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The macroscopic equations describing the process of solidification in binary systems are usually introduced
via the volume averaging technique. A different approach to obtain these equations, based on the ensemble
averaging technique, is proposed in the paper. This technique was used to derive energy and solute
conservation equations and the basic constitutive relations appearing in the macroscopic description of
the solidification phenomena occurring in the mushy region. In general these relations are non-local and
account for non-equilibrium processes. Problem of thermodynamic equilibrium (thermal and chemical) is
also discussed. Formulae for enthalpy and porosity of the mushy zone, in the latter case, are given.

1. INTRODUCTION

Solidification problems play an important role in material processing (like casting of steel, non-
ferrous alloys, metal-matrix composites) [1, 24|, the ground freezing technique, in phase change
materials used in thermal energy storage systems, etc. In most of these processes multicomponent
solutions are present. These multicomponent solutions undergo solidification over a range of tem-
peratures which causes a solid-liquid mixture to be formed.

The solid-liquid zone, where solidification takes place and known as a mushy region, consists
of solid and liquid phases of varying proportions and often makes a substantial part of the whole
system [1, 23]. As properties of this system undergo step-wise variation when crossing the phase
boundaries, the mushy zone can be treated as a heterogeneous medium. This heterogeneous medium
has however some specific, distinct features which are not met in other heterogeneous media like
composites, granular or porous media. Within the mushy region proportions of solid and liquid
vary in time and space. Thus porosity of the heterogeneous medium is varying from place to place
and its determination makes part of the problem [1, 16]. Moreover, transport phenomena occurring
in the individual phases and the mutual interactions between solid and liquid are assisted by the
phase-change phenomenon with heat generation at the solid-liquid interface. Thus the mushy zone
is a heterogeneous medium with local heat sources [9].

Complex microstructure of the mushy region is the main reason for carrying out the analysis on
the macroscopic scale, the scale that smoothes out local variation of field variables caused by presence
of dendrites or equiaxed crystals formed during the solidification. Thus, before any numerical imple-
mentation, a problem of macroscopic modeling of heat and mass transfer phenomena in the mushy
region should be addressed. Replacement of the transport phenomena occurring in a two-phase
medium with step-wise varying properties (referred as microscopic description) with corresponding
transfer phenomena occurring in a single phase continuum with constant or smoothly varying effec-
tive properties (macroscopic description) is often known as the homogenization [8]. When carrying
out homogenization two basic problems should be answered: (i) how the macroscopic equations look
like and (ii) how to determine the effective properties?

Different methods (spectral, variational, volume averaging, ensemble averaging, etc.) were used
to obtain macroscopic description of phenomena occuring in heterogeneous media. The volume aver-
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aging method and the ensemble averaging are the most common and claim generality of application.
It should be however stressed that they are different and, in general, lead to different results.

The macroscopic equations describing the process of solidification are usually introduced via the
volume averaging technique (2, 12, 17, 16, 19]. The volume averaging method is based on the concept
of a representative elementary volume (REV). Any macroscopic, physical quantities appearing in
equations obtained as a result of this method are understood as spatially integrated over the REV
and related to the centroid of the REV. Speaking about variation of the macroscopic quantities over
distances smaller than dimensions of the REV makes no sense within this approach. Limitations of
the volume averaging are realized by some investigators and extensions of this approach are sought
which are based on introduction of some weighing functions and using the theory of distributions [18].

A different approach to describe solidification process in the mushy region, based on an ensemble
averaging, is proposed in the paper. The ensemble averaging comes from theory of random fields
and stochastic processes where it has proved to be useful in finding solution of many problems
that appear both in description and understanding of the transport phenomena [3, 4, 13, 14]. The
approach is based on the concept of an ensemble of realizations of the microstructure [5, 8, 11,
20] and does not need the notion of the REV. Any macroscopic, physical quantities appearing in
the macroscopic equations obtained with this method are understood as statistically mean values
(awaited values) defined in any point in the medium. Although the ensemble averaging method has
been applied to macroscopically nonhomogeneous media [20], i.e. with effective properties varying,
to the author’s knowledge it has been not used in solidification problems.

The scope of the paper has been limited to presentation of the solute concentration and the
energy equations. In both cases the microscopic constitutive equations in both solid or liquid phase
have the same form (Fourier and Fick’s laws). The case of the macroscopic momentum equation
has been set aside as the microscopic constitutive relations are different in both phases (solid is
rigid) [1, 2, 10]. .

The paper has been organized in the following way. The second section presents basic ideas and
definitions associated with the ensemble averaging method. The third section containes derivation
of the solute concentration equation and shows how assumption of local, macroscopic equilibrium
effects description of the solute transport in the mushy region. The next section discusses the energy
equation and limitations in its form introduced by the assumption of local, macroscopic thermal
equilibrium. The fifth section presents formulae for the macroscopic enthalpy of the mushy zone
when treated as the single phase continuum and derives a formula for the local porosity (liquid
fraction) in the mushy zone when both local thermal and chemical equilibrium are valid. Finally the
last section gives a brief summary of the main results and suggests problems to be further resolved.

2. FUNDAMENTALS OF THE ENSEMBLE AVERAGING

Let us assume that solidification of the binary mixture occurs in a volume V' containing two phases —
solid (S) and liquid (L). A set of characteristic points, which may be treated as nucleation sites, are
spread all over the considered volume. A nucleation site, when activated, may give rise to a formation
of the solid phase. Any spatial distribution of these points is considered to be a different configuration
so that an ensemble of configurations is formed. The probability density function associated with
the ensemble 2 has been denoted as p(2).

For any moment of time ¢ and any configuration Q, distribution of the phases is described by
the so-called structure (characteristic or phase) function [8]

1= or X € W,
Bom bty ok i

where V; denotes the volume filled with ¢-th phase. It is also convenient to introduce a generalized
variable defined as

f(t7 XIQ) o OS(ta XIQ) fS(t7 XlQ) 3 eL(t7 X|Q) fL(ta XIQ) (1)
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which allows to write the governing equations in one, unified way.
Before deriving equations describing macroscopic transport processes it is useful to define two
different ensemble averages. The first of them is the bulk (macroscopic) average

(620 = [ 1ex10)p@) a0 @

which should be understood as the awaited value in the statistical sense. If function f is taken to
be the structure function 6; then its bulk average is equal to the volume fraction of the i-th phase

{gi(t’ x)} = 5i(t’x) ¢ (3)
The second average is the phase (intrinsic) average {f}; defined by the relation
{0i(t,x) f(t,x)} = ei(t,x) { (¢, x)}; (4)

which gives the mean value of the respective function in the i-th phase.
The bulk averages of the basic thermodynamic variables like temperature 7" and solute mass
concentration C' can thus be expressed as

{T(t,x)} = es(t,x) {T(t,x)}g +er(t,x) {T(,x)}, , ()
{C(t, %)} = es(t,x) {C(t,x)}g +er(t,x) {C(t %)}, , (6)

while the bulk velocity in the medium, when the solid phase is assumed to be stationary, is given
by

{w(t,x)} = er(t,x) {w(t,x)} -

One of the specific features of the ensemble averaging technique is that the operator of the
ensemble averaging commutes with differentiation with respect to x and ¢ [11]. This occurs by
virtue of independence of the probability density function on the space variable and time.

The problem of relation between the ensemble and volume averaging has been discussed in
a number of papers [4, 8, 11, 13, 20, 22|. In these cases, where the REV exists, it is possible to
compare results coming from these two approaches using the ergodic theorem [3, 11, 20]. When
the ergodic theorem holds, i.e. when the macroscopic fields, obtained by statistical averaging, are
stationary then volume averaged quantities are equal to ensemble averaged. There are many cases
when the condition of stationarity does not hold even if the REV can be distinguished in the
medium. For instance in the unsteady states of heat transfer (when not whole of the REV is filled
with thermal disturbance), near the external boundaries or close to solidus or liquidus lines (where
the microscopic properties of the material vary), in places where heat sources or sinks are present or
the microstructure of the medium is varying (mushy zone). In all these cases, in order to properly
apply the ergodic theorem, one should look for locations where the condition of stationarity holds.
These may be, for example surfaces, parallel to solidus or liquidus lines over which spatial integration
should be carried out (8, 22].

3. SOLUTE BULK CONCENTRATION EQUATION

Within limits of validity of the Fick’s law for solute diffusion the equation describing solute transport
in the medium can be written as

8 (pC) + V - (wpC +j) = 0. (7)

As the concentration C'is discontinuous at the phase boundaries it is convenient to use the concept
of solubility M defined by the expression

M(t,x|Q) = 0s(t, x|k + 0L(t,x|Q) (8)
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where x stands for the partition factor equal to k = Cg/Cyr at the interface between the phases.
The product of solubility and concentration is continuous across phase boundaries [14]. This allows
to write the Fick’s law for the solute flux j in the alternative form

j=—(D/M)V(MC) 9)
where
D(t,x|Q)) = 0s(t,x|Q2) Ds + 01 (t,x|Q)Dr,

is the solute diffusivity.
The ensemble averaging of the solute concentration, Eq. (7), leads to

o{pC} + V - {wpC +j} = 0. (10)

In order to find the final, macroscopic form of the solute concentration equation the ensemble
averages appearing in the above equation should be expressed as a function of the bulk concentration
{C}. This can be achieved if relation between microscopic concentration C' and its bulk value is
known. The solute concentration is written as

G Bogf G} € (11)

where Peq stands for phase equilibrium function and C' denotes a fluctuation. The formal relation
between C and {C} can be derived, in a manner identical to presented in [8], using the Green
function theory, and the final expression can be given in the following form,

t t
(MC) = {MC} + /0 /V oo - V'{MC}dV'dr + /0 /V o 8, {MC} dV'dr . (12)

The functions ¢¢ and 9)¢ satisfy the following integro-differential equations:

t
e = /0 /VVG [(wp)'pc — D'(18:8x + Vo) — {(wp)'pc — D'(161dx + Vepc) }] dV'dr
t
: /0 /V G [(wp)'88x + £/ (Brpc + pcds) = {(Wp)'88x + ' (Orpc + cbr) }] dV'dr, (13)
t
Yo = /0 /VVG - [(wp)'vbc — D'Vipe) — {(wp) "o — D'Vipe) }] dV'dr

t
¥ /0 /VG [p,(aT'(pC A "pC(ST 15 576x) EL {pl(aT¢C + "»ZJC(ST r Jtéx)}] dvldTa (14)

where:
(wp)' = wp/M —w,p,, D'=D/M-D,, p =p/M-pr.

The subscript 7, in the above definitions, denotes certain reference quantity associated with the
Green function G while §; and 65 stand for Dirac pseudofunction.
Using Egs. (11) and (12), and the assumption {MC} = const, it is possible to obtain the following
expression for the equilibrium function
K 1

—_— 4 0r(t,x|Q) —— .
. L( |)6L+n€s

Pey(t,x|2) = 0s(t,x|) g

(15)

Substituting Eq. (12) into the ensemble averaged terms appearing in Eq. (10) allows to write the
latter in the following form,

t t
et Bl @ /0 /V Dy - V'{C} dV'dr — /O /V Voot 0:{CYAV'dr,  (16)

(woy = e} [omnoy + | [ vicravars [ [ meoricravar], an
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where

Det = {DPeq(16x0: + Vo) } — (p/M)L{M Peq {0 Wec}
veet = {DPeqVpc} — (p/M)L{MPeq}{0 Wy},

let = {p/Mepc},

et = {p/Mrpc}.

(18)

The relation between the considered averaged terms and the bulk concentration, given by
Egs. (16) and (17), are thus nonlocal. The nonlocality denotes that the macroscopic solute flux
in the considered point in the medium depends not only on the macroscopic solute concentration
in the same point and moment of time but on the macroscopic concentration distribution in the
whole medium both in the considered moment of time as well as that existing in the past [8, 14].
The terms in Egs. (16) and (17) that contain time derivative of 8;{C} are connected with relaxation
phenomena of the bulk solute flux {j} and the bulk volumetric concentration {pC}. It should also
be noted that some part of the advective solute flux is dispersed on the macroscopic scale and on
the level of the macroscopic description the fluid velocity enters diffusive terms. Symbols D , ver ,
Cef » Hef , stand for the effective properties of the mushy zone which, according to Eq. (18), can be
determined from knowledge of microscopic properties of solid and fluid and microstructure of the
mushy zone hidden in the microstructure functions ¢¢ , ¢ .

Many length-scales are usually observed in the mushy region. There are connected with details of
microstructure of the considered medium and with variation of the solute macroscopic concentration
distribution. The specific feature of the non-local form of the consitutive relations given above and
in the subsequent Section 4 is that they take into account all of the mentioned scales and no scale
order analysis is necessary.

Nonlocal phenomena describe locally non-equilibrium processes. Non-equilibrium process in case
of solute transport denotes that, on the macroscopic level, the solute is exchanged between the
phases. One of the ways to approximately account for chemical non-equilibrium is the so called
diffusion model that relates the intrinsic solute concentration in solid and liquid (or the bulk solute
concentration and the intrinsic solute concentration in the liquid). This kind of a model, that is
often additionally adopted in literature bears postulative character [12, 19, 23]. Another way of
accounting for chemical non-equilibrium is, the so called, two-equation (two-fluid) model [1] in
which averaging, in the mushy zone, is carried out separately for each phase and exchange of the
solute between phases taken into account on the macroscopic level.

3.1. Local chemical equilibrium

As previously mentioned, for solute transport many lengthscales can be observed in the mushy zone.
It is possible, in some cases to make order of magnitude analysis and simplify the constitutive rela-
tions given in Egs. (16) and (17). This can be done by carring out expansions of the microstructure
functions ¢¢ , ¢ in the growing powers of the characteristic microdimension ¢. This microdimen-
sion is understood as the largest from length-scales describing local microstructure of the mushy
zone (e.g. primary dendrite spacing). Retaining of the lowest order terms in these expansions leads
to the approximation of local chemical equilibrium in the mushy zone.

In order to discuss the problem in more detail let us calculate phase averages applying defini-
tion (4) to expression (12). This leads to the following formula

t t
{MC’}Z-:{MC'}—I-/0 /V{cpc}i-V'{MC}dV'dT—l—/o /V{wc}i&r{MC}dV'dT (19)

~
non-equilibrium part
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If in the above expression {¢c}; = 0 and {9¢c}; = 0, then the local chemical equilibrium holds.
It follows from eq.(19) that the phase concentrations are then related to the bulk concentration by
the relations

{C}s =

K 1

(e +K €s) e = (ep +k €5)

{C}. (20)

In order to find how the constitutive relations in this case look like it is convenient to expand
function ¢ (t,x;7,y|Q) (and ¢) in an infinite series versus growing powers of the microdimension
&

ec(t,%;7,¥19Q) = ecolt, x|Q) 8(t,7) §(x, ) + Locu(t, xIQ) §(t, 7) Vi(x,y) + O(F%).

This kind of expansion, when introduced into Eq. (12), allows to carry out order of magnitude
analysis between scales characterizing microstructure of the mushy zone and scales characterizing
solute transport in the medium. Retaining the first right-hand side term in the above expansion
corresponds to an assumption that gradients (and time derivatives) of the bulk concentration are
slowly spatially (or temporally) varying, i.e., scales associated with these variations are much greater
than the microdimension £. In fact this assumption is equivalent to assumption of the well separation
of a spectrum of lengthscales describing the microstructure of the mushy zone and a spectrum of
length scales describing variation of the macroscopic concentration and temperature fields.

Noting properties of functions ¢¢ and ¢, deduced from Egs. (13) and (14), the microscopic
concentration, in the case of chemical equilibrium, varies according to the formula:

MC(t,x|Q) = {MPeq(t,x)} {C(t, %)} + @co(t, x|Q) - V{C(t,%)}] (21)

and the relations for the ensemble averaged terms, appearing in the conservation Eq. (10), can be
simplified to the local form
{wpC +j} = {w}(pFeq)L{C} — Det - V{C}, (22)
{pC} = {pPeq}{C}. (23)
Chemical equilibrium process is thus local, i.e. the macroscopic solute flux at the considered
point depends solely on gradient of the macroscopic concentration calculated in the same location
and in the same moment of time — Egs. (22) and (23). Then, on the macroscopic level, there is no

exchange of solute between solid and fluid phases.
The effective diffusivity Des, appearing in Eq. (22), is defined by the expression

Det = {DPeq (14 Voco)} — (p/M) 1 {MPeq} {0Lwc0} (24)

solute dispersion

and still contains term responsible for solute dispersion in the medium associated with advection by
the fluid in the mushy zone. The respective integro-differential equation for the function ¢co can
be easily derived from Eq. (13) and reads

wco = /v VG* - [(wp)'pco — D'(1 4 Voco) — {(wp)'wco — D'(1 + Vo) }] AV’

- [ 6" [twe) — {(we)}] aV".
|4

It should be underlined that differential form corresponding to the above equation can also be
derived [7, 8|.

It is worth to say at the end of this section that it may be proved, see [6], that equations and
the effective properties for the two-equation model [1] can be obtained by retaining the term of
order #2 in expansion following Eq. (20). According to the classification introduced by Kunin [15]
the two-equation model describes weakly nonlocal phenomena.
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4. ENERGY EQUATION

Assuming a constant pressure process and using definition of the generalized enthalpy, the energy
conservation equation can be written as

0y(ph) +V - (wph+q) =0 (25)
where the heat flux vector obeys the Fourier law

q(t,x|Q) = —k(t,x|Q2) VT'(¢,x|Q) (26)
and k stands for the generalized thermal conductivity

k(t,x|Q) = 0s(t, x|Q)ks + 0L (t, x|Q)kL .
The ensemble averaging of the energy conservation equation leads to the following expression

di{ph} +V - {wph+q} =0 (27)

In order to derive the final macroscopic form of the energy equation the ensemble averages
appearing in the above equation should be expressed as a function of the bulk temperature {T'} and
the bulk concentration {C}. This can be achieved if relation between microscopic concentration 7'
and its bulk value is known. The latter relation can be derived by transforming Egs. (25) and (26)
into the form

k. V2T — prey(wy - VT + ,T) = V - [(Wph — pre;w, T) — K'VT] + 8y(ph — prc.T) (28)

where k' = k — k, . The subscript r denotes a reference quantity, which should be generally config-
uration independent. Using the Green function theory in a manner identical to presented in [9] an
expression for the microscopic temperature is obtained. The generalized enthalpy in Eq. (28), being
function of temperature T and activity M C, has been subsequently linearized with respect to the
bulk variables {T'} and {MC'}

ph(t,%, T, MC|Q) = ph° (t,x,{T},{MC}Q) + drph® (t,x,{T}, {MC}Q) (T — {T})
+ BMC’pho (t,x’ {T}a {MC}‘Q) (MC £ {MC}) (28’)

and the final form of relation between the microscopic and the bulk variables presented in the form
t
T ={T) +S+/ / or - V'{T}dV'dr
0 Jv

t ()
¥ [/0 /chTc-V{Mo}dV dT+/O /VszcaT{MC}dV dr (29)

where functions S and 7 satisfy the following equations:

t
Sz = —/ / VG - [K'VS — wdr(ph®)S + w,prer S — w(ph?)
0 Jv
— {k'VS — wor(ph®)S + wrprcrS — w(ph®)}] dV'dr

t
— [ [ G0: [0r(oh)S + prerS + (oh) = (0r(ph*)S + prcrS + (PR AV'dr, (30
0 JV
t
o R ——/ / VG - [k’(]-(stax = V‘PT) a WaT(pho)(pT + W, preroT
0 JV
— {K(18.6x + Vior) — wOr(ph®)pr + wrprerpr}] dV'dr

t
g /0 [ 6.0, 00(0h*)er — prever — (r(ph)er — prevpr})4V'dr. (31)
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The function ¢ can be determined from the expression
t
orc = / / VG - [womc(ph®)pc — {womc(ph®)pc}] dV'dr
0 Jv

t
5 /0 /V G 8, [Brrc(ph*)pc — (B (ph®)pc}] dV'dr (32)

where ¢¢ can be found from Eq. (13). The function 97¢, appearing in Eq. (29), can be calculated
from expression identical to Eq. (32) with ¢ substituted for ¢¢ .

Relations between the ensemble averaged terms and the bulk temperature and concentration,
Eq. (27), can then be easily obtained using Eqgs. (26), (28) and (29). The procedure leads to the
following expressions

t
fwoh +q} = {wh(ph?); - /0 /V ket - V{T}dV'dr

¢ ¢
~ [ / / i ) i e / / uTefaT{c}dV’dT] +aus, (33)
0o Jv 0 Jv
t
{ph} = {pho} + hys + / / XTef * V'{T} dvV'dr
0o Jv
¢ ¢
+ [/ / xcet - V{C}dV'dr +/ / peet 0-{C} dV'dT] . (34)
0o Jv 0o Jv

where
ket = {k(10x0¢ + Veor)} — e Or(ph®)r {wer}L,
Dret = {MPeq} [{kVrc} — 0r(ph®)L {0werc} — Omc(ph®) L {frwec}],
vret = {MPeq} [{kVyrc} — 0r(ph®)L {0Lwiprc} — Omc(ph®) L {0rwyc}],
xret = {0r(ph°)er},
Xcet = {MPeq} [{0r(ph?)prc} — {Omc(ph®)pc}],
picet = {MPeq} [{0r(ph)prc} — {Omc(ph®)pc}],
ans = {kVS} —0r(ph®)L {0wS},
hus = {0r(ph®) S}.

It should be noted that both relations, Eqs. (33) and (34), are nonlocal. They also show that
the bulk heat flux and the bulk enthalpy depend not only on the macroscopic temperature but
also on the macroscopic concentration. This follows from dependence of enthalpy on the solute
concentration, Eqs. (43) and (44). The nonlocality denotes that the macroscopic heat flux and
enthalpy in the considered point in the medium depends not only on the macroscopic temperature
and solute concentration in the same point and moment of time but on the macroscopic temperature
and solute concentration distributions in the whole medium both in the considered moment of time
as well as that existing in the past [8, 14]. Moreover, some of the energy, due to tortuous path
followed by liquid phase in the mushy region, is dispersed and enters diffusive terms. The latter
conclusion is justified by presence of fluid velocity in the expressions for the effective properties:
ket , Dres and vper . The term qpgs, appearing in Eq. (33), arises due to presence of temperature-
dependent local heat sources at the solid-liquid interface. These heat sources, that are associated
with phase change, locally deform temperature fields and cause additional transport of heat [4].
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4.1. Local thermal equilibrium

Similarly to the local chemical equilibrium, the problem of local thermal equilibrium may be dis-
cussed. If eq.(29) is multiplied by the structure function for each phase and ensemble averaged then
the following expression for the phase temperature is received

{T}i = {T}+{Sh +/0 /V{QOT}i -V {T}dv'dr

¢ [ /Ot /V {orc)i - V'{MC}dV'dr + /Ot /V {(¥rc}i 0, {MC} dV'dr (36)

~—
non-equilibrium part

In the case of the local thermal equilibrium the phase temperatures should be the same and equal
to the bulk temperature. It can then be concluded that all terms on the right-hand side, starting
from the second one, should be negligible. In order to analyze the problem it is convenient to expand
each of the functions @7, ¢rc, e and p¢ , e in a series given in the previous section where the
local chemical equilibrium has been discussed. The expansions are valid for the case when the bulk
temperature and concentration are slowly spatially (or temporally) varying in respect to £. In this
case the microscopic temperature varies according to the formula

T(t,x|Q) = {T(t,x)} + S(¢,x|Q) + @ro(t,x|Q2) - V{T(t,%)} + ¢rco(t, x|) - V{MC(t,x)} (37)

and the relations for the ensemble averaged terms, appearing in the conservation equation (27), can
be simplified to the local form

{wph +a} = {w}(ph®)r, = ket - V{T} — Dres - V{C}, (38)

{ph} = {oh°}. (39)
The effective thermal conductivity kef is then defined by

et = {k(L + Vipro)} = €1, 0r(ph?) 1 {wero}s, (40)

thermal dispersion

while the Dufour coefficient by the expression

Dret = {MPeq} {kVorco} — e 8r(ph®) L{werco}r — €1 Omc (ph®) L{wpco} L] (41)

The respective integro-differential equations for the functions @79, ¢rco can be easily derived from
Egs. (31) and (32).

5. FORMULAE FOR ENTHALPY AND POROSITY OF THE MUSHY ZONE IN CASE OF THER-
MODYNAMIC EQUILIBRIUM

In order to close the set of equations, that were discussed in the last two sections, it is necessary to
present expressions for the bulk enthalpy {ph°} and the enthalpy (ph®)r of the liquid phase and the
volume fraction of the liquid phase e7, . The bulk enthalpy can, using Eqgs. (1) and (4), be related
to the volume fractions and the phase enthalpies by the formula

{ph°} = es(t,x) pshs ({T},{C}) + er(t,x) prhr ({T},{C}) . (42)

The phase enthalpies, as potentials, can be evaluated, in relation to a certain reference state
(T}, 0) of temperature and concentration, in a different way. In the case of the liquid enthalpy
(ph?)1, = prhr({T},{C}) it is advisable not to cross the two-phase (mushy) region when carrying
out calculations as enthalpy in this region depends on the composition and the liquid fraction is
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Fig. 1. A scheme of phase diagram

not a priors known. Instead it is convenient to follow the way presented in the accompanying figure
(Fig. 1). The phase enthalpies can then be expressed as

{1} {C}s
pshs({T}.{CY = | pses(T0) AT+ [ pshs, (7,0 a0, (43)

T
pmAWLwn=L,mqmmmw%un>

{C}e {1}
+/0 prhrp(Tm, C) dC+/F pren(T,{C}.)dT, (44)
where cg, c; denote specific heats, while T}, and L(T,,) are the freezing temperature and the
latent heat of freezing of the pure solvent, respectively. Symbols kg, and hy, stand for the partial
derivatives of enthalpy in respect to the solute concentration.
The phase concentrations are related to the bulk concentration by relations of Eq. (20) which
can be used to find the volume fractions of the phases in the mushy region

{C} - fi (T}
Fit(Th — fsi(TY)

Here fS_L1 and f, Ll stand for the inverse functions describing solidus and liquidus line (Fig. 1),
respectively.

It should be noted that, according to Eq. (45), the phase volume fractions are dependent solely
on the bulk temperature and concentration and when introduced, together with Eqs. (43) and (44),
into Eq. (42) allow to express the bulk volumetric enthalpy only as a function of {T'} and {C}. An
alternative to this analytical procedure is to adopt an empirical relation between temperature and
concentration for the binary mixture in question [21].

=eL({T}H{C}). (45)

er(t,x) =1—¢€g(t,x) =

6. CONCLUDING REMARKS

The method, presented in the paper, gives an alternative to the volume averaging approach when
used in formulation of transport equations valid in the mushy zone for the phenomenon of solid-
ification of binary mixtures. The method is based on the technique of ensemble averaging. The
macroscopic quantities, obtained with this technique, have different physical interpretation than
obtained by the technique of volume averaging.

The paper shows that form of the constitutive relations between macroscopic variables needs
not to be postulated but can be formally derived from respective microscopic relations irrespective
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of the assumptions as to the length-scales influencing the process. These relations are generally
nonlocal. Nonlocal aspects of transport processes in the mushy zone were not presented till now
in literature. The nonlocality is associated with the non-equilibrium processes occurring in the
mushy zone. Thus to model macroscopic non-equlibrium process of solute transfer in the mushy
zone it is not necessary to adopt additional models of diffusion in the solid phase which often bear
postulative character. If the spectrum of scales, associated with microstructure of the mushy zone, is
well separated from the spectrum of scales, associated with spatial distributions and time variation
of macroscopic solute concentration (temperature), it is possible to obtain simplified, local form of
the constitutive relations which resemble the known Fick’s or Fourier laws valid for homogeneous
media. The latter relations describe equilibrium processes within the mushy zone.

The consitutive relations contain effective properties of the mushy zone, responsible for heat
and solute transport. The expressions (18) and (35) give definitions of the effective properties for
the nonlocal (non-equilibrium) case of the constitutive relations while Eqs. (24), (40) and (41)
respective expression for the local (equilibrium) case. All these expressions show how these effective
properties can be calculated from functions ¢¢ , ¥c , @1, Y1, Yrc describing microstructure of
the mushy zone and from knowledge of the microscopic properties of solid and liquid phase in the
mushy zone like: diffusivities Dg, Dy, ; density ps, pr, ; solubility Mg, My, ; thermal conductivities
ks, k1, and enthalpies hg, hy, . The effective properties of the mushy zone, given by the discussed
definitions, should be understood as statistically awaited values. The strategy for determination of
these properties is thus following: for the known microstructure of the mushy zone solve equations
for the microstructure functions like (13), (14), (30), (31), (32) and use definitions (18), (35), (24),
(40), (41) to calculate the effective properties. This has been previously done for some composite
and porous media and the results are presented in [7] and [8]. It should be noted that symbol of
the ensemble averaging appearing on the right-hand side of these definitions may be replaced, in
situation when the ergodic theorem holds, by spatial averaging over some volumes or over some
surfaces (eg., paralel to the solidus or liquidus lines). A

Role of some terms in the transport phenomena, that appear in the macroscopic constitutive
relations (like dispersion, interaction of phase change and heat flow, etc.), should be carefully es-
timated. The terms which correspond to other phenomena ( e.g., heat transport enhancement due
to presence of heat sources at the interface or cross effects like the Dufour one) should also be
addressed in more detail. The model presented in the paper can be used to analyze influence of
the local non-equilibrium phenomena on the solidification process by retaining further terms in the
expansion as discussed in the section devoted to chemical equilibrium.
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