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A modified Allen-Cahn equation is combined with the compressible Navier—Stokes system. After a physi-
cally motivated modification of the stress tensor, for the resulting equations the second law of thermody-
namics is valid. The model can be used to describe the forming of gas phases in a flowing liquid.

1. INTRODUCTION

In the present text, a modified Allen—Cahn equation [1] is combined with the Navier-Stokes system.
The resulting model has some simplifications, but is a first step to describe the behaviour of gas
phases in a flowing liquid. The model allows phases to grow or shrink due to changes of temperature
and density in the fluid and incorporates their transport with the flow. For related works we refer
to a combination of the Cahn-Hilliard model with the Navier-Stokes equations [2], the general
variational approach of the energy [3], and to the models [4, 6].

2. NOTATIONS AND THERMODYNAMIC RELATIONSHIPS

Let 2 ¢ RY, 1 < d < 3 be a bounded domain with Lipschitz boundary. For 0 < D < oo let
Qp =2 x (0,D) and p : Qp — R" denote the (averaged) density of the fluid, e : Qp — Rt
the internal energy, v : Qp — R? the velocity field of the fluid. Governed by a phase parameter
x : Qp — [0,1], two phases (e.g. a gas and a liquid phase) may exist in €. Let v/§ denote the
thickness of transition layers between two phases. Generally, we postulate the potential energy
density Epo of the system to be the convex combination of the corresponding values of the two
phases, giving rise to the definition

Epot = XEpot,l = (1 = X)Epot,2~ (1)

Similar relationships will be assumed for the entropy density S and the Gibbs free energy density G.
The internal energy density E is obtained after adding the kinetic energy:

1
o= Epot + 5 |'l)|2.

Capital letters genericly denote densities, values corresponding to small letters include a factor p
or p; . Indices refer to the phase, values without index to the whole system. Hence,

€pot = €pot,1 T €pot,2 = QlEpot,l i Q?Epot,2 T80 [XEpot,l 13 (1 1 X)Epot,2] i QEpot ;

(2)

@
(& = €pot -+ 5 |1)|2.

o and x are solutions of the system of partial differential equations (4)—(7) below and allow us to
calculate the specific densities g1, p2 of the phases.
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Consider the specific volume V = %. Let V; be the specific volume of phase i and V; be the
volume phase 7 is actually occupying in V. Now we define

Vi
P = V’ — volume fraction of phase i in V, 0 <1); <1,
e
0: 1= % = V: i specific density of phase 7, 0 < p; < p,
b pils : = ¥
a4 — density quotient = mass of phase i in V, 0 < x; < 1.
o i
" Va
M$1 |
i
M, M,

Fig. 1. Specific Volume V'

In the following we write x for x; and (1 — x) for x2. Notice that p and x are solutions of the
systems of equations presented below and will allow us to calculate p;, ps via

pr=px, p2=p1-x).

To guarantee the formation of phases, we subtract the mixing entropy density .

§ =weo+ g vk
©)
W0 = X Inx+ (1= ) (1 = x) = 53¢,

from S and set §:= 5. This represents the entropy density as

)
§=x51+(1-x)5-Wx) - 5 [VxI’
and consequently for the free energy density F' and the Helmholtz free energy density G
F=xFi+(1-x)F+TS, G=xGi+(1-x)G2+TS.

3. MATHEMATICAL FORMULATION

Beside the definitions above, the parameter € > 0 scales the substantial derivative dy := dyx+v-Vx
of x and is related to the time scale of the underlying physical problem. Furthermore, let T': Qp —
R* be the temperature and p : Qp — R the pressure of the fluid. For given velocity field v, let
R; denote the inlet, Rp the outlet of the domain €2, where 7 is the unit outer normal vector to 9€2.
R;, Rp and ) are assumed not to depend on time ¢.

We modify the stress tensor and set (d;; be the Kronecker delta)

Tij »= 7ij — pdij — 60T Oix 9jx
i = p(0iv; + 0jv;) + v(divv)d;;
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with viscosity coefficients v, pu, where v > —%u ford=3 and v > —p for d = 2.

One can show that the new term —dpT 9;x 0;x is a consequence of adding %3 |Vx|? to the system
entropy.
The thermodynamical driving force of the Allen-Cahn type equation is defined by

J(o,T,x) == W(x) + ’;?[XGl(Qa T) + (1 — x)G2(o, T)]-

With these definitions, we introduce the following system of equations corresponding to conservation
of mass (4), momentum (5) and energy (6):

For given (00, vo, €0, X0), (vr, Tr, Xr) and o1 find the solution U = (0, 0v,e, %)t of

0o = —div(gv), (4)

d(ov) = —div(pv ® v + 6T Vx ® V) + div(1) — Vp, (5)

oe = div(LVT — (e — I')v), (6)
1)

edx = —OxPk Z)div(ng) —¢ev - Vy, (7)

in Q with the initial values
(0, 0v,€,%)(-,0) = (00, C0v0, €0, X0) in §
and the boundary values
e o V' Sino el on O)
and
0= 01 on Ry .
As a consequence of a parabolic maximum principle for (7), the logarithmic form of W in (3)

guarantees 0 < x < 1 in Q4 , if the same is true for the initial datum xo .
All extrema [ of the phase parameter x satisfy

g
1-p

This equation explains how p and T determine 3 and hence which phase (gas or liquid) forms. The
dependency is illustrated in Table 1.

The principle is the same as the temperature dependence of the phase value in the phase field
model and is explained in [5].

99010 =t (125) =+ FG1(@T) - Gale.T) =0

Table 1. Predicted extrema (3 of x

aa ] 5 GE ] b
0 0.65905 -8 0.99988
= 0.86599 +1 0.34095
=2 0.95028 +2 0.13401
=3 0.98169 43 0.04972
—H 0.99752 +5 0.00674
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4. ASSUMPTIONS

It follows a list of all physical assumptions that were implicitly made in the approach above.
e The domain 2 as well as the inlet and outlet do not depend on time ¢.
e All phases are assumed to be moving with identical velocity vector v.

e For Eyq, Eq. (1) is assumed. Similar relationships are assumed to hold for S, F and G as
explained above.

e The volume of a mixture consisting of 2 phases is supposed to obey the formula
V=xVi+1-x)Va. (8)

e The viscosities v; and p; , the heat coefficients L; and the adiabatic coefficients 7; are assumed
to be constants and shall have one value for both phases.

e Chemical reactions don’t take place. Magnetic and electric forces are neglected.
e Both phases are assumed to be incompressible.

e Ty =Ty : Two neighbouring phases shall have the same temperature (instantaneous equalization
of entropy).

e p1 = pz: The partial pressures of two phases are identical (instantaneous equalization of volume).
e The heat generated by shearing of boundary layers is not taken into account.

e The buoyancy of gas phases is not incorporated.

5. ENTROPY ESTIMATE

We prove the validity of the second law of thermodynamics for system (4)—(7), corresponding directly
to the existence of a Lyapunov functional. We start by calculating ds;, the total differential of
phase 7, 1 = 1,2. By definition, we have

ds; = d(giS,-) = S;dp; + 0i ds; .
Because of the Gibbs equation dS; = %dEi + % dV; it follows:

g i’

oo g g B ap B g o
ds; = Sidei + o dE; + S dV; (sl u

B b e )
)dgz+TdEz+Td(01V1)

pVi Ej 1 P 1 1 D
(Sl T T)dgz+Td(gE)+T ) TGldgz+Tdez+T 1

And after summing up over all phases

L 1 1 J4
ds +ds = ds; = —= Gido;+ =de+ = d ;).

N3 Yoy
=0

Here we use the relationship do; = x; de + odyx; and observe dx; = —dyz . It follows

_ 1 1 0
ds+ds=—fXi:xiGidg+fde—f(G1—G2)dx. (9)
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Now we assume that the internal energy available for thermodynamic processes does not depend
on v. For v = 0 the differential de in (9) is depoy . If we consider the arising equation as a relation
in phase space, so that we can compare the d;-terms separately, we get after integration

/ Bs = / [ Brepot — E xiGi 0o — G1 Gg)atx—atg].

Now we need a representation of & T Orepot - Because of

2, 2 v .
Ore = 0y (epot I §|U| ) Aepot + v - O¢(ov) — —— atQ,

exploiting the conservation equations (4), (5) and (6) yields
1 2 1
/Tc')tepot = / |:—- 8t(Q’U) + %fatg—l— le(LVT ( F)'U)]
Q Q

[o[*

bl bR o e
_/[ T div(—ov®v +1T") 5T d1v(gv)+Td1v[LVT (epot+2|v| I‘)v]].

After partial integration, this means

1 lVT|2 1 v vT] .
/-fatepot—_—/[ =5 T : Vv + epot? - V(T)] +/[—epotT+LT] 7.
Q Q

N

We get

fuo- [

v NL
+/ [—epotT'i'LT} n. (10)

N

VT2 1 i
IVTE l +— Vv + epott - v( )—%(Gl—Gg)atx—TZXiGiatg—ats]

Now we transform the term ——%— > xi Gi 00 in (10).

1 i -
/_T ZXiGi oo = /5: ZXiGi div(ov)
Q . Q ¢

= /—V (% ;XiGz) - (ov) +

Q 0 :
2 / [_ZQIGW v(%) -y Givxiv-7 ZQ,dGl}
Q i (2 2
+/% ZQiGi’U"ﬁ- (11)
N i

We simplify this further. The first and third integrand in (11) are

[ e(3) = [ () gurnor-ms (3]

{=LiS e - [ -5 19—+ 5V
Q i Q
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The last equality is a consequence of dG; = —S;dT + V;dp and ), 0;V; = 1. Therefore
1 1 1
/—f ZXiGi oo = / [_epotv N <f) 5= f(gv) ' ZGiin:'
Q i Q i

1 v 1 o
—/[pv-V<T>+T-Vp]+/T ZgiGiv-n.
Q N 3

By inserting this in (10), we obtain

T2
/8,5 /[ |V l : Vo —pdive — pov - V(1>——%-Vp—3t§]
- /(5ng® Vx: Vv — / %(Gl - G2)(v-Vx+ dx)
Q
In (12) we remark at once, that

I D ACUTUPHIRS O T (R Wi bion. st
/[ levv pv V(T) T Vp]—/ dlv(pT)—/ P i,
Q Q onN

enabling us to reformulate the boundary integrals

/I:ZQiGi—epot / % ﬁ=—/(8+§)7} n
o L1 0

Now we write the modified Allen-Cahn equation in the form

P el
T 3
N

Z 0:G — €pot

1 0 )
—f(Gl —Ga) =€e(Oyx+v-Vx)+ W' (x) — EdIV(QVX)-

Inserting in (12) yields

|VT|2 )
Bt T : Vo —0oVx ® Vx : Vv +eo(dix +v-Vx)? — 9,5
LVT
+/(QW'(X) —5diV(9Vx))(3tx+v'VX)*/(3+§)”'ﬁ+/ Z e
Q N N

Next we systematically remodel [oW'(x) — ddiv(oVx)] (G¢x + v - V). Firstly,

(12)

[0~ datevlan = [ [~ (Woo+ 5 19x?) o+ o (a0 + Z1wxt)|
% Q

—/@atxvx-ﬁ,
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and for the transport term after partial integration

[tew60 daiviev010- W = [ v (W00 + F19x) 0= [ (W0 + S19x?) v
Q Q Q

+/5ng®szVU—/JQ(U-Vx)Vx-ﬁ.

Thus we get
'VT|2 i i 5 o
Gha = T T :Vo+eo(@x+v-Vx)2+Vsi-v—880—SVo-v
Q Q
N c
/sv n—/ SV - n+/L—— n—/ég(atx+v-Vx)Vx-n.
onN N

Finally we use

/—Ev-fi=/—div(§v)=/~'U-V§—§divv,

[219] Q Q
/[—-S’Btg—édivv—S'Vg-v] =1
Q

to get the result

/8t5+/s /[ WTP 7 Vv tee(Bx+v- Vx)]
Q N

LVT
—/g(atx+U-VX)6Vx-ﬁ+/T—-ﬁ. (13)

N o0

Now, for a thermodynamically closed system, there is no temperature and entropy flux at 9. So, by
choosing Neumann-boundary data for x or x = const on 9, all boundary integrals in (13) vamsh

T

L—QJ— is a productlon term due to heat diffusion, 7 : Vv the dissipated motion energy. Defining
the tensor fij := £(Q;v; + 9;v;), we see 7 : Vv > 0:
TN — iy Z(ai'u]‘ + iji)ajvi =+ l/(diV U) Z c’)jv,-(iij

ij Y
% ,UZ2(fij)2 + I/Z frk Zfij(sij = 2y Z(fij)z + Z/(Zfii)2. (14)

After diagonalizing f;; by principal axis transformation and for v > ——,u ford=3weget7:Vu>0
and therefore Oy st > 0 as claimed. Notice also that fQ g0 (dix + v - Vx)? corresponds to the
Lyapunov functional of the unmodified Allen—Cahn equation.

6. COMPARISON WITH THE PHASE FIELD EQUATION

For v = 0, the entropy estimate is fulfiled with the original stress tensor f‘,-j := 7i; — pd;j of the
Navier—Stokes equations. Since 9,0 = 0, we may set without loss of generality o = 1. For ¢ = 1 and
L = const, Egs. (4)—(7) can be rewritten as

Vp-=-0;
Oie = LAT, (15)
Oix = —0yJ + 0.
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Now, by setting

Epeth =T +1, Epot2 :=T, (16)
such that e = epot = T + X, and convenient 0y J, one recovers the phase field equations

& (T + x) = LAT, Oy x =—0yJ 0 Dx;

where due to (15) a physical situation with constant pressure is considered. Apparently, due to (16),
T jumps between two phases. So we see that our model is related to the phase field model, but does
not account for temperature jumps across boundary layers.

7. NUMERICAL SIMUI:ATIONS IN 2D
We use a flux vector splitting to approximately solve (4)—(7) for @ = [-1,1] x [0,1] C R?. The
following calculations resolve £ with 1661 knots and 3200 triangles. The grid is not adapted during

the computations. The calculation principally illustrate typical features of the presented system.
The following images always render the non-conserved order parameter x.

Ideal gas law for both phases

G, =G, 71 =72 = 1.4, cvi=cva =1, Re = 1000, Prandtl =1,
= B §=107"%, p=1, v=-2/3, vzr = 0.4, vy1 =0, pr =1,

At = 0.005, po=1, Va0 = 0.4, vyo =0, eo = 2.5, (px)s =0, T, = 2.5,
xo(z,y) =1 for (z,y) € Bo.2(—0.5,0.5), xo(z,y) =0 else.

=0, t=20.5

Fig. 2. Decay and transport of a circular gas phase for v = (0.2,0)
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50

1

100

50

Initial values for T' (to Fig. 4)

Fig. 3.

Ideal gas law for both phases

Prandtl=e¢ = p =1,

po

Re = 1000,
At = 0.001,

T

74.97,
0,

Ccv,2

cv,1 = 20.957

ver = 1,

v2 = 1.00838,

§=10""4,
Vyo = 0,

1 =14,
v=-2/3,

V0 = 1,

VyrI

2.53.

0.5,

0

t=0.04

= 0:02

M

INAA

t=0.08

ti=10:06

Fig. 4. Forming of two phases due to temperature effects and their convection
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First we simulate a situation where p = 1, T = 2.5 and v = (0.2,0) in Qp := Q x (0,7"). We
artificially set G; = G2, in order to neglect the dependence of x on T' and p.

One recovers the typical behaviour of a radially symmetric solution of the Allen-Cahn equation,
but simultaneously there is the transport with the flow.

As a second example we simulate the creation of a gas phase due to temperature effects. We
choose ideal gas laws for both phases. Hence, Q%GZ = (cvq1 —cv2)(1 —InT). The initial values for
e are taken such that for a circular domain 3 CC Q, T is as large that 1 — InT' becomes negative
and therefore Ql—;ﬁz > 0. Accordingly, we set T sufficiently low in Q\£;, such that Q;;_Gz <)
Figure 4 shows the time behaviour of x. The initial datum xo = 0.5 is not shown.

Due to heat diffusion, ©; slightly grows during the calculation and the temperature differences
decrease. Simultaneously, there is again a transport with the flow to the right. This can be seen in
Fig. 5.

t =0.02

Fig. 5. Diagram of the phases (to Fig. 4)

8. CONCLUSION

The model presented here is a first step towards incorporating transport mechanisms in the descrip-
tion of phase formation processes where the mass of the phases is a non-conserved order parameter.
The model still needs generalizations to be applicable to practical problems. Numerical sample
calculations underline the physical meaningness of the approach.

REFERENCES

[1] S.M. Allen, J.W. Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase
domain coarsening. Acta Metallurgica, 27: 1085-1095, 1979.

[2] M.E. Gurtin, D. Polignone, J. Viiials. Two-phase binary fluids and immiscible fluids described by an order
parameter. Math. Models and Math. in Sci., 2: 191-211, 1996.

[3] L. Truskinovsky. Shock induced transitions and phase structures in general media. IMA, 52: 185-229. Springer,
1992.

[4] K.H. Hoffmann, V.N. Starovoikov. Phase-transitions of liquid-liquid type with convection. Adv. Math. Sci.
Appl., 8(1): 185-198, 1998.

[5] R. Kobayashi. Modeling and numerical simulations of dendritic crystal growth. Physica D, 410-423, 1993.

[6] A.A. Kostikov. The thermodiffusion Stefan problem in the presense of convection (translation from Russian).
Ukr. Math. J., 44(2): 236-240, 1992.



