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The work is devoted to the practical application of dual grids in the boundary element method (BEM).
Definitions of dual grids on the plane are given and algorithm constructing dual grid for a given tri-
angulation is described. The problem of utilizing two numerical solutions of one problem defined on
the couple of dual grids is considered and the results of this technique are demonstrated. The exam-
ples from geomechanics modelling the contact interaction of shallow foundations and elastic bases are
presented.

1. INTRODUCTION

Application of the boundary element method (BEM) to contact problems [8, 10, 17] and in particular
to the problem of interaction of punches and foundations with an elastic half-space of complex
structure [2, 5, 18] inevitably leads to dealing with the following general problems:

L. the problem of weak conditionality of corresponding system of algebraic equations;
2. the problem of visualization and interpretation of the numerical solutions obtained;
3. the problem of elimination or reduction of calculating errors.

The paper suggests some practical methods which seem to be useful for the matter. They are based
on the notion of grid’s duality which is introduced below and is well known in the graph theory [12].
For example, the famous duality of Delaunay triangulation and Dirichlet—Voronoi cells on the plane
is the particular case of more general relation between grids which is considered in Sec. 2. We give
the detailed definitions of grids’ duality and describe the properties of dual grids which are used in
the next sections.

In Sec. 3 the algorithm of the Preprocessor generating the dual grid for a given triangulation is
presented. The results of its use are given and considered.

Section 4 is devoted to the scheme of applying dual grids in the BEM analysis of spatial contact
problems. The accuracy of the suggested method is compared with the other more conventional
scheme and the results of our investigations for different contact problems are described.

The last section deals with the utilization of two different numerical solutions of one problem
defined in the nodes of a couple of dual grids. We present the algorithm of the postprocessing
method which is applied to the results of the BEM analysis of contact problem and to the problem
of processing data with random errors.

! Abbreviated version of this paper was presented at the VII Conference Numerical Methods in Continuum Me-
chanics, Staré Lesna, High Tatras, Slovakia, October 6-9, 1998, and published in its Proceedings.
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2. DEFINITIONS AND PROPERTIES OF DUAL GRIDS

Long-term application of the BEM for solving the spatial contact problems has shown that besides
the initial partition of the contact region, the other partition of the same domain naturally appears.
It has a certain structure which is defined (mainly) by the first partition. It turned out that this
couple of grids is closely connected with the notion of duality of plane graphs in the graph theory [12].
The Delaunay-Dirichlet duality is a particular example of it [14, 20]. This approach is described in
detail below.

Let A = {A;},i=1,2,..., M, be a partition of the polygonal domain () of the plane. We will
refer polygons A; as cells, the vertices of the cells as nodes and the partition A itself as a grid. If a
node P; is an inner point of @ we will call it an inner node and if it lies on the boundary of @ we
will call it a boundary node.

Each grid is also a plane graph G 4 which has the same nodes and ribs as the grid A. Adding the
polygon Ay which complements @ to the entire plane we get the partition A of the whole plane.
Now we can describe the dual graph G% [12, 20]. Its nodes are any different points Ty, T, ... , Tnm
which are corresponded to the cells Ao, A, ..., Ayr. Two of such points T; and T} are connected
by the rib {* if and only if the corresponding cells A; and A; have the common rib { (ribs / and [*
of dual graphs G4 and G% will be referred as corresponded ribs). The most clear representation of
G* can be obtained if T3, ¢ = 1,2,..., M, are taken inside corresponding cells 4;, 4 =1,2,..., M,
and Ty is the infinite point of the plane.

Each plane graph generates a partition of the plane. So we come to the following

Definition 1. Two grids A and B on the entire plane are called (mutually) dual if and only if:
1. the corresponding graphs G 4 and Gp are dual;

2. each node of one grid is contained in the corresponding cell of the other grid;

3. each cell of one grid contains only one node of the other grid;

4. all ribs of the grids are straight and the corresponded ribs | and [* cross each other in the point
being inner for both of them.

The additional conditions 2-4 are necessary for further application of dual grids in numerical anal-
ysis.

__ Now, let Q be a bounded plane domain and A be a grid on Q. As before we may consider the grid
A continuing A to the entire plane and the dual (in the sense of Definition 1) grid B = {B,}, j =
LS. N

Definition 2. The grid B, consisting of polygons Bj = Ej Q1= 15257 "N, 'where _Bj are the
cells of B, is called 1-type dual to the grid A on the domain Q).

Figures la,b give the examples of dual grids in the sense of Definitions 1 and 2, respectively.

Definition 3. Two grids A and B on different subdomains Q4 and Qp of the plane are called
2-type dual if they can be continued to the dual grids A, and B, on the entire plane (Definition 1)
and:

1. each inner node of one grid is contained in a certain cell of the other grid;

2. each cell of one grid contains a unique node (inner or boundary) of the other one.

It is clear that for a given grid A there are many different (even in the meaning of the graph
theory) dual grids defined on the other domains. Nevertheless all of them are practically identical
“near” the set of inner nodes of the grid A and may be different only in a neighborhood of the
boundary of domain Q4 .

Among them the “extremal” dual grids may be selected.
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Fig. 1. Couples of dual grids in the sense of Definitions 1, 2, 3, respectively

Definition 4. The grid B on domain Qp is called maximal (respectively minimal) for the grid A
on domain Q4 if A and B are 2-type dual and each node of A is contained in a certain cell of B
(respectively, each cell of B contains only an inner node of the grid A).

The example of such extremal couple of dual grids is demonstrated in Fig. lc.

It should be noted that in contrast to Definition 1 the grids A and B introduced by Definition 2
are not mutually dual. The absence of the notion of mutual duality for the grids on a proper
subdomain of the plane can not be overcome. In this connection it is interesting to consider the
following definitions.

It is easy to see that each grid A has a maximal dual grid (for example B from Definition 2) but
may not have a minimal dual grid (for example if all nodes of A are boundary nodes). Maximal
and minimal dual grids are in a certain sense mutually polar.

Proposition 1.

If B is maximal for A then A is minimal for B.
If B is minimal for A then A is maximal for B.

Since the main aim of the paper is the application of dual grids we omit the proof and turn to
the properties of dual grids that may be useful. Mainly we will deal with the 1-type dual grids in
the sense of Definition 2.

Let N, L, M and N* L*, M* be the numbers of nodes, ribs and cells of two dual grids
respectively. If A and B are dual grids on the entire plane then, by the definition, N* = M, L* =
L, M* = N. For initial grid A on a subdomain @ of the plane and the 1-type dual grid B
N* = M + 2N,, L* = L+ 2N, and M* = N, where N, is the number of boundary nodes of grid
A. This is because B in this case has some new nodes and ribs on the boundary of @ while B has
not any. Nevertheless, the number of cells of the 1-type dual grid equals the number of nodes of an
initial grid.

In addition, for such dual grids:

1. each inner node of one grid is contained in a certain cell of the other;

2. each cell of an initial grid contains the unique inner node of the dual grid and each cell of the
dual grid contains a unique node of an initial grid (inner or boundary);

3. between each two neighbor boundary nodes of an initial grid A there is a unique boundary node
of the dual grid B.

The most typical and important initial grid is a triangulation of Q. Let N be the number of
boundary nodes of triangulation. Then the well known formula takes place:

M =2(N—-1)—N,. (1)
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Since M* = N then for small N,/N the number of cells of the dual grid is approximately equal to
half of the corresponding number of the initial triangulation.

In conclusion we consider examples of 2-type dual grids demonstrated in Fig. 2. In Figs. 2a,b,
the couples of rectangular dual (in the sense of Definition 3) grids are shown. The first couple is the
couple of extremal type consisting of maximal and minimal dual grids. The next couple is of general
type. It should be noted that for each grid A consisting of rectangles whose sides are parallel to the
coordinate axes there is a dual (in the meaning of Definition 3) grid whose nodes are the barycenters
of cells of A.

At last, in Fig. 2c, we have the example of two grids one of which is the Delaunay triangulation
of the convex polygonal subdomain of the plane and the other is the grid of Dirichlet—Voronoi cells
on the whole plane. These grids are the classic example of dual graphs in the meaning of the graph
theory [14, 20]. It should be noted that they satisfy Definition 1 or Definition 3 if and only if all
triangles of the first grid are acute-angled.

a) b) c)

Fig. 2. Couples of dual grids: a), b) rectangular; c) Delaunay—Voronoi duality

3. CASE OF TRIANGULATION AND PREPROCESSOR

For the most important case when the initial grid A is a triangulation of any bounded subdomain
@ of the plane we construct and realize an algorithm of the Preprocessor. The main aim of it is
to generate 1-type dual grid B. The nodes of this grid are taken in the barycenters of triangles
of the initial grid and are connected directly if the corresponding triangles have a common side.
As a result, each inner node of the initial grid is covered by the cell of the dual grid. The details
of the process can be seen in Fig. 3a where Tl e vk Sxb (b neighbor nodes of an inner
node P; and C1, Cy, ..., C, are the barycenters of the corresponding triangles. Then the broken line
C1Cy...CyC doesn’t have self-intersections and rounds a. certain domain V; that may be taken as
the cell of B corresponding to P.

Fig. 3. Construction of dual grid for a given triangulation
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Now let P; be a boundary node. Consider the broken line L; = P;D1C1C5 . ..Cq—1Dy¢P; , where
Cy, Cy, ..., Cyg—1 are the same as above and Dy, D, are the middles of the ribs P;P, and F;F,,
respectively. If the triangulation is good enough (see below) then the closed L; doesn’t have self-
intersections and bounds a certain domain V; containing P; (Fig. 3b)). The set of V;, where P;, i =
1,2,...,N, are nodes of the grid A (inner or boundary), is the partition B of the whole subdomain
Q which is 1-type dual in the sense of Definition 2.

The example of improper triangulation for which the described process fails is shown in Fig. 3c.
But if a > b > ¢ are the sides of any triangle of the initial grid then the relation

o+ < 5 (2)

is a sufficient condition for the described process to lead to the dual grid in the sense of Definition 2.
The other sufficient condition of successful preprocessing is the case when each inner node of the
triangulation has the coordinates equal the arithmetic mean of the corresponding coordinates of the
neighbour nodes and the boundary nodes are situated sufficiently dense along the boundary of Q.
In this case we will say that each inner node of the initial triangulation is the arithmetic mean of
its neighbour nodes.

The Preprocessor allows us to improve or reconstruct the initial triangulation in order that each
inner node be the arithmetic mean of its neighbour nodes or the barycenter of the corresponding
cell of the dual grid (see Figs. 4a,b and d,e, respectively.
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Fig. 4. Grids generated by the Preprocessor

In addition, the Preprocessor generates a new triangulation of the domain @ whose nodes are
the nodes of the initial and dual grids taken together, Figs. 4 ¢,f. This triangulation (which we call
general) is necessary for the Postprocessor.

Figures 4, 5 give examples of the Preprocessor’s action. The more detailed description of the
preprocessor algorithm can be found in [3].
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Fig. 5. Results of the Preprocessor application. Dual grids are shown together

4. APPLICATION OF DUAL GRIDS IN THE BEM ANALYSIS OF SPATIAL CONTACT
PROBLEMS

This section deals with the application of dual grids in the process of solving the spatial contact
problems by the boundary element method. The BEM being applied to a problem of mathematical
physics leads to a system of algebraic equations. Unfortunately, while the number of elements of
a partition increases, the conditionality of the corresponding matrix has a tendency to become
worse. From (1) we conclude that by using the dual grid instead of the initial triangulation we can
essentially reduce the dimension of the system (in practice 1.6-1.9 times). Moreover, the points of
collocation may now be taken in the nodes of the initial triangulation. This permits us to interpolate
a numerical solution on the whole domain Q and to realize its visualization.

Using the initial triangulation and taking the points of collocation in the nodes of dual grid,
we obtain the other numerical solution of the same problem. These two approximate solutions of
the same problem in the nodes of two different but structurally connected dual grids on the same
domain give the necessary initial information for the Postprocessor which generates a new solution
of the problem (more precise and qualitative, as a rule). The following examples show the realization
of the first item of this scheme. The algorithm of the Postprocessor will be considered in the next
section.

4.1. Spatial contact problem for a flat smooth punch on an elastic base

The examples presented below are entailed by the problems of the interaction of shallow foundations
and an elastic base arising in geotechnics and intensively investigated by the first author (2, 4, 5, 6].

Fig. 6. Flat and smooth punch on an elastic half-space
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So, in contrast to [10] where the BEM formulation of the contact problems for elastic bodies is
presented, here we deal with the interaction of the flat, smooth and rigid punch that is situated on
an elastic half-space z = 0 (Fig. 6).

This means that it is sufficient to consider the loading of the punch by the vertical force appled
at a point C(ez,é&y,0) and the couple of moments M;, My with respect to the coordinate axes.
Furthermore, as is customary, we consider that the vertical displacements of the punch and the
base surface are equal and the load outside the punch is absent. It is necessary to determine the
distribution of the reactive pressures under the punch and the parameters of its displacement as
a rigid body. As it had been demonstrated in [14, 13, 16] where the tangential tension had been
taken into account, the influence of the friction on the main characteristics of the contact (and the
normal pressure especially) is small and we will neglect them in the following consideration.

So, instead of three boundary integral equations [11] we have only one expressing the geometric
condition of the punch contact with the half-space

//p(s, t)w(z,y,s,t)dsdt =Wy + Lz -z + Ly - y, (3)
3

where F is the punch contact area with the elastic base; w(z,y, s,t) — the corresponding fundamental
solution (Green’s or influence function) which will be described below; p(z,y) is the function of the
contact pressures to be found; Wy is the vertical displacement of the punch center; L;, L, are the
punch inclinations relative to the axes OX and OY, respectively.

Among six conditions of the equilibrium it is sufficient to consider three integral equations to
which the field of the contact pressures must obey:

//p(s,t)dsdtzP, //p(s,t)sdsdtzP-ex—Ml, //p(s,t)tdsdtzP'6y+M2.
F F F
(4)

Thus, the spatial contact problem for a flat punch on the surface of an elastic base is reduced to
finding parameters Wy L, L, (which define its position) and the distribution of the contact pressure
p(z,y) under its bottom, the latter will be determined by solving system of integral equations (3)-
(4).

As it had been done in [10] and in many other papers the solution of the contact problem is
implemented by means of the direct boundary element method with the use of the piecewise-constant
approximation of contact pressures. That means that the contact region F' is approximated by some
polygonal partition (grid) and the pressure is assumed to be constant on each element (cell) of the
partition. These values are associated to the nodes of the dual grid which, as a rule, are taken in the
barycenters of the corresponding cells, which are called the discretization nodes [10]. The integral
equations are applied at these points that give the next system of linear algebraic equations

/ n
S pidij—Lg-z—Ly-y-Wo=0, i=12,...,5
j=1

n
ij~ASj =P;
j=1

n
ij~£lfj'A$j=P-Ex—M1;
j=1

n
ij~yj-ASj:P-5y+M2.
=t




174 S. Aleynikov and A. Sedaev

Here n is the number of elements (cells) of the partition; p; is the pressure uniformly distributed on
the element j; Wy is the punch settlement; (z;,y;) are the coordinates of the discretization nodes;

and

d;j ://w(a;i,yj,s,t) dsdt.
F

Here, the fundamental solution w(z;,y;, s,1t) is the settlement of a point (s,?) within the domain of
the boundary element j due to the unit vertical force applied to the base surface at point (z;,y;);
As; is the square of the element j.

We use the Bussinesq’s fundamental solution for the homogeneous elastic half-space z = 0:

(L=}
B

1
w(x,y,s,t)z ';, T:\/(I—3)2+(y_t)27
and E, v are the Young’s modulus and Poisson’s ratio respectively.
At first we compare the exactness of the BEM approximate solutions of the spatial contact
problem for the circular punch which is situated on an elastic homogeneous half-space and is loaded
by the vertical central force P. This problem has an exact solution [11]

P(1-1?) P
=—=", pr) ===
2Ea 2rva? —r?

where a is the radius of the punch, r is the distance between the center of the punch and a point
under it.

For comparison of the BEM approximate solutions we use four grids shown in Fig. 7 and Fig. 4a,b,
respectively. The first two grids are polar and contain 400 elements, the third — 216 and the last
— 145 elements. The last two grids are dual in the sense of Definition 2.
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Fig. 7. Polar grids used for solution of contact problem for circular punch

Table 1 and Figure 8 give the results of the BEM applied to the couple of polar grids with and
without concentration near the boundary and to the couple of dual grids respectively.

These results show that although the first two grids are more dense, the exactness of the numerical
solutions on the dual grids is essentially high especially for the grid of the Dirichlet—Voronoi type
that is dual to the initial triangulation and has the least number of elements (cells).

All the results obtained show that the application of the dual grid instead of the initial triangu-
lation does not make the accuracy of the solution worse more than 5-10% and in some cases (as in
the previous example) the local and the integral precision may even increase.
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Table 1. Properties of approximate solutions of contact problem for circular punch

Number Relative Relative Degree of ek -
Type of the grid of square of the settling conditionality s
3 error
elements contact S/a W/a o
Uniform polar grid 400 3.12869 0.47802 274.0 4.3265-1073
Folar grid vith 400 3.12869 0.47114 147.0 3.3212:10~2
the concentration
Triangular grid
with 216 3.13761 0.47760 100.6 1.3489-1072
the concentration
Dupgrid 145 3.13761 0.46868 274.2 1.0686-10~
of Voronoi type
Exact solution — 3.14153 0.46875 = 0
) 2 %

ocooa  solution on the triangular mesh
wewns solution on the dual mesh
exact solution

10 #
0.8 - %
<
06 |
0.4 }'/
-
02 e ('_—H’_Q__ﬂ/v-‘}e(’(

o B e B st e [0
00 02 04 06 08 1.0 va

Fig. 8. Exact and approximate contact pressures along the radius of circular punch

4.2. The BEM on non-regular grids and examples of numerical modelling for spatial
contact problems

Since the region of the contact for practically important problems has a complicated configuration,
the detailed prediction of the contact pressure distribution in the contact domain is very difficult.
Theoretically exact solutions are known only for some very restricted and particular classes of such
problems where the region of the contact has one of the canonical shapes and the elastic base has
a simple structure. On the other hand, the appropriate fundamental solutions of the elasticity theory
are known. This approves the application of the boundary element method for numerical modelling
of such problems. Our experience shows that this approach may be effective and sufficiently exact
but it has some restrictions. The main one is in the necessity to solve the system of algebraic
equations of high order with weak degree of coditionality and filled matrix. The other problem is
in difficulties connected with visualization and further interpretation of the approximate solution
defined on the set of separate points of the domain @. In both cases the dual grid constructed by the
Preprocessor for a given triangulation of @ may be useful. Indeed, according to (1) the dimension
of the corresponding algebraic system for dual grid is less than for triangulation (practically more
than 1.5 times) and since the points of collocation may be taken in the nodes of the triangulation
one can easily extrapolate the numerical solution onto whole domain piecewise linearly (linearly
within each triangle).
According to this idea we observe the following sequence of actions.
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At first we do the triangulation of the contact domain @) trying to satisfy the following conditions:
(a) triangles should be approximately of the same size; (b) their form should be close to equilateral
triangle; (c) the inner nodes of the triangulation should be equal to the arithmetic mean of their
neighbour nodes.

Next, we turn to the 1-type dual grid (which is constructed by the Preprocessor) and using the
BEM find a corresponding approximate solution.

At last we continue the approximate solution from the nodes of the triangulation onto the whole
domain @ and fulfill its visualization by means of isobars.

Below we present some examples of this technique. The first of them is the circular rigid punch
loaded by a central force. It is the same problem that considered above but in this case we use the
non-regular grid close to uniform. Since in contrast to the previous example our grid is non-regular
and has no concentration near the boundary, we have to use the dual grid having 513 cells. As
a result we obtain an acceptable approximate solution which is demonstrated and compared with
the exact solution in Fig. 9 and 10.

D/ Pav
40 Solutions: ’
32 : ssa0. approximate IIl
54 | T exact ’,"

0 T T T T/a

0 0.2 04 0.6 08 10

Fig. 9. Exact and approximate contact pressures along the radius of the punch

The corresponding triangulation and dual grids are also presented. The relative settlement of the
punch W/a = 0.47216 and the number of conditionality o = 115.3.

The comparison of this and previous example show that the application of grids with the concen-
tration near the boundary give the considerable gain in the number of grid cells and in dimension
of the corresponding system of equations. But the last example shows that non-regular close to
uniform initial triangulation is also acceptable.

We also consider the coefficient Ky = Np /Ny, where Ny and Ny are the numbers of the cells
of the initial triangulation and the dual grid, respectively. This coefficient shows the reduction of
the discrete system connected with the problem. In the example K7y = 1.84.

The following example is devoted to the eccentric loading of a circular rigid punch situated on
an elastic half-space. In Figs. 11a,b one can see the isobars when the eccentricity of the loading
force and consequently the corresponding tipping moment are small. In this case the region of the
contact is the entire circle and the corresponding exact solution exists [1]:

1 T o
z,Yy) = ———(P-a+3-— M), W(z,y) =Wo+4d-—,
p( y) 2ﬂa2m( P ) ( y) 0 %
where the central loading force P, the tipping moment M around Y-axis, the central displacement
Wy (due to impression) and the maximal displacement § (due to tipping) are connected as follows

P 2a’E Wo A i 4Ea® 0
T (1-v?) e’ 31 -1v2) a”
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Fig. 10. Circular punch on elastic half-space loaded by central force: a) triangulation of contact region,
Nr = 944; b) dual grid, Ny = 513; c) isobars of approximate and d) exact solutions of the contact problem

Fig. 11. Contours of levels of dimensionless contact pressure for circular punch loaded by eccentric force
(Nv = 513): a), c), d) deformation modulus E = Eo = const.; b) E' = Eo(1+2z/h), h/a =1;a),b) e, = 0.15a;
c) €z = 0.35a; d) €z = 0.5a
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The analogous problem for the elastic half-space with the modulus of deformation E = Ey(1+Bz/h)
growing with the depth [2] is presented in Fig. 11b. The comparison of the isobars for exact and
numerical solutions shows that they are practically the same on the most part of the contact region
excluding the narrow domain near the boundary.

While the eccentricity of loading force grows the region of small pressure moves to the boundary.
When the corresponding pressure becomes negative, this means that the corresponding part of the
punch rises over the half-space forming a slot and that the contact region becomes smaller.

Using the appropriate algorithm including the iteration process we can specify the shape of a new
contact region. The corresponding examples are given in Figs. 11c,d.

It should be noted that our results contradict to the conclusions of work [21] in which the attempt
to give the solution in terms of R-functions has been done. The main condition of that work was the
assumption that the new boundary contour is a parabola. Our results show that this assumption is
wrong, especially near the points of connection of the new boundary line with the circle.

In Figures 12 and 13 the results of applying our method to polygonal and respectively doubly-
connected regions of contact for central loading of the punch are presented [3, 4].

In contrast to the case of concentric annular punch for which the exact or approximate solutions
are well known [7, 9, 19, 21] the case of eccentric annular punch has been considered for the first
time by one of the authors. The detailed investigation and discussion of the possible applications
are given in [4, 5, 6].

At last, Figure 14 demonstrates the distribution of values K7y and the time of calculations by
the IBM PC AT 486/DX4 100 computer for 28 contact problems which have been numerically solved
using our method. For comparison, in Fig. 14b, the time for analogous calculations for corresponding
triangulations are presented.

As conclusion it should be noted that at least for the case of contact problems the described
method gives a universal and acceptable approach overcoming the difficulties mentioned in the
beginning of the section.
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d) dimensionless contact pressure contours of levels
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Fig. 14. Characteristics of effectivity for 28 experiments: a) values of Krv; b) processor time:
1 - triangular grid, 2 — dual (polygonal) grid
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5. POSTPROCESSOR ALGORITHM AND ITS APPLICATIONS

Now we describe the idea of the Postprocessor that uses the couple of numerical solutions being
defined on two dual grids. As we know each inner node P; of the first grid is surrounded by the
nodes {Qj.}, k¥ = 1,2,...,m;, of the second one and each inner node @; of the second grid is
rounded by the nodes {P;, }, k = 1,2,...,n;, of the first one.

Let Fj, ¢« = 1,2,...,M, and Gj, j = 1,2,..., N, be the values of two approximate solutions
of one problem in the nodes P; and @); of two dual grids. These values may contain errors of the
numerical method and the random errors as well. The aim of the Postprocessor is to derive the sets
U = {lUi}eto b, {Vj}j=1,...,n of new values in the nodes {P;} and {Qj} in order to:

(a) preserve typical properties of both initial solutions;
(b) to eliminate or smooth strange deviations.

__ This is done by means of the special variant of the least squares method. Namely, the sets U and
V forming the required solution must minimize the functional

M N
HU,V) =AY (Ui-F)?+ 42 Y (V; — Gy)?
$=:1 J=¥
m; 2 nj .
X k—1 7 Bk

my 2 L] 2
k=1 k=1

i = j

3 2 n; ).
+ D, Z (U, — Zajki/}k> + Dy Z (VJ = ZﬂikUik> ;
i k=1 J k=1

Here the sums without limits are taken for all inner nodes and Y 1%, o, = 3,2, B;, = 1. The
positive coefficients aj, and f3;, are defined by the mutual disposition of the nodes P; and Q;. The
numbers Ay, Ag, By, By, C1, Cy, Dy, Do, are weights that may be selected in order to accent
one or another property of the new solution and should be chosen in connection with the specific
character of the problem considered.

Below, for the sake of simplicity, we will consider the problem for the grids from Fig. 2a which
are dual in the sense of Definition 3 and extremal according to Definition 4. A comprehensive
consideration and application of the Postprocessor algorithm for the case when A is a triangulation
and B is the dual grid generated by the Preprocessor (described in Sec. 3) will be given in a separate
publication.
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Fig. 15. The neighbour nodes for couple of dual rectangular grids
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Let A be a rectangular homogeneous grid containing kk = k - k nodes and B be the rectangular
grid containing kk1 = (k — 1) - (k — 1) nodes which are the barycenters of corresponding elements
of the first grid.

Each node Q; of the second grid has the nodes P;, Pj2, Pi3, Py of the first grid as neighbours
and each inner node P; of the first grid has the nodes Q;1, Qj2, Qj3, Qj4 of the second grid as
neighbours (see Fig. 15).

According to the previous arguments we use the next criterion of choice of U; and Vj: the values
U; and V; should minimize the following functional

kk kk1
HUV) =AY (Ui-F)?+> (V;-G;)
=1 =1
Uin +Up + Uiz + Uig . Vi1 + Vi + Vjz + V4 A
+ B Z ( 1 s Gj) = Z 4 — F;
] 2
Vit+Vie+Vis +Vjs 11+U1,2+U13+U1,4 %
i Z ( 4 Z S
3 7!

Here ¢ runs through the set of all numbers for which nodes P; are inner, and j runs through all
numbers 1,2,...,kkl.

Here A, B, C are the appropriate weights. Changing the relation A : B : C, it is possible to
accent one or another property of solution and to satisfy (in a certain degree) the conditions (a), (b)
mentioned above.

The unique extreme point of the functional exists and can be found by solving the corresponding
system of linear equations. Its matrix is symmetric and sparse. Some results of applying this method
are given below.

5.1. Calculation examples and discussions

Since the Postprocessing method depends on the ratio A : B : C then, without lost of generality,
we assume that B = 16 is fixed, but A = W1 and C = W2 are varied to obtain the best result of
the method. Here W1 is “the weight of the old values” and W2 is “the weight of the new values” in
the process of choice of new values in the grid nodes.

At first, we give an example of application of the Postprocessor to the BEM results. Let us
consider the spatial contact problem for square 2a x 2a punch loaded by the eccentric vertical force
B = Faa’, £:.75.0.1a, gy = 0.15a. The punch is situated on an elastic non-homogeneous half-
space with the Young’s modulus E = Fy(1 + B - 7). The calculations have been done on two dual
grids containing 8 x 8 and 7 x 7 nodes under conditions: h/a = 1.0, B = 1.0, the Poisson’s ratio
v = 0.25. The contours of levels for contact pressures p = p(z,y)/p, in dimensionless coordinates
(T = z/a, § = y/a) are given in Fig. 16a. The contours of levels have been obtained using the
numerical values of pressures in all 113 nodes of dual grids (see [2] for the details of the calculations).

These solutions have been processed by the Postprocessor with the following choice of parameters:
W1 =256, W2 = 16. The contours of levels for a new solution are given in Fig. 16b. The comparison
of Figs. 16a and b shows that the application of our method gives a considerable smoothing of
numerical results. Unfortunately, the exact solutions for this class of spatial contact problems are
unknown (as a rule). So we have no opportunity to compare the accuracy of numerical solutions
before and after postprocessing.

Now we describe the application of the Postprocessor to the results of experiments with random
errors. To demonstrate the method potentialities the following model is used. Let a function of
two variables be defined on the square and let a couple of 2-type dual rectangular grids of this
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Fig. 16. Isobars; a) before and b) after post-processing

square be given. We define the values of this function in the nodes of the grids by f = {f fﬁl
andigi= {gj}fill, respectively. Let the upper bound g of random errors be known. Then using
the random numbers {ry}, uniformly distributed on the interval [—g, g], we obtain the new values
fi=fi+Tkowi, 1=1,2,...,kk, and §; = gj + Tk, 45, J = 1,2,...,kk1, which contain the random

errors. The general deviations are estimated by the quantities

¢ ofEe 7 . 3
dfoid = 1= (Z(fi = fi)2> » dgold = (E(’g'i m 9i)2> :

1 1

Then, applying the Postprocessor to {f;} and {g;}, we obtain the new values { fi} and {g;} in the
nodes of the first and the second grids, respectively. The new general deviations from the exact
values are estimated as follows

. A 3
dfnew = H:‘ (Z(fz, = f1)2> y dgnew = m (Z(Q: = gi)2> .
ik

1

N

Comparison of new and old estimates gives the objective information about the method.

Such experiments have been made for unit square [0,1] x [0,1] and three functions f; = (z —
0.5)(y — 0.5), fo=x%+y? and f3 = sin7mz cosmy. In all cases the first grid contains 11 x 11 nodes
and the second one — 10 x 10'nodes. The results of the experiments are presented in Table 2 and
Figs. 17-19.

In Figs. 17, 18, 19 the corresponding contours of levels are given. In case a), the contours of
levels for the initial function are demonstrated. In case b) — the contours of levels with random
errors are shown and in case c) — the contours of levels after the application of the Postprocessor
are presented.

These results show that the method can increase the accuracy in 2—4 times. Its efficiency depends
on the function. The function f; has the property: the value in the inner node equals the arithmetic
mean of the values in the neighbour nodes. So we obtain the best result for the big ratio W2/W1.
The other functions do not satisfy this property. The best result for fy takes place when the ratio
W2/W1 =1 and for f3 — when W2/W1 is small. The experiments show that if the number of
grid nodes (density of the grid) increases then the accuracy of the method also increases.

Our experience shows that the correct application of the Postprocessor is a strong and useful
tool.

Table 2. Application of the Postprocessor to the data with random errors

Function q 4" w2 dfold dgold dfnew dgnew
fi=(zx—0.5)(y—0.5) | 0.06 | 16 | 256 | 0.0255 | 0.0323 | 0.0117 | 0.0089
fa = 2% +9° 0.03| 64 | 64 | 0.0127 | 0.0173 | 0.0041 | 0.0036

f3 = sinwz cos Ty 0.06 | 64 | 16 | 0.0255 | 0.0323 | 0.0145 | 0.0151
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6. CONCLUSIONS

The aim of the paper is to attract attention to possibilities of a new technique based on the notion
of grids duality. It has been shown that the application of dual grids is useful and effective at all
stages of solving the spatial contact problems using the BEM: a) at the stage of partition; b) at the
stage of numerical calculation of solutions and c) at the stage of their analysis and postprocessing.

At the stage of partition this approach (on the base of a given triangulation) allows us to ob-
tain the new partition of the same domain onto the cells of Dirichlet—Voronoi type. The number of
elements of this partition 1.6-1.9 times low than the corresponding number for the initial triangu-
lation. Moreover, the application of our technique makes it possible to rebuild both grids, to rise
their quality and to obtain a new dense and qualitative general triangulation of the same domain.
In addition the corresponding algorithm is fast and is not memory expensive.

At the stage of approximate solution of the spatial contact problem by means of the BEM
one has an opportunity to select the desirable partition from those mentioned above. The use of
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1-type dual grid 1.6-1.9 times reduces the dimension of the corresponding discrete problem and the
time of calculations. But the application of both dual grids permits us to use the algorithm of the

Postprocessor.
The Postprocessor based on the least square method utilises the couple of numerical solutions of

the same problem generated by the couple of dual grids and leads, in fact, to the system of linear
algebraic equations with a sparse matrix. This fact allows the application of the fast methods for its
solution. As a result the new more qualitative solution in the nodes of general triangulation arises.
The process of solution is controlled by the weight parameters which can and must be selected by
an experimenter. The Postprocessor is also helpful in the problem of eliminating of random errors
and problem of visualizing numerical solution.

The properties mentioned above have been practically verified in a great number of experiments.
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