed domain,
modified differentiation is more appropriate. As regards the treatment of time variations in transient
problems, the Laplace transform and time-stepping techniques belong to the most frequently used.
Note that in the case of higher-order time interpolations a correct treatment of the discretized
governing equation for the first time instant is required.
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2. GOVERNING EQUATIONS; DIFFERENTIAL AND INTEGRAL FORMULATIONS

The equation for transient heat conduction in isotropic and continuously non-homogeneous media
is given by the partial differential equation of parabolic type with variable coefficients [10]

(λ(x)u,k(x, t)),k − ρ(x)c(x)
∂u(x, t)

∂t
= −w(x, t), (1)

in Ω × [0, T ], where u(x, t) is the temperature field, w(x, t) is the volume density of heat sources
(for diffusion problems w = 0), ρ(x) is the mass density, c(x) is the volume density of the specific
heat per unit mass, and λ(x) is the thermal conductivity coefficient. The first term on the left-hand
side of Eq. (1) is the divergence of the heat flux vector

qk(x, t) = −λ(x)u,k(x, t) (2)

and the second term is the rate of the temporal change of the volumetric density of heat. The phys-
ically reasonable boundary conditions of the problem can be classified as the Dirichlet, Neumann
and Robin BC.
The boundary conditions are to be supplemented by the initial condition which, in the present

parabolic problem, is the initial value of the temperature

u(x, 0) = v(x) in Ω ∪ ∂Ω. (3)

The governing equation in differential form (1) is derived form the physical balance principles
which take an integral form in a continuum theory. Let us consider an arbitrary piece of contin-
uum contained in a domain Ωc bounded with the boundary ∂Ωc. Then, the energy balance for a
considered continuum is expressed as

∫

∂Ωc

ni(η)qi(η, t)dΓ(η) +

∫

Ωc

ρ(x)c(x)
∂

∂t
u(x, t)dΩ(x) =

∫

Ωc

w(x, t)dΩ(x). (4)

In view of the Gauss divergence theorem, one can see that Eq. (4) is an equivalent of Eq. (1)
since each of them can be derived from the other one under the assumption of arbitrary choice of
the sub-domain Ωc ⊂ Ω.
Sometimes, the time evolution is investigated by using the Laplace transformation. Then, the

governing equations (1) and/or (4) can be rewritten for the Laplace transform of the temperature
u(x, p) as

(λ(x)u,k(x, p)),k − pρ(x)c(x)u(x, p) = −w(x, p)− ρ(x)c(x)v(x), (5)

∫

∂Ωc

ni(η)λ(η)u,i(η, p)dΓ(η) − p

∫

Ωc

ρ(x)c(x)u(x, p)dΩ(x)

= −
∫

Ωc

[w(x, p) + ρ(x)c(x)v(x)] dΩ(x). (6)

For the Laplace-inversion algorithms we shall use the Stehfest algorithm [8] with ten values of
the transform parameter for each time instant.

3. SPATIAL APPROXIMATIONS

The spatial variations of the field variables will be approximated by using either the Central Ap-
proximation Node (CAN) concept of the Moving Least Squares approximation (MLS) or the Point
interpolation method (PIM). Both of them yield mesh-free implementations since no predefined
connectivity among nodal points is required [5].
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3.1. MLS-approximation

In the MLS-approximation, the polynomial basis is employed and the expansion coefficients are
found from minimization of weighted squares of residua at a finite number of nodal points [1]. Let
xq be the CAN for the approximation at a point x. Then, the amount of nodes involved into the
approximation at x is reduced a-priori from Nt (total number of nodes) to N

q, where N q is the
number of nodes supporting the approximation at the CAN xq, i.e., the amount of nodes in the set
Mq = {∀xa; wa(xq) > 0}Nt

a=1, where w
a(x) is the weight function associated with the node xa at

the field point x. In this paper, we employ the Gaussian weights [5]. The MLS-CAN approximation
for spatial variation of the field variable f(x) ∈ {u(x, t), u(x, p)} can be expressed in terms of nodal
unknowns f̂n(q,a) and shape functions φn(q,a)(x)

f(x) ≈
Nq∑

a=1

f̂n(q,a)φn(q,a)(x), (7)

where n(q, a) is the global number of the a-th local node from Mq, f̂n(q,a) ∈ {ûn(q,a)(t), ûn(q,a)(p)}.
In this paper, we shall specify the CAN xq as the nearest node to the approximation point x. Recall
that the nodal unknowns are different from the nodal values of physical quantities, in general. Fur-
thermore, the shape functions φm(x) are not known in closed form and a computational procedure
must run for evaluation at each approximation point x. This is the main handicap of mesh-free
approximations as compared with mesh-based approximations utilizing mostly polynomial interpo-
lations.

3.2. Point interpolation method

In the case of PIM, the basis functions are taken as a combination of polynomials and radial
basis functions (RBF) [2]. Then, one can solve the problem of accuracy and numerical stability
of the approximation [2, 5]. In this paper, we shall consider ten polynomials (the complete set of
polynomials up to the third order) and the RBFs will be taken as multiquadrics:

Rn(x) =
(
|x− xn|2 + (cn)2

)m/2
with m = 7,

and for the shape parameter ca we choose ha which is the minimal distance from xa to other nodes.
Formally, the approximation can be expressed by (7), i.e., it is the same as in the MLS-

approximation, but now the nodal unknowns are directly the values of the approximated field
variable, since the shape functions obey the Kronecker-delta property.

3.3. Approximation of field derivatives

Besides the approximation of field variables, we also need their gradients which can be approximated
as gradients of approximated fields (7)

f,j(x) ≈
Nq∑

a=1

f̂n(q,a)φ
n(q,a)
,j (x) (8)

and similarly, one can approximate also higher-order derivatives in this standard differentiation
(sdif ) approach. Recall that the evaluation of the derivatives of the shape functions is still more
complicated than the evaluation of shape functions and also the accuracy of such approximations
is worse especially near the boundary of the analyzed domain.
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In order to facilitate the evaluation of higher-order derivatives, the modified differentiation
(mdif ) approach has been proposed [4, 9, 6]. In the mdif approach, the higher order derivatives
of the potential field are expressed in terms of the first order derivatives of the shape functions

F qak = φ
n(q,a)
,k (xq) and the nodal values f̂n(q,a) using the recurrent formula

f
(r)
,ij...k(x

q) ≈
Nq∑

a=1

f
(r−1)
,ij... (xn(q,a))φ

n(q,a)
,k (xq), (9)

where the nodal values of the (r − 1) order derivatives and the first order derivatives of the shape
functions are used for approximation of the r order derivative of displacements with

f (0)(xn(q,a)) = f̂n(q,a). (10)

Thus, for the second and third order derivatives we have

f,jk(x
c) = sym

jk





Nc∑

a=1

F cak

Nv∑

b=1
v=n(c,a)

F vbj f̂
n(v,b)




, (11)

f,jil(x
c) = sym

jil





Nc∑

a=1

F cal

Nv∑

b=1
v=n(c,a)

F vbi

Nw∑

d=1
w=n(v,b)

Fwdj f̂n(v,b)




, (12)

where symmetrization is assumed with respect to the indicated indices. Equations (11) and (12)
can be simplified as

f,jk(x
c) =

Mc∑

a=1

F cajk f̂
m(c,a), (11)1

f,jil(x
c) =

Kc∑

a=1

F cajil f̂
k(c,a), (12)1

where the global numbers m(c, a) as well as M c and F cajk can be obtained from comparison of

Eqs. (11) and (11)1. Similarly from (12) and (12)1, one can find k(c, a), K
c and F caljk. The further

extension for higher-order derivatives is straightforward. The higher-order derivatives are required
either in the strong formulation or in the weak formulation utilizing the analytical integrations.

3.4. Spatially discretized governing equations

Substituting the spatial approximations into the governing Eqs. (5) and/or (6) considered at nodal
points xc (Ωc ∋ xc is a sub-domain around the node xc), one obtains the system of algebraic
equations:

∑

g

(Kcg − pnM
cg) û

g
(pn) = −Rc(pn), (c = 1, 2, ... , Nt), (13)

which should be solved for each value of the transform parameter pn (n = 1, 2, ..., N ; N = 10 in
this paper).
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The matrix elements are given as

Kcg = λ(xc)φg,kk(x
c) + λ,k(x

c)φg,k(x
c), M cg = ρ(xc)c(xc)φg(xc),

R
c
(pn) = w(xc, pn) + ρ(xc)c(xc)v(xc), g = n(c, a) with a ∈Mq

(14)

for the strong formulation (i.e., discretization of the governing PDE) which will be referred as the
CPDE approach (collocation of PDE), while in the case of weak formulation starting from Eq. (6),
the matrix elements are given as:

Kcg =

∫

∂Ωc

ni(η)λ(η)φ
n(qη ,a)
,i (η)dΓ(η),

M cg =

∫

Ωc

ρ(x)c(x)φn(qx ,a)(x)dΩ(x),

R
c
(pn) =

∫

Ωc

[w(x, pn) + ρ(x)c(x)v(x)] dΩ(x),

(15)

with g being global numbers of nodes generated by n(qη, a) and/or n(qx, a), where qx is the nearest
nodal point to the integration point x.
Similarly, substituting the approximations for the temperature and its gradients into the gov-

erning equations (1) and/or (4), we obtain the system of the ordinary differential equations (semi-
discretized governing equations):

∑

g

(
Kcgûg(t)−M cg ∂û

g(t)

∂t

)
=−Rc(t), (c = 1, 2, ... , Nt), (16)

with Rc(t) = w(xc, t) in the strong formulation, while

Rc(t) =

∫

Ωc

w(x, t)dΩ(x)

in the weak formulation.

3.5. Weak formulation with analytical integrations

From comparison of the matrix elements (14) and (15), one can see immediately that in the strong
formulation it is sufficient to evaluate the shape functions and their derivatives at collocation points
while in the weak formulation these must be computed at each integration point what results in
enormous prolongation of the time needed for creation of the system matrix. Another difference is
that in the matrix elements Kcg, only the first derivatives of the shape functions are required. In
order to reduce the amount of points at which the shape function derivatives are to be evaluated, one
can accomplish the integration in a closed form under certain assumptions [7]. For this purpose, we
shall assume the circular sub-domains centred at nodes xc. Furthermore, the radius of the circle ro
is taken sufficiently small, in order to justify the Taylor series expansion of the material coefficients
as well as the shape functions within the sub-domain. If the material coefficients are prescribed
by analytical functions, there is no basic problem to calculate their derivatives at nodal points.
Expecting failure of accuracy of higher order derivatives of the shape functions, the size of the
radius of sub-domains should guarantee fast convergence of the Taylor series expansion. Assuming
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the mass density to be constant and the Taylor series expansions up to 4th orders for material
parameters and the shape functions with neglecting the terms O(r6o), one obtains

1

πr2o

∫

∂Ωc

ni(x)λ(x)u,i(x, t)dΓ ≈Λ1c
i u,i(x

c, t)

+ Λ2c
ipu,ip(x

c, t) + Λ3c
ipsu,ips(x

c, t) + Λ4c
ipkfu,ipkf(x

c, t), (17)

ρ

πr2o

∫

Ωc

c(x)
∂

∂t
u(x, t)dΩ(x) ≈ ρ

∂

∂t

{
C0cu(xc, t) + C1c

p u,p(x
c, t) + C2c

psu,ps(x
c, t)

+ C3c
p u,pss(x

c, t) + C4cu,ppss(x
c, t)

}
, (18)

where

Λ1c
i = λc,i +

r2o
8
λc,imm,

Λ2c
ip = λcδip +

r2o
8

(
2λc,ip + λc,jjδip

)
+
r4o
24

(
1

2
λc,ipjj +

δip
8
λc,ssjj

)
,

Λ3c
ips =

r2o
8
3λc,iδps +

r4o
24

(
3

4
λc,ijjδps +

1

2
λc,ips

)
,

Λ4c
ipkf =

r2o
8
λcδipδkf +

r4o
24

(
λc, ipδkf +

1

4
λc,jjδipδkf

)
.

(19)

C0c = cc +
r2o
8
cc,pp +

r4o
192

cc,ppnn,

C1c
p =

r2o
4
cc,p +

r4o
48
cc,nnp,

C2c
ps =

r2o
8

(
cc +

r2o
12
cc,nn

)
δps +

r4o
48
cc,ps,

C3c
p =

r4o
48
cc,p,

C4c
p =

r4o
192

cc.

(20)

Now, in view of Eqs. (8), (11), (12)1 and (17), (18), one obtains the matrix elements K
cg and

M cg for the weak formulation with analytical integration as

Kcg = πr2o




Λ1c
i

Nc∑

a=1
n(c,a)=g

F cai + Λ2c
ip

Mc∑

a=1
m(c,a)=g

F caip + Λ3c
ips

Kc∑

a=1
k(c,a)=g

F caips + Λ4c
ipkf

L c∑

a=1
l(c,a)=g

F caipkf




, (21)
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M cg = ρπr2o





Nc∑

a=1
n(c,a)=g

(
C0cφn(c,a)(xc) + C1c

p F
ca
p

)

+ C1c
ps

Mc∑

a=1
m(c,a)=g

F caps + C3c
p

Kc∑

a=1
k(c,a)=g

F capps + C4c
L c∑

a=1
l(c,a)=g

F cappss




. (22)

It should be stressed that in contrast to Eq. (15), in expressions given by (21) and (22), the
shape functions and their derivatives are required only at nodal points. Although the higher-order
derivatives occur, they can be expressed in terms of the first order derivatives when the modified
differentiation is employed. Note that the weak formulation with analytical integration (normalized
by the area of sub-domain) converges to the strong formulation in the limit ro → 0. Moreover, the
strong formulation corresponds to the lowest expansion terms in the weak formulation when the
material coefficients and the shape functions derivatives are expanded into Taylor series. Hence,
one can expect better accuracy by the weak formulation than by the CPDE approach especially
for problems in considerably graded materials. Recall that the derived expressions for the matrix
elements Kcg and M cg are applicable for the weak formulation with analytical integration in both
the time-stepping approach and the LT approach.
After the spatial discretization, the governing equations result into the semi-discrete ODE with

respect to the time variable. In order to solve the ODE (16), we employ a polynomial interpolation
for the time variation of the nodal unknowns.

4. TIME INTERPOLATIONS

The time interval [0, T ] is split by discrete time instants ti into a finite number of subintervals

[0, T ] =
m−1⋃

i=0

[ti , ti+1], ∆ti = ti+1 − ti.

By making use of n+1 nodes, one can define element obeying interpolation of order n. We shall
use either linear or quadratic Lagrange interpolation within time elements.

4.1. Linear Lagrange Interpolation (LLI)

The element Ti is defined as the interval Ti = [ti , ti+1] with the interior points being parame-
trized as

t|Ti =
2∑

a=1

ti−1+aN
a(τ) = ti + (1 + τ)∆ti/2, τ ∈ [−1, 1] (23)

since N1(τ) = (1− τ)/2, N2(τ) = (1 + τ)/2.
The time dependence of a physical variable u(t) is approximated on Ti by the interpolation

u(t)|Ti =
2∑

a=1

ui−1+aN
a(τ) =

1

2
(ui+1 + ui) +

τ

2
(ui+1 − ui) (24)

with uk = u(tk).
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Then, the time derivative u̇(t) = du(t)/dt is approximated by the constant

u̇(t)|Ti =
1

J(τ)

du

dτ

∣∣∣∣
Ti

=
1

∆ti
(ui+1 − ui) , (25)

since the Jacobian of the transformation (23) is given as J(τ) = dt/dτ |Ti = ∆ti/2.
Making use a different parametrization θ = (1 + τ)/2 with θ ∈ [0, 1], we obtain from (24)

and (25)

u(ti + θ∆ti) = θui+1 + (1− θ)ui, u̇(ti + θ∆ti) = (ui+1 − ui) /∆ti.

Considering the system of the ODE (16) at t = ti + θ∆ti, we obtain

∑

g

(
Kcg − 1

θ∆ti
M cg

)
ûgi+1 =

∑

g

((
1− 1

θ

)
Kcg − 1

θ∆ti
M cg

)
ûgi

− 1

θ
Rc(ti + θ∆ti), (i = 0, 1, 2, ...), (26)

which is the well known θ-method used in time stepping approaches for solution of the ODE with
θ ∈ (0, 1].

4.2. Quadratic Lagrange Interpolation (QLI)

If we choose the time instants obeying ∆ti = αi∆t with αi ∈ {1, 2, 3, ...}, then it is easy to create
also the higher order elements. Thus, for 3-node (quadratic) element Ti, the third node is ti+1,
the second node (mid-node) is ti, and the first node is ti−k, where k is found from the condition
k∑
j=1

αi−j = αi. Then, the interior points on Ti are parametrized as

t|Ti = ti−kN
1(τ) + tiN

2(τ) + ti+1N
3(τ) = ti + ταi∆t, (27)

with τ ∈ [−1, 1] , since N1(τ) = τ(τ − 1)/2, N2(τ) = 1 − τ2, N3(τ) = τ(τ + 1)/2. A physical
variable and its time derivative are approximated on Ti as

u(t)|Ti =
τ

2
(τ − 1)ui−k + (1− τ2)ui +

τ

2
(τ + 1)ui+1, (28)

u̇(t)|Ti =
1

J(τ)

du

dτ

∣∣∣∣
Ti

=
2τ − 1

2αi∆t
ui−k −

2τ

αi∆t
ui +

2τ + 1

2αi∆t
ui+1, (29)

since the Jacobian of the transformation (27) is given by J(τ) = dt/dτ |Ti = αi∆t.
Considering the system of the semi-discretized ODE (16) at the time instant t = ti + θ∆ti, one

can use directly the interpolation formulae (28) and (29) for τ = θ ∈ [0, 1]. Then, we obtain the
system of algebraic equations which can be solved subsequently for time instant unknowns ûgi+1,
(i = 1, 2, ...)

∑

g

(
Kcg − 1

θαi∆t

2θ + 1

θ + 1
M cg

)
ûgi+1 = − 2

θ(θ + 1)
Rc(ti + θ∆ti) +

1− θ

1 + θ

∑

g

Kcg

·
(
ûgi−k − 2(1 +

1

θ
)ûgi

)
+

1

(θ + 1)θαi∆t

∑

g

M cg
(
(2θ − 1)ûgi−k − 4θûgi

)
. (30)
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This sequence of equation systems should be supplemented with equations for unknowns ûg1.
Equation (30) is valid also for i = 0, but it involves also the nodal unknown at fictitious time
instant. For this purpose, we assume that the first node on T1 is taken at fictitious time instant
t−1 = t0 −∆t0. Then, from (29) at t0 (i.e., i = 0 and τ = 0), we have

ûg
−1 = ûg1 − 2∆t0 ˙̂u

g
(t0). (31)

Furthermore, from (16), we have

˙̂u
g
0 = Sg +

∑

g′

Dgg′ ûg
′

0 , Dgg′ =

Nt∑

a=1

(M−1)gaKag′ , Sg =

Nt∑

a=1

(M−1)gaRa(t0) (32)

Hence after substituting (31) and (32) into (30) at i = 0, we obtain

∑

g

(
Kcg− 2

θ∆t0
M cg

)
ûg1 = − 1

θ2
Rc(t0 + θ∆t0)−

1

θ

∑

g

((1−θ)∆t0Kcg + (2−1/θ)M cg)Sg

− 1

θ

∑

g,g′

((1− θ)∆t0K
cg + (2− 1/θ)M cg)Dgg′ ûg

′

0

− 1

θ∆t0

∑

g

((1/θ − θ)∆t0K
cg + 2M cg)ûg0. (33)

Certain simplification of Eq. (33) takes place, if the initial temperature is uniformly distributed

in the analyzed domain Ω. Then,
∑
g′
Dgg′ ûg

′

0 = 0, since v(x) = const. The other simplifications

occur in the right-hand sides of Eqs. (30) and (33), when the parameter θ = 1 and/or w(x, t) = 0.
Note that the matrix elements Kcg and M cg are independent of the time variable as well as

the Laplace transform parameter. Nevertheless, their calculation in the weak formulation is time
consuming because of lengthy evaluation of shape functions and their derivatives at integration
points. This handicap can be eliminated by using the weak formulation with analytical integration as
discussed above. For comparison of efficiency of the LT and the time stepping approaches remember
that the former approach requires computation of the set of nodal unknowns for several values of
the Laplace parameter for each considered time instant, while the later approach needs computation
of the set of nodal unknowns at each time instant before the considered time instant.

5. NUMERICAL TESTS AND CONCLUSIONS

In order to study the accuracy and convergence of numerical results, we shall consider the example
for which the exact solution is available [3]. In this paper, we consider a square domain L × L
occupied by medium with exponentially graded heat conduction as well as specific heat while
constant mass density: ρ = const, λ(x) = λ0 exp(2δx2/L) = c(x)λ0/c0. The constant values of the
temperature are prescribed on the bottom u0 and top uL of the square, while the lateral sides are
thermally insulated for t ∈ [0, T ] and the constant initial value of temperature v(x) = const = v
is assumed. In numerical computations, we have used λ0 = 1 = c0 = ρ, δ = 1, u0 = 1 = v,
uL = 20. The uniform distribution of nodal points is employed with h being the distance between
two neighbour nodes.
A rather good accuracy is achieved for derivatives of the temperature at interior points, but it

fails near the boundary of the analyzed domain especially for the third and higher orders derivatives.
Figure 1 shows the convergence of the third order derivatives on the top of the square domain by
using the standard and modified differentiation techniques with assuming the nodal values of the
temperature either prescribed or computed by solving the boundary value problem. According to
this study, we have used the modified differentiation in what follows.
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Fig. 1. Convergence study for the third order derivatives.

All of the tested computational techniques [CPDE – strong formulation; weak formulations:
LIE (ni) – Local Integral Equations with numerical integration and LIE (ai) – LIE with analytical
integration; all combined with the LT-technique as well as time-stepping techniques] give acceptable
results at points sufficiently far from the boundary and at later time instants after sudden thermal
loading.

In order to demonstrate the spatial and temporal localization of computational errors, we present
the results by LIE (ai).

It can be seen from Fig. 2 that considerable errors are sharply localized in both the space
and time for short time steps. The inaccuracy of the numerical results by the LLI approach is
partially decreased and remarkably delocalized with increasing the time step, while in the case of
LT approach the delocalization is marginal as compared to the substantial increase of accuracy. For
more detailed study of errors near the top side of the analyzed domain, we have used 1296 nodes
and the test point is (L/2, 0.9L).
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Fig. 2. Evolutions of error distributions by LLI and LT approaches using 121 nodes in LIE (ai)+MLS and
various time steps ∆t.

Note that the numerical results for the error distributions by LIE (ai)+PIM are very similar to
the presented results by LIE (ai)+MLS. The accurate computations by time stepping approach at
later time instants require knowledge of the time evolution also at very early time instants. On the
other hand, in the case of the Laplace transform approach, it is not necessary to know the time
evolution at very early time instants to get reasonably accurate results at later time instants.
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Figure 3 shows the numerical results at the point (x1, x2) which is the nearest node to the point
(L/2, 0.9L). Before discussing these results, recall that the differences due to utilization of either
MLS or PIM approximations are negligible. The sequences of time instants at which the numerical
results are received are given as follows: ti = 4× 10−4 + (i− 1)∆t, (i = 1, 2, ....) for three different
time steps ∆t. Thus, the time step is used for specification of time instants in the calculations by
both the LT approach and LLI approach, but in the latter one, the time step is also the length of
the time interval within which the interpolation is assumed. Recall that the prescribed boundary
temperature uL = 20 represents a sudden change at t = 0 with respect to the initial value of
temperature v = 1 = u0. It can be seen that better accuracy is achieved by the LT approach
especially when the longer time steps are employed.

Fig. 3. Time distribution of % errors for numerical results near the top of square domain by LLI and LT
approaches using 1296 nodes in LIE (ai)+MLS as well as in LIE (ai)+PIM and various time steps ∆t.

Note that three characteristic lengths play a role in this fully discretized transient field problem:

(i) lh = h represents the distance between two neighboring nodes

(ii) lS = Rih represents the radius of the influence domain which is used for selection of nodes
contributing to the meshless approximation at certain point

(iii) lT =
√

(λ/ρc)∆t is the characteristic length corresponding to the time step ∆t and represents
the horizon reached by the heat conduction during the time step with respect to certain point.

In time stepping techniques, the optimal choice is lT ≈ h, because information at previous time
instant ti−1cannot reach the nearest neighbor node at ti, if lT < h; on the other hand, if lT > h,
information at a node and coming from the nearest neighbor node is not fresh.
Now, we can explain the inaccuracy of numerical results by both the LLI and LT approaches at

several early time instants ti = i∆t (i = 1, 2, ..., 5) if ∆t = 4 × 10−4. In this case lT = 2 × 10−2,
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hence the choice of 1296 uniformly distributed nodes is almost optimal. Then, h = 1/(
√
1296−1) =

0.02857 and at early time instants, the prescribed boundary value uL = 20 (which is different from
the initial value v = 1) affects the approximation in the boundary layer L− (lT + lS) < x2 < L and
hence also in the boundary layer L− (lT + lS) < x2 < L − lT , i.e., at points which lie behind the
horizon of the heat conduction from the top of the analyzed domain. Quite different is the situation
near the bottom of the analyzed domain, where the prescribed boundary value of the temperature
is the same as its initial value u0 = v = 1. With increasing ∆t, lT is increased and hence not only
the time interval but also the boundary layer of inaccurate results by the time stepping approaches
become wider.

On the other hand, in the case of the LT approach the solution at a time instant is independent
of the time step and therefore the accuracy at the time instants ti = 4× 10−4 + (i− 1)∆t2 (which
occurs after (i − 1) steps ∆t2 = 4 × 10−2) is the same as the accuracy after 10 × (i − 1) steps
∆t3 = 4× 10−3 and/or after 100 × (i− 1) steps ∆t4 = 4× 10−4. These conclusions are confirmed
by the numerical results presented in Fig. 3.

Finally, we present comparison of numerical results by the LIE (ai) + PIM combined with two
variants of the QLI and LLI for time interpolations. In the correct variant of the QLI, Eq. (33) is
employed at the first time instant, while in the incorrect variant Eq. (30) is utilized with neglecting
the value ûg

−1 at fictitious time instant. Recall that the assumption û
g
−1 = 0 is unjustified what is

confirmed also by numerical results shown in Fig. 4, where the incorrect QLI approach yields the
error around 50% within rather wide time interval.

Fig. 4. Time evolutions of temperatures and their accuracies by the LLI and two variants of QLI
approaches at the node closest to the midpoint for two values of the time steps ∆t.

6. CONCLUSIONS

Both the strong and weak local formulations are proposed for solution of transient heat conduction
in FGM. The spatial variation of temperature is approximated by using either the MLS approxi-
mation or the point interpolation method. In order to decrease the amount of evaluations of the
shape functions and their derivatives, the local weak formulation with analytical integration is
developed. This improves the computational efficiency, since the time needed for creation of the
semi-discretized system matrix is decreased. The time dependence is treated either by the Laplace
transform or by time-stepping techniques using either the linear or quadratic Lagrange interpola-
tion. Both the LT and time-stepping approaches can give results with reasonable accuracy except
very early time instants after sudden change of initial values by different prescribed boundary val-
ues. The time-stepping approach is sensitive to the choice of the time step, while the LT approach
is stable. On the other hand, the computational economy is better in time-stepping approaches
than in the LT approach if the solution is required not only at few time instants but within a time
interval.
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