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In this paper the multiphase diffusion-convection problem is solved numerically by using upwind and
characteristic schemes. Discretization for the schemes are performed by finite difference method. For
solving the algebraic equations on every time level the modified S.O.R. method is used. In the numerical
results computing time, number of iterations and accuracy of the schemes are analysed.

1. INTRODUCTION

In this paper two different numerical schemes for solving multiphase diffusion-convection equation
is presented. Equation considered is involved in many physical problems of practical interest for
example in melting, solidification [2], multi-component fluid flows, flows through porous media,
meteorology, pollution problems etc. Usually the problems are discretized by using finite difference,
finite element or boundary element method in fixed or in moving grid [6, 7, 8].

The physical situation considered here is involved in steel continuous casting problem [3, 5]. In
this problem a one-directional time dependent flow of liquid steel, cooled down in a rectangular
geometry.

Let ©Q be a rectangular domain in R? with the boundary I' = 'y UT'p. Let T > 0, and
Qp = Qx]0,T[. We denote by H(u(z;t);t) the enthalpy and by u(z;t) the temperature of steel at
the point (z;t) € Qr.

Using enthalpy method we can formulate the continuous casting problem as a following multi-
phase diffusion—convection equation which we solve numerically in a fixed grid. For all ¢ €]0, T'[ find
the pair u, H such that

F

%—?—Au—%v(t)%:ﬂx;t) on 2,
(P) u(z;t) = gp(z;t) onTp,
ou
-a_n:gN(a"7t) on FN)
| H(z;0) = Ho(z) on Q.

The graph of H(u) is a non-decreasing function R — R involving near vertical segments corre-
sponding to the phase transition state. The speed of the fluid flow to direction x5 is v(t).

2. DISCRETIZATION OF PROBLEM (P)

Let us consider the case where the problem (P) is solved in rectangle domain Q =]0,1;[x]0, lo[, with
the boundary T divided into two parts: T'p = {(z1,22) |72 =l2, 21 € [0,1]} and Ty =T'\Tp.
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Let the number of the grid points in both z; and z, directions are N. Hence the grid parameters
are respectively hy and ho . The grid parameter in time is denoted by 7.
Denote

du(z) = hytu(zy, m3) — u(zy = by ; T2)]
Oru(z) = hi'[u(zy +h, o2) — u(z1, 22)]

and similarly for d, and 8. By using normal 5-point difference formula the Laplacian A can be
discretized

Ay = 3151 &+ (9252 .

2.1. Upwind scheme

The semi-discrete upwind scheme approximation for the problem (P) is

/
%I{——Ahu—kvagH:f on £,
U= gp onI'p,
{
_B_u = on I’
Bn gN N,
| H(z;0) = Hy(z) on €,
where

ou ohu Htzi=0, €l
:{31u i = e T
o .29 =0, & L.

For time discretization we denote

ch+1 < Hk

T

o-H

Using implicit Euler method in time and normal difference quotients in space we can write the fully
discrete form of equation (P) as follows. For all £ =0,1,...,nt — 1 find the pair u*+1 H*+!

O, H — Aputt! + vip HEH1 = A+l on Q,

w*tl = gp onI'p,
P auk+1
(Bn) e onI'y,
Hy = H(z;0) on ).

Taking into account boundary conditions and discretizing them by using normal difference quo-
tients we can write the problem (P) in the matrix form

MHk+1 +AUk+1 :Fk+1. (1)

In Eq. (1) the vector H*¥*! contains the nodal values of the enthalpy and the vector U k+1 nodal
values of the temperature at the time level £ + 1. The matrix A is the usual 5-point difference
approximation for the Laplacian operator, and M is the matrix form for the operator 9; +v0; . The
right-hand side vector F*+1 = Fk+1 4 7=1Hk contains all known nodal values of the problem (P,).
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2.2. Characteristic scheme

For the characteristic scheme the discretization of the convection term differs from the upwind
scheme. To approximate the term

(2 L)

we use the characteristics of this first order differential operator. Namely if (z;, 2o, ) is the grid
point on the time level ¢t we choose the point

t
(21, 82, t=7)= (371,:1)2—/ v({)df,t—T)
t—1

on time level ¢ — 7 and approximate the term

0 0 NH(.’El,.’L‘Q,t)—H(.’L‘l,i‘Q,t—T)
(8t+v(t) )H~ » .

Generally the point (z1, Z2) is not the grid point so we use linear interpolation for the function
Ho i

(21, Bo)=olly, o) + {1 ~a)lmy, 2), a€(0l)],
where (z;, ;—1) and (z;, z;) are grid points, then we put
H(zy,%2,t—7T) EfI(wl,mg, ti=orypeioli(ey  gyoiypt= )8 (b= @)Y, o6 2 2)
Near the boundary {z; € [0,1;], zo = 0} it can happen that (z, z2) ¢ . In that case we write
H(zy, zo,t—7) = o[2hoH(g;) + H(zi, zj41,t— 7))+ (1 —a)H(zi, zj, t — 7).

Thus we can write the approximation as

8. H = (QJFU(t)_a_)Hz H(xl,Z'Q,t)—f{(fEl,évg,t—T).

The problem (P) for the characteristic scheme can be written

8pH — Apubtl = frtl on £,

W =gp onlp,
f) 8’u,k+1
(Ph) - gnN oy
o =k iz 0) on ,

Taking account boundary conditions and discretizing them by using normal difference quotients
we can write the above equation also in the matrix form

MHIH-I +AUk+1 - Fk-f—l. (2)

In Eq. (2) the vectors H¥+!, U**1 and the matrix A are the same as in Eq. (1). In this case M is
a diagonal matrix of the form M = 711, where the I is the identity matrix.
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3. SOLVING ALGORITHM

For solving the problem (Py) respectively (P,) at time level k+ 1 by using upwind or characteristic
scheme we must solve the corresponding algebraic equation (1) or (2). The following calculation
algorithm is used at every time step t*+1, k = 0,...,nt — 1. For each time level t**1, set the initial

guess u® = u(z; tF*1 — 7). Moreover we assume that

alu“*")’l, U,<’U,]\/[—-E,
H(u):{a2u+72, u € [upm — €, upm + €l
asu + 3, u > up + €,

where u)s is the phase change temperature. For theoretical background of the algorithm see Elliot
and Ockendon [1].

1. §=9 (number of iterations)
2. 1. fagavyipey. &= 0 (number of node)
R T |
. iy . . o "
4. zzq = fz] K (Z Ailu{ 4 mllHlJ> S (Z Alluf =t milHl] 1)
1< 1>4
VM if 20 < (ups — €)(maar + ais) + ma
mia + ag ) i M 1 X1 i Y1,
J
: z] — miiy3 L
B. 1Were oyt f22 > M . y
b miio3 + i if 23 > (un + €)(maiaz + aii) + miiys
——Zg Biis X else
miicg + G |

\

6. ug = u{—l +w(vf — uz_l)

7. if i < N (N = total number of nodes) goto 3
8. if [Ju/ —u/"Y| > € go to 2, else STOP.

4. NUMERICAL EXAMPLE

To illustrate the calculation speed and accuracy of the previous numerical schemes the following
numerical example is considered.

Let  =]0,1[x]0, 1[, with the boundary I' divided in two parts I'p = {z; € [0,1], zo = 1} and
'y =T\ I'p, moreover let ' = 1. Let us consider the case where the phase change temperature
up = 1 and the latent heat L = 1. Let the phase change interval be [up — €, ups + €], € = 0.01,
and the velocity is v(t) = -é ,

Our numerical example is

(%il——AK—i-v(t)g—Z— sadle:t) on 2,
u(xl,l;t):(ml—%)z—kg—%e%t onI'p,
g—Z=1 on 'y,
\u(xl,mg;O)z(zl—%)2+<x2—%>2+% on ,
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where

2u, U < UM 5T1E

14 8¢ 5+ 4e
gy = ( )(u—l)—l—

2e

6u — 3 u > up + €,
and

U W <URt:—E;

3 1—¢
Ku) = gt~ 3 u € [up — €, up + €,

2u—1 u>upy +eE.
Furthermore

vodt b

4e +g(4$2—2)—4 u < Uup,
f(z;t) = 3

126"‘“-{-5(123:2—6)—8 u> Uy
The exact solution of our problem is

4 AT

= - = - =] —=e" 1.

u(z1, 2, t) <m1 2>+<$2 2) 26 +

u € [upy —€, up + €,

The numerical test was run in the Sun Ultra Enterprise 4000 for different grid parameters h
and 7. In Table 1 the maximum iteration number, maximum CPU-time and maximum Ls-error of
time levels k = 1,...,nt is presented as a function of parameter values.

Table 1. The comparison of upwind and characteristic methods. The parameters ite, CPU and Ly-error are
the maximum number of iterations, calculation time and La-error of the time levels, respectively

Upwind scheme Characteristic scheme
h 7 ite CPU [s] Ls-error ite CPU [s] Ls-error
3 3 23 | 2.61-1072 | 4.285-1072 21 | 1.156-10"2 | 9.077.102
% & 43 0.115 2.178-1072 40 6.919-1072 3.340- 1072
= s 76 0.346 11221072 74 0.246 1.498 - 1072
45 & 127 0.647 9.199-1073 127 0.427 7.053-1073
o 55 205 0.794 9.056 - 103 205 0.623 4.915-1073

In this case it turned out that the both schemes need approximately the same amount of iterations
to achieve the required accuracy of stopping criterion in the calculation algorithm. However, the
characteristic scheme was at least 30% faster than the upwind scheme. The main reason for that is
the difference of the numerical approximation of the convection term. In the characteristic method
the convection term is included in time derivative and, hence, updated only once at every time level.

In the upwind scheme the convection term is updated at every iteration step.

The both schemes seems to converge properly with respect to the change of grid parameters. The
slower convergence of the upwind method, when the grid parameters are small, is probably due to
the round off errors in the computer program.
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5. CONCLUSIONS

The problem considered here is closely involved in continuous casting of metal alloys (steel, copper,
aluminium). The study of fast calculation methods has practical interest because of the develop-
ment of large and realistic simulation models which can be used in process simulation, control and
optimization. Our future work is related to the study of the domain decomposition method (DDM)
for solving the continuous casting problem [4]. The DDM is suitable for calculating the solution in
multiprocessor computer.
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