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Finite Element Method (FEM) calculations have been performed to address the problem of the influence
of anisotropy of permeability and of thermal conductivity of a mushy region on a temporary flow pattern
and temperature during solidification of binary mixtures. Computationally effective FEM algorithm is
based on the combination of the projection method, the semi-implicit time marching scheme and the
enthalpy—-porosity model of the two-phase region. Example calculations are given for two different dilute
solutions of ammonium chloride and water. The effect of permeability anisotropy considerably changes the
shape of the mushy zone. Three different models of thermal conductivity, the first -~ based on a mixture
theory, the second - fully anisotropic one and the third - the model of isotropic effective conductivity, have
been analyzed and mutually compared. It has been found that the impact of the thermal conductivity
anisotropy is visible only in the case when this property differs significantly in both phases.

1. INTRODUCTION

Solidification of a binary system occurs over a range of temperatures and a two-phase solid-liquid
region of a finite volume, called the mushy zone, separates the fully liquid and fully solid domains.
Solid within the multiphase region appears in the form of a dense crystalline-like matrix. The ex-
tremely complex nature of this solid formation exhibits preferred growth mechanisms and selective
directionality that are function of local temperatures and compositions. Moreover, since the liber-
ation of latent heat occurs at the microscopic interfaces that separate the phases, energy evolution
within the mushy region depends on complex morphology of these interfaces. Compounding these
difficulties is the fact that liquid flow, in both the bulk liquid region (forced convection, buoyancy
forces) and in the mushy zone (flow of the liquid phase through the dendritic array) significantly
influences the solidification process. The thermodynamic and transport properties vary continu-
ously over the whole domain of the mushy zone. Moreover, the strongly directional nature of the
dendrites results in anisotropy of flow resistance through the dendritic array and in anisotropy of
thermal properties.

Despite this complex nature of binary solid-liquid phase change and difficulties arising from
strong and nonlinear couplings between the velocity, pressure, temperature and concentration fields,
significant advances have been made in mathematical modeling and computer simulation of the
solid-liquid phase transition of binary systems. This progress has been stimulated by the engi-
neering importance of the quantitative analysis of all transport processes of the solid-liquid phase
transition in binary systems, for example, in material processing and latent heat energy storage sys-
tems. Moreover, difficulty in experimental discerning of convection pattern in molten metals renders
numerical simulation especially attractive. Bennon and Incropera [3] have developed a continuum
model for the prediction of macroscopic transport behavior of binary phase change systems where
the two-phase region can be viewed as a fluid saturated porous medium. The continuum equations
of this model, that govern the conservation of mass, momentum, energy and species, are given in



344 J. Banaszek and P. Furmanski

terms of mixture quantities and they remain valid in all regions (solid, liquid and mushy) of the
phase change domain [3]|. They are very similar to standard single-flow equations, and thus, easier
for numerical simulation and solution than the complete two-phase flow set of equations. Moreover,
this approach allows avoiding direct modeling of the interface exchange conditions that in many
practical problems have not yet been well established. Therefore, the continuum model has been
widely used in both finite difference [4, 17, 23, 26] and FEM discretization techniques [7, 19], and
it is also applied in the present study.

The strongly directional nature of dendrite growth results in anisotropy of flow conditions and
thermophysical properties in the mushy zone. For high volumetric liquid fraction, flow along the
primary dendrite direction is accompanied by a cross-flow normal to this direction. This can produce
higher (than in the Blake-Kozeny flow model [3]) pressure drops, and thus it can cause significant
change in the flow resistance of the porous medium. Poirier [16] has shown that the permeability,
the intrinsic property that characterizes this resistance, is vastly different in direction parallel and
normal to the dendrites. One can also expect that directional dendritic morphology can affect heat
conduction process in the mushy zone, i.e. the anisotropy of thermal conductivity and thermal
diffusivity can appear. Therefore, in order to retain physics of the analyzed phenomena in their
numerical modeling, the anisotropy of flow conditions and thermal properties in the mushy zone
should be accounted for.

Unfortunately, these important aspects have largely been ignored. Indeed, there are only a few pa-
pers that address the problem of a directional character of permeability of the two-phase region [15,
16, 19]. Moreover, to the authors’ knowledge, the impact of thermal conductivity anisotropy and of
thermal dispersion on heat transfer in the mushy zone has not yet been reported in the literature.
Dispersion essentially results from two mechanisms [1, 9], i.e. mixing of the local fluid streams as
fluid follows via tortuous paths around solid dendrites and enhancement of the mutual solid—fluid
thermal interaction due to increase of the local temperature gradient caused by the fluid flow. In
mathematical modeling dispersion can be accounted for by additional diffusive term in the energy
equation, which is dependent of the local fluid velocity.

Therefore, to get a better understanding of complex fluid flow and heat transfer phenomena in
a solidifying binary system, our study is focused on a numerical analysis of the influence of all above
discussed effects on velocity and temperature fields and on a temporary shape of the mushy zone
in a solidifying dilute binary mixture.

The computational model developed is based on the finite element spatial discretization and on
some solving techniques that accelerate calculations. The cost effectiveness of FEM continues to be
significant in the computer simulation of joint fluid flow and heat transfer problems. The problem is
even more crucial in modeling of phase change phenomena in binary systems, where strong couplings
occur between pressure, velocity, temperature and concentration fields. It is commonly known that
the finite difference method is superior in terms of computer storage and CPU time requirements
when compared with the FEM analysis. This results from a less sparse form of FEM matrices,
caused by the use of irregular grids and high-order polynomial interpolations of the unknown field
property. But it also comes from the application of the simultaneous solution algorithms, where
a whole set of continuity, Navier-Stokes and energy equations is solved concurrently, as commonly
used in the early FEM analysis of incompressible fluid flows [21, 22|. Therefore, over the last decade
attempts have been made to improve the computational efficiency of FEM simulation of field theory
problems through the use of various sophisticated acceleration techniques. Most of these techniques
take their origin from the finite difference methods. Specifically,

e Approximate solution to the Navier-Stokes equations for an incompressible fluid can be found
by the use of the projection method [6, 11|, where velocity is uncoupled from pressure. The
key word here is sequential which means first velocity is solved and then pressure, rather than
simultaneously solving the coupled set of equations.

e Semi-implicit time marching scheme can be applied where viscous/diffusion terms are treated
implicitly, whereas advection ones treated explicitly [11, 18]. The main attribute of this approach
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is that it allows replacement of a set of the coupled fluid flow and heat transfer equations by
several smaller symmetric linear systems solved sequentially through the use of effective algebraic
solvers.

e In numerical modeling of solid-liquid phase change transition, the energy conservation can be
analyzed via an enthalpy approach on a fixed grid [5, 20, 24, 25]. With a correctly defined
enthalpy-temperature relation, the full effect of the latent heat can be accurately modeled with-
out the need to know an exact position of the phase interface. And thus, a cumbersome front
tracking algorithm is avoided.

The developed FEM numerical model and its computational algorithm are based on the combi-
nation of all aforementioned techniques (see the next section of the paper and [2]| for more details).
Prior to the use of this calculation tool in addressing questions of some physical and quantitative
aspects of the phenomena considered, the credibility of its numerical predictions must be proved.
It consists of two processes: code verification and validation. The verification procedure is based on
grid refinement studies and comparisons with other available solutions of some benchmark problems.
Although such a study is obviously necessary, it by itself is not sufficient to establish confidence in
the numerically obtained predictions. Indeed, for engineers and scientists nature is the final jury. It
means that the degree to which inevitable simplifications of physical and mathematical models reflect
reality should be established. This code validation process is carried out by extensively comparing
numerical results with trustworthy detailed experimental measurements. Both this procedures have
been conducted for the developed numerical model and their details are given elsewhere [2]. The
results, there reported, show satisfactory accuracy of the model for typical benchmark problems
and its validity in the case of pure water solidification driven by conduction and buoyancy forces in
a differentially heated square cavity.

On that basis, it is further assumed that the proposed numerical tool can provide reasonable
predictions in the case of solidification of a dilute binary system. Hence, it is further used to address
the problem of how the anisotropic morphology of the mushy zone influences a flow pattern and
temperature field in two different dilute solutions of water and ammonium chloride filling a square
cavity.

2. MATHEMATICAL MODEL

On the onset of the analysis, let us make some assumptions that significantly simplify the mathe-
matical model. They, however, still maintain the model capability for addressing the main objective
of the study — the question of the influence of anisotropic morphology in the mushy zone on velocity
and temperature fields in a solidifying dilute solution. They are as follows.

1. Flow is laminar in two-dimensional geometry and the fluid is Newtonian and incompressible

2. Boussinesq approximation of constant liquid density and of linear dependence of buoyancy forces
and temperature is valid, i.e.

gi(p = pref) = giBr (Tref = T) ) (1)

where g;, Br and pper are, respectively, i-component of the gravity acceleration vector, the
thermal expansion coefficient and density at a reference temperature Tief .

3. Solute mass transfer and buoyancy forces arising from concentration gradients are neglected.
These phenomena can, in general, significantly affect flow and heat transfer processes. There are,
however, not so crucial for dilute systems, where the solute concentration is very small. They
are also not so important for the purpose of this study which is restricted to some comparative
analysis performed in order to address the question of whether anisotropy of the dendritic region
can be, or cannot be, ignored.
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4. Only dilute solutions are analyzed where properties and enthalpy are only functions of temper-
ature in the mushy zone.

5. The dendritic region is treated as a porous medium where the theory of mixtures is applied.

6. The solid phase is non-deforming and free of internal stresses, cavity boundaries are impermeable
— these requirements cause assumption that densities of both phases are equal i.e. pr, = pg . This
implies the equivalence of mass and volume fractions of the mixture in the mushy zone.

7. The solid phase is stationary, i.e. components of the solid phase velocity v;g = 0.

With these assumptions, mixture continuum equations for the conservation of mass, momentum
and energy, which are obtained by adding pertinent equations for each phase [3], take the form

Bvi

ax,- - 0,
ov; dv;  Op 9 Qv :
P 5 + pv; 9%; = _B_Hti a—xj (NL 3:13]') + 9iBr(Tres — T) + Sy, (2)

ot 1T oz, | om \ Uom
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where p, v; , 1, and \;; are, respectively, the motion pressure [10], components of the velocity vector,
dynamic viscosity of the liquid phase and components of the thermal conductivity tensor. Upon the
seventh assumption above

v; = (1 = fvis + foir = fuir (3)

where f is the volumetric liquid fraction, that, with the sixth assumption, is equal to the mass
fraction. Components of the mixture thermal conductivity tensor A;; and the mixture total enthalpy
per cubic meter (pH) are discussed further in the paper.

Additional source term appears in the momentum equation to mimic the Carman-Blake-Kozeny
model of flow in the mushy zone [3, 19, 23, 25] treated as a porous medium. It has the form

S’Ui .52 ,u’LKi;I’Uj (4)

where K;; are components of the permeability tensor.

3. FEM EQUATIONS AND COMPUTATIONAL ALGORITHM

Semi-discrete counterpart of the set of partial differential equations, Eq. (2), is obtained through
the use of the FEM spatial discretization procedure along with the Galerkin weighted residual
method [27]. First, the piece-wise interpolations of velocity, temperature and pressure fields are
assumed in terms of sums of shape functions Ny or P, and nodal values of the pertinent unknowns
at grid points that form the finite element spatial discretization [27]

vi(Z,t) = Ni(C) vik(2)

T(Z,t) = Ni(C) Tk (t), foroki= 3, Qe NP, (5)

p(z,t) = P)p(t),  forl=1,2,...,NP,,

where the functions Nj and P, are Lagrange polynomials defined in the local coordinate system ,
which is related with the global coordinates z; through one-to-one correspondence [27]

xz(C)sz(C)mzk fork=1,2,...,NP. (6)

To avoid spurious pressure modes of the FEM solution, the so-called unequal order interpolation
is used where shape functions P, are polynomials of one order less than polynomials Ny [2, 11, 27].
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Next, including these approximations into Eq. (2) and weighting thus obtained residuals, over
the whole analyzed domain € and through the functions P, for the continuity equation and the
functions Nj for the others, a set of ordinary differential equations (still differential in time) is
obtained for the semi-discrete FEM model. It has the following matrix form

D'V=07
M'%‘%+(KC(V)+Kd)'Vi:‘G'p+Fi for ¢ =1,2,3, (7)
- ST+ K;(v) - H+Kf - T=Fr,

where D, M, K¢ K¢ and G are, respectively, the divergence, mass, diffusion, advection and pressure
gradient matrices, whereas C, Kj and K% denote, respectively, the heat capacity, convection and
conduction matrices. v;, p, H and T stand for vectors of nodal values of velocity components,
pressure, specific total enthalpy and temperature, respectively. Right-hand side vectors F; and Fr
of momentum and energy equations result, respectively, from body forces (buoyancy forces) and from
velocity and thermal boundary conditions. Since detailed formulas for the matrices and right-hand
side vectors can be found elsewhere, they are not repeated here.

The second discretization step is integration of Eq. (7) in time by a use of one, from many
possible, time marching finite difference schemes. It leads to a final set of algebraic equations for
a fully discrete FEM model. This step is a crucial point in developing of computationally efficient
FEM algorithm. In the present study this aim is attained through the combination of the semi-
implicit time marching scheme [11, 18] and separated calculations of pressure and velocity fields by
application of the projection method [11].

First, pressure, which is an inherently implicit variable in an incompressible fluid model, must
be treated implicitly. So the continuity equation has to be dealt with as such. One would be happy
to extend this treatment to all other terms of the momentum and energy equations. Unfortunately,
this approach creates the need for simultaneous solution of the whole set of fully coupled equations.
In practice, this is prohibitively expensive and time-consuming, particularly for multi-dimensional
problems. Therefore, we rather use the semi-implicit approach, where the viscous/diffusion terms
of Eq. (7) are treated implicitly, whereas the advection/convection ones explicitly. In the developed
algorithm the backward Euler scheme and the two-step explicit Adams-Bashforth method are used
to get

D.v*tl =0,
M- V?Jrl = V? F Kd . vn+1 | N o) pn+1 e §KC(vn) 3 _l_KC(vn—l) Lyl
At : ¢ 2 2 § (8)
H! — H 1
C. - H a ng R ey, (%K%(vn) CH" — 5I{z(vn—l) . Hn—l) ,

where At is a time step, whereas superscripts n — 1, n, n + 1 stand for the previous, current and
new times, respectively.

Further reduction of CPU time can be obtained by setting up an algorithm, where velocity
calculations are uncoupled from pressure ones. In the presented code, the Projection Method [11]
is adopted where at each time step calculations are performed in following three-step cycle:

ov}!
=0
ox;

For a given initial kinematics pressure p"/p and divergence-free velocity field v} with

1. Solve the momentum equation for the intermediate velocity f)?“

! @pphlaviing oA
1 n 1 o\ e ) .
ot 01 5] by <’9 9z; )+S’
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where

‘2
O = —% gi — ﬁKi;IU;‘ and 9y =5 - on. I,
1

2. Project this velocity vector onto the subspace of divergence-free vector field. This leads to the
Poisson equation for the projection Lagrange multiplier ¥ [11]

0 (0¥ 0v; , ov
7 (axi)_a_xi with (9_n_0 onI’

and correct the intermediate velocity in accordance with

'U?H'l = 5?‘“ — —a\I}
i * al‘,

3. Finally, the kinematics pressure is updated

pn+1 % pn i
( p )_( Fimor:

Thus, the projection cycle is completed. The FEM counterpart of this algorithm has the following
matrix form

~7.H'1—v? d +1 n 3 ¢ n 1 1 1
: Haboitido b R4 S HHL =P, Glopiien]is )Lyt ZKS(vPTL) Ly
To1IM i H v, F,-G:p (2K (v?') v 2K (vt TRy ) ;
; G'TM™'G ¥ = -GT .y, :
: vl — V n+1 —M_IG-\I/, ( )
n+1 n g
ol =-p— .
P At

The energy equatlon is nonlinear due to temperature dependence of both the total enthalpy and
thermophysical properties in the mushy zone. Therefore, following Swaminathan and Voller [20], an
iterative process is constructed at each time step where:

For a given enthalpy-temperature curve H(T) and T™ with (T = T")

1. calculate matrices K4(T™) and C(T™),

2. replace the unknown current iteration of each nodal value Hy of the total specific enthalpy by
its Taylor series expansion

dHj,

Bt be B +(dT

) (TPt =™ -/ with - TP = H-YHD) (10)

to get the linearized energy equation

(K%(Tm) AltC(Tm) (%)m),TmH

o (o () 1)

3 i
+Fr — (EK;;(V") -H" — 5Kg(v"—l) : H"—l) : (11)
3. solve the above equations to obtain a new evaluation of temperature. Use it to update the
enthalpy through Eq. (10)

4. repeat the process until a relative difference between two consecutive iterations of the total
enthalpy is less than a given tolerance, i.e. max (abs ((H"*! — H™ 3/ HM™ 1 < 107+
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4. MUSHY ZONE PROPERTIES

Density of the mushy zone, due to the sixth assumption above, is equal to density of liquid and of
solid, i.e. p = p, = ps. Both, the permeability and mixture thermal conductivity depend on the
local structure of directional dendritic solidification, which leads to anisotropy of flow resistance
and heat transfer in the two-phase region.

Permeability

Poirier [16] has shown that the permeability values in direction parallel and normal to the dendrites
are significantly different from each other (even by orders in magnitude). Modeling the dendritic
structure as a bank of cylinders and using the Blake-Kozeny model of flow in a porous medium,
he has derived the following expressions for permeability along the dendrites and normal to them,
respectively A

mf3

1-72’

mf3

% =

Kip = (12)

where m is the parameter which depends on the morphology of the two-phase region. It is determined
through the analysis of the primary and secondary dendrite spacings [16]. Since the dendrites tend
to grow in the direction along the local normal to the isotherm passing through the point [8, 19],
this direction is taken as the primary one. In the model used in calculations the primary dendrite
direction is specified at the moment when the liquidus isotherm passes through the point (see Fig. 1)
and this direction is prevailed until the solidus isotherm crosses the point. Thus, the local structure

oT /oy
oT /ox

tg(y) =(

i

Fig. 1. Principal directions of dendrite growth and flow resistance

of the mushy zone is not varying in time but the solid fraction is increasing. This approach is slightly
different that the one used in [19] where both the local structure and solid fraction are assumed to
be varying. Thus, components of the inverse of the permeability tensor take the form

KJE_I1 = % [(K“_l +K11) + (Kn_l — Kll) cos(2’y)] "
K =g —;- (KI1 - Ku‘l) sin(27), (13)
Kl = % (K" + K7) = (K = K1) cos(2m)]

where (see Fig. 1)

_ ([ 0T/0y
0= (57ae ), 14




350 J. Banaszek and P. Furmanski

Thermal conductivity

Thermal conductivity of the two-phase zone can be expressed as
YA (15)

where A2 and M are the static and the dispersive terms, respectively.

Three different models of the static thermal conductivity in the mushy zone have been analyzed
in the present study. The first one, further referred to as Model 1, is the commonly used mixture
model

A==+ f A (16)

It is a common practice to use the above expression in both the parallel and normal directions to
get isotropic thermal conductivity model. From the theory of heterogeneous materials it is, however,
known that the above model may be used only in special cases [1]. It is valid for layered configuration
or bundles of unidirectional cylinders, when heat flow occurs solely along the layers or cylinders axis.
In general, it is the upper Wiener bound of the mixture conductivity irrespective of its structure [9].

As the dendritic solidification leads to the directional structure, one should rather use the
anisotropic model, referred to as Model _2 in further analysis, where components of the thermal
conductivity tensor take the form

/\gx s % [()\” Jj )\J_) + ()\H - )\J_) COS(27)] )

1 :
)‘gy = )\21 = 5 (A” e /\_]_) sm(2fy), | (17)
1
Aoy = 5 [y +21) = Oy = A) cos(27)],
where the conductivity parallel to the primary dendrite direction is given by
A=A = A+ f A, (18)

whereas the conductivity along the normal direction is calculated from the lower Wiener bound of
a heterogeneous material conductivity

o bim Sl
AL = y —+—>\l.

(19)

To account for less regular structure, where dendrites can grow along different directions, the
isotropic model of the averaged effective conductivity (Model _3) is proposed, where

A==+ f A,

=
. )\sf +,\il’ (20)

X2 = wihn S B

Thermal dispersion is also known to have a directional character [1]. Components Agj of the
thermal dispersion tensor, for arbitrary direction of fluid flow, are given by

d _ \d d_ yd) Vz¥s
A= d 4 (A“ AL) B 4
a - EY HTUMEAES- L Yaly
Aoy = Ay = (’\H AL) [v]2 ’ (1)

Wiy d__yd) YyYy
Ayy_ANu(A” )\L) el
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where |v| =, /vZ +v2.

The principal axes of the tensor )\fj are thus mainly determined by the direction of the fluid

velocity vector v(vg , vy). When mixing of the fluid streams is the dominating mechanism of the

thermal dispersion, then the principal values A% and A\¢ of the dispersion tensor are proportional to
p I A prop

M =(prer)eglvld, A = (prer)eilvid, (22)

where ¢ and ¢ are functions of the fluid volume fraction f and morphology of the porous medium,
while d stands for mean dimension of pores (dendrite spacing). Following [13] and taking into
account the expression for permeability along the dendrites and normal to them given by Eq. (12),
these parameters can be calculated as

¢, = 0.3718(1 — f)*42™,

¢ =4cy, (23)
d = V80m % :

Total enthalpy

The mixture total enthalpy per cubic meter (pH) is related to the phase enthalpies through
(pH) = (1 — f)psHs + fprHr = p[(1 — f) Hs + fHz). (24)

However, in order to use the above expression the key relationship is needed between the liquid
fraction, local temperature and concentration. In the analyzed simplified case of dilute systems where
changes of concentration are neglected and the phase diagram cannot be used, some assumption on
temperature changes of the total enthalpy or of the volumetric liquid fraction is needed. Therefore,
phase specific heats are considered constant but, in general, different, and the total enthalpy is
assumed linearly changing with temperature in a narrow range of temperature between the solidus

CASE 2
Tu=600K 630K
T =580K
|
Te=550K
CASE 1
. T=500K
Tu=285K |
s | NCH,CI
T.=270K
H,0 §
: |
T=260K +4— T=257,6K I
' j
i -
4% Cy=20% 96 %

Fig. 2. Phase diagram for NCH4Cl + H,O with specified characteristic temperatures of two dilute solutions
analyzed
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and the liquidus curves of a dilute solution (Fig. 2). The total enthalpy per cubic meter is given by
Eq. (24), and specific enthalpy of the phases can be calculated as [19, 23]

Hg = csT,
(25)
Hyp = ¢sT + L(T),
where the latent heat of solidification is the following function of temperature
L(T) = L(Ts) + (e — es)(T — Ts) (26)
and by virtue of Eqgs. (24), (25) and (26) the mixture specific enthalpy takes
H(T) = (1'= f)esT + f [¢sT + L(Ts) + (cr —es)(T — Ts)p (27)

Using the assumed linear dependence of H on T', one can calculate from Eq. (27) the unknown
volumetric liquid fraction f at a current local temperature 7'

5. RESULTS AND DISCUSSION

The above mushy zone properties have been incorporated into the developed FEM computer sim-
ulation model and the code has been exploited to address the question of how the anisotropic
morphology of the dendritic region influences the flow pattern and temperature field in this two-
phase zone.

As an example the solidification of two different dilute solutions of ammonium chloride and
water in a square cavity, of a side length equal to 0.025 m, has been calculated. Lower and upper
horizontal walls of the cavity were assumed adiabatic, whereas the lateral walls were kept at constant
but different temperatures. The right hot wall had temperature 7y equal to the initial one 7; . The
sudden drop of the left wall temperature from 7; to T¢ caused cooling and solidification of the
solution confined in the cavity.

First, the binary system of 4% of ammonium chloride (much less than the eutectic concentra-
tion Cp = 20%) has been analyzed, where the liguidus temperature 77, = 270K and the solidus
temperature was equal to the eutectic one, i.e. Tg = T = 257.6 K. The hot wall was kept at
Ty = T; = 285K, whereas the cold wall temperature was taken as T = 260 K, slightly higher
than the eutectic one. Therefore, in this case, further referred to as CASE 1 (Fig. 2), only the fully
liquid and the mushy regions are created (a fully solid one does not occur).

Next, the solution that contains 96% of ammonium chloride has been considered, where the
liquidus temperature 77, = 580K and the solidus one Ts = 550K. The hot wall was kept at
Ty = T; = 600K, whereas the cold wall temperature was taken as T = 500K, lower than Ts. In
this situation, further referred to as CASE 2 (Fig. 2), all regions, i.e. the fully liquid, the fully solid
and the mushy ones, exist.

Characteristic temperatures for both cases are shown on the phase diagram given in Fig. 2, and
the pertinent thermophysical properties of these two dilute solutions are collected in Table 1. [12,
26]. The parameter m is taken from [4] as equal to 5.56 - 1071 m?,

In all further analyzed cases the regular grid of 41 x 41 nodes was used. The unequal order FEM
interpolation model was there applied, where velocity, temperature, enthalpy and liquid fraction
fields were approximated by the piece-wise quadratic Lagrange polynomials, whereas the pressure
field by the linear ones [27]. Variable time step was assumed, i.e., it was specified as At = 0.25 s at
early times of the process (¢ < 100 s) and then enlarged to the value of 0.5 s. All calculations were
continued up to the steady state situation, arrived at time of about 1500 s.

To analyze the importance of directional character of the flow resistance in the mushy zone,
calculations have been performed for anisotropic permeability defined by the tensor K;;. Equa-
tions (13) and (14) give components of the permeability tensor inverse. The results thus obtained
have been compared to those received from the isotropic model, where permeability of the mushy
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Table 1. Physical properties of two dilute solutions analyzed

CASE 1 CASE_2

pr = ps =1016kg/m’ | p; = ps = 1078kg/m’
cpr, = 4.187kJ/(kgK) epr = 3.249kJ/ (kgK)
cps = 1.567kJ/(kgK) cps = 1.870kJ/(kgK)
A = 0.582 W/(mK) Ar = 0.486 W/(mK)
As = 2.500 W/(mK) As = 0.393W/(mK)
L =318kJ/kg L =307kJ/kg

zone is independent of direction and specified by K, = K, = K| with Kz = Kyz = 0. In all
these calculations the isotropic model of averaged effective conductivity (Model 3) was used and
thermal dispersion was neglected.

Temporal flow pattern, the mushy zone shape (confined by the solidus and the liguidus isotherms)
and lines of constant volumetric liquid fraction in this region are compared in Figs. 3 and 4, respec-
tively, for CASE_1 and CASE_2 of the analyzed dilute solutions. In addition, Fig. 5 shows the
evolution of the mushy zone predicted by both the isotropic and anisotropic permeability models.
From these comparisons, one can conclude that anisotropy of the mushy zone permeability visibly
alters the shape of the liquidus phase front making it less distorted (both CASE 1 and CASE 2
in Figs. 3, 4 and 5). The form of the solidus boundary of the two-phase region, is, however, much
less influenced (CASE 2 in Figs. 4 and 5). Figures 6 and 7 show steady state distributions of the
volumetric liquid fraction and the local velocity vector length in the mushy zone in three different
horizontal cross sections of the cavity, situated at one-fourth, one-half and three-fourth of the cavity
height. The velocity in the two-phase region is much smaller in magnitude for the anisotropic case.
This results from the fact that the permeability along isotherms, i.e., in the approximate direction
of flow in the mushy zone, is much less than in the isotropic model of flow resistance. There-
fore, the smaller curvature of shapes of the phase fronts is observed for the anisotropic situation
(Figs. 3-5).

Further, thorough analysis of the progress of the solidification fronts reveals the significance of
convection in the process of solidification of a binary system. At early times, when conduction heat
transfer is predominant the curvature of the liquidus line is small. For later times, convection in the
mushy zone and in the fully liquid region becomes more vigorous. The liguidus front line assumes
a curved shape; but the solidus front remains flat due to small velocities in its neighborhood. It is
also evident that the size of mushy zone increases with time, implying a faster rate of movement for
the liguidus temperature curve due to convective heat transfer.

The results obtained can be also used in the analysis of the developed numerical simulation
model. No wiggles are observed in the semi-implicit time marching procedure, where the advec-
tion/convection is treated explicitly through the Adams-Bashforth two-step scheme. This is visible
in Figs. 6 and 7 and further confirmed in Figs. 8 and 9, where temporal and steady state (at time
= 1500 s) velocity vector distributions within the liquid and the mushy zones are given for the both
dilute solutions considered. However, thorough analysis of Figs. 3, 4, 8 and 9 shows that the lig-
widus temperature curve runs locally in some undulate way, particularly in the model of anisotropic
permeability. This is probably caused by the fact that for a high volumetric liquid fraction (close
to unity) the permeability tensor components, those along the directions parallel and normal to
dendrites (Eq. (12)), are vastly different (three and even more orders of magnitude). Much higher
resistance of the mushy zone along the approximate direction of flow (close to the liguidus tempera-
ture line) causes, through the Carman-Blake-Kozeny model of a porous medium (Eq. (4)), a sudden
vanishing of velocity at some adjacent points. These local irregularities in the velocity distribution
are not observed in the case of isotropic permeability model (Figs. 8 and 9).



354 J. Banaszek and P. Furmanski

ISOTROPIC ANISOTROPIC
TIME = 100s

TTTRIRN
N

I}

Ly |

TIME = 500s

TIME = 1500s
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Fig. 5. Temporal shape of the mushy zone — comparison between isotropic and anisotropic permeability
models

Next, the three models of the static thermal conductivity in the mushy zone, discussed in the
previous part of the paper (Egs. (16)-(20)), have been considered. First, the isotropic mixture
model (Model 1) has been compared with the fully anisotropic one (Model _2) to find out that the
calculated temperature fields are much the same — graphically indistinguishable. This implies that
thermal conduction along the primary dendrite direction is a prevailing transport mechanism for
the analyzed dilute solutions. Further, to address the question of the influence of the mushy zone
structure and of the way its thermal conductivity is modeled on the temperature field, calculations
have been performed for the averaged effective conductivity (Model _3). The results thus obtained
have been compared with those got from Model 2. In the CASE_2 of the dilute solution, where
ammonium chloride is a solvent and conductivity of the solid and liquid phases does not differ
significantly, i.e. Ag/A = 0.84 (right column in Table 1), both calculated temperature fields are
hardly apart from each other. However, in the case when water is taken as a solvent (CASE_1),
phase conductivity of the solid is over four times higher than the one of the liquid (left column
of Table 1). In this situation the impact of the mushy zone structure on heat transfer within this
region and through the phase interface is visible. This is shown in Fig. 10, where isothermal lines

run within the two-phase region is compared for Model 2 and Model 3 (both with anisotropic
permeability).

Finally, the problem of the influence of thermal dispersion phenomenon on the behavior of a dilute
solution in the mushy zone has been studied. For this purpose, the mathematical model given by
Egs. (15), (21) and (22), has been incorporated into the computer code and calculations have been
performed for the both solutions of water and ammonium chloride. In all analyzed cases the impact
of this phenomenon on velocity and temperature fields within the two-phase region turns out to be
negligible. This result can be justified as follows. For given thermophysical properties of fluid, the
dispersive term of thermal conductivity depends on both the porosity f and the local velocity |v|
(Egs. (22) and (23)). This dependence is given by A4 ~ F(f)|v|, where F(f) = f/(1 — f)*42™.
Function F(f) takes its maximal value at f = 0.412. On the other hand, for analyzed NCH,4Cl+H>0
solutions, where the parameter m is very small, the velocity swiftly diminishes in the mushy zone
(Figs. 6 and 7). It’s magnitude is of the order of 1073 m/s in the region adjacent to the liquidus
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Fig. 10. Comparison of temperature field for two different thermal conductivity models:
(—) — anisotropic, (---) - the averaged isotropic

line (for f close to unity) but it quickly drops of one order for f = 0.9 and the next three orders
for lower values of f (Fig. 6). This velocity decline is much faster for the anisotropic permeability
(Fig. 6) and in the CASE _ 2 of dilute solution (Fig. 7). Therefore, the product F(f)|v| is very small
within the whole mushy zone and the dispersive part of thermal conductivity tensor does not exceed
a value of 6 - 107* W/(mK) that corresponds to 0.14% of Ay, .

6. CONCLUDING REMARKS

In order to elucidate complex fluid flow and heat transfer phenomena in a solidifying binary system,
the computationally efficient FEM calculations have been performed. The main objective of this
study was to answer the question of the importance of anisotropy of both permeability and thermal
conductivity and of thermal dispersion phenomenon — the mushy zone properties very often ignored
in the analysis of binary systems. Only dilute solidifying solutions have been considered, where
the solute concentration is very small, thermophysical properties are only functions of tempera-
ture, solute mass transfer and buoyancy forces arising from concentration gradients are neglected.
These assumptions significantly simplify the mathematical model but they still preserve the model
capability for addressing the main objective of the study.

It has been found that for the analyzed two different dilute solutions of ammonium chloride and
water the anisotropy of flow resistance within the mushy zone has a significant impact on local
velocity, temperature and temporal shapes of this two-phase region. Anisotropy of permeability
reduces the magnitude of velocity in the solidifying zone and alters the shape of the liguidus line
making it less distorted than in the isotropic case.

The anisotropy of thermal conductivity does not have strong effect on heat transfer in the mushy
zone, particularly when the solid and liquid conductivity is of comparable magnitude and when
conduction along the primary dendritic direction is prevailing. However, if conductivity of both
phases differs significantly, a detailed structure of the dendritic region has to be taken into account
to properly model the thermal conductivity in this zone.

Thermal dispersion is the phenomenon that always occurs in the dendritic region because it
is caused by the mixing of the local fluid streams passing through tortuous paths around solid
dendrites and by the enhancement of the mutual solid-fluid thermal interaction. However, in the
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analyzed case of the ammonium chloride and water solutions, where the permeability and velocity
are small, the impact of this phenomenon on the behavior of the binary system in the mushy zone
is negligible.
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