Computer Assisted Mechanics and Engineering Sciences, 7: 185-193, 2000.
Copyright © 2000 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Object oriented programming and applications of boundary
element method
in ground vehicle aerodynamics'

Tak Wai Chiu
AEA Technology Rail,
rtc Business Park, London Road, Derby DE2/ 8YB, United Kingdom

(Received March 8, 1999)

The phenomenal development and popularisation of Object Oriented Programming (OOP) in recent years
has created a new dimension in the innovation and implementation of powerful panel method techniques.

Although many scientists and engineers are already employing OOP languages such as C++, some of
them are still using the languages in a procedural and non-hierarchical manner, leaving a large proportion
of these languages’ capability unexplored. This paper presents the idea and implementation of OOP in
the panel method, which is widely used in ground vehicle aerodynamics. Program examples will show
that OOP enables the writing of highly modularised, reusable, readable and debuggable panel method
programs.

Keywords: object oriented programming, panel method, BEM, ground vehicle aerodynamics

1. OBJECT ORIENTED PROGRAMMING

Traditional programming methods look at a programme as essentially a process. A number of
things, such as wariables, are involved during the course of the process. Virtually everything is
represented by a basic variable or a simple combination of basic variables: integers, real numbers,
complex numbers, characters and booleans. The emphasis is usually placed on the process itself,
while the variables are merely things that get involved in the process. For a simple process, a single
(small) programme is written which is a simple transformation of the process from the beginning
to the end. On the other hand, a lengthy process can usually be broken down into a number of
modular processes: each of them is transformed into a subprogram. As the emphasis is placed on
the process/procedure, this type of coding is usually called procedural programming. Fortran77 is a
typical procedural programming language.

The becoming-fashionable Object Oriented Programming (OOP) technique, however, places the
emphasis on the things (or, more precisely, the objects) involved in a process and how they interact
with one another. The various elements of the process now become the member functions of the
objects. The member functions of each object are analogous to the characteristics and behaviour
of a physical object. In many physical applications, there are actual things involved and these
automatically become good candidates as objects in OOP. In numerical applications, these objects
can be nodes, finite elements, boundary elements, sub-grids, obstacles in an airflow, etc. Since
the program involves physical objects with which human beings are familiar, they can easily be
visualised and their interaction understood. It is also easier to model physical processes in a more
physical way with OOP.

1 Abbreviated version of this paper was presented at the VII Conference Numerical Methods in Continuum Me-
chanics, Stara Lesna, High Tatras, Slovakia, October 6-9, 1998, and published in its Proceedings.

P o T e T e T e e e

186 T.W. Chiu

With OOP, programs for numerical analyses/modelling can be written in a modular, reusable,
readable and debuggable manner. This paper will show how this is the case.

2. BOUNDARY ELEMENT METHOD (PANEL METHOD) AND NAVIER-STOKES SOLVERS

Although in the last decade or so the Navier-Stokes solution methods have undergone rapid de-
velopments, the industrial use of the Panel Method in subsonic aerodynamics, and in particular,
ground vehicle aerodynamics, has not been reduced. This is mainly due to the capability of the panel
method in providing fast solutions over the object/vehicle concerned. Despite the fact that panel
method, being a potential flow solution method, cannot model boundary layer separation directly,
a lot of engineers find that it is an efficient pre-experiment design tool. For example, in the field of
railway aerodynamics, the panel method is often used to investigate the effects of pressure waves
created by the passing of high speed trains. The panel method can give the potential flow surface
pressure distribution within a short period of time. Adverse pressure gradients, for instance, can be
identified quickly, as possible locations of flow separation. This allows modifications to the design
to be made in the early stage.

In the racing car sector, for instance, the designer is always subject to a very tight time scale.
He/she will sometimes have only a day or two to modify a design or investigate a particular problem.
The fast turn-around time of the panel method as compared to Navier-Stokes solvers helps to
maintain its position in the industry and will continue to do so for years to come.

3. PANEL METHOD AND OOP

The panel method [1-6, 8-9] and OOP are particularly good and obvious partners, mainly because
the panel method is fundamentally object oriented — and these are not abstract objects, they are
physically visualisable objects. There are physical objects everywhere in a panel method formulation:
firstly there are nodes, nodes form edges, edges form panels, panels form parts of (or entire) obstacles
in the air stream, and so on. The intrinsic hierarchical structure means that the programs are
automatically modular and highly reusable. To illustrate the ideas that have been advocated here,
we will build up a very simple program with C++. We will skip most of the details and will not
worry too much about the syntax of this particular OOP language. For those who are interested
in learning C++, reference [7] is one among the best of the books written on this programming
language.

The panel method formulation we will assume for illustration here is developed in [2, 3, 5, 8, 9].
This particular formulation is especially efficient because it is based on a vectorial approach: the
influence between panels (elements) is expressed in terms of vector equations based on the global
co-ordinates. The first type of object we should discuss will therefore be wector. The purpose of
these illustrations is to give the readers a feeling of the beauty of OOP.

3.1. Classes and objects

We must first understand the two terms: class and object. A class is the type or identity of one or
more objects. An object is an instance of a class. For example,

e Vector is a class, while a particular vector v1 is an object of class vector.
e Motor Vehicle is a class, while a Transit Van is an object of class Motor Vehicle.

We now use the definition of a vector type as a crash course in OOP. Most compilers, however,
already provide the vector class as a gift. Note that in the example programs below, the lines/phrases
beginning with ‘//’ are comments and not part of the program statements.

OOP in Boundary Element Method 187

void main()

{

vector vl; // a vector called vl declared in the main program

¥

C++ allows us to define the vector class such as below. A class has its data members and the
functions then operate on the data members:

class vector()

{
private:
double i, j, k;
// 3 double precision data members: the 3 components of a vector
public:
vector (double a=0, double b=0, double c=0): i(a),j(d),k(c) {}

// the constructor
double Length();

// member functions which compute the length, or modulus, of the vector
vector operator+(vector); // defines the summation operator: +
vector operator-(vector); // defines the subtraction operator: —
vector operator*(vector); // defines the vector product operator: *
double operator’(vector); // defines the scalar product operator: %
: // there can be many other functions

};

In the above example, the constructor takes three values as arguments, say a, b and ¢, each of
which has a default value of 0 if not provided. The constructor takes the values of a, b and c as the
three components i, j and k. The other functions and operators, however, are only declared above.
The actual bodies of these functions need to be defined elsewhere, which we will skip here. With the
above we have defined the values, i.e. the three components, and the personalities, i.e. the member
functions, of the vector class. The above class declaration will thus provide a variable type vector
to be used in an analysis program, for instance:

void main()

{
vector vi(1.2, 3.5, 4.8), v2(143,ii3-8,:2.1),5v3;
// defines two vectors, vl=1.2i+3.5j+4.8k, etc and v3 has zero components using
// the constructor
double parl; // defines a double precision variable named par1
v3 = v1+v2; // calculates v3 as the sum of v1 and v2
parl = vi%v2; // calculates parl as the scalar product of v1 and v2
}

We can also define more functions for the vector class to model some other possible types of
behaviour/characteristics, such as the multiplication with a scalar or a matrix.

3.2. A generic panel (boundary element) class

Having gone through a very simple illustration in the previous example, we can see how we can
define a generic panel type, such as:

e e T e D e e T s

| 188 T.W. Chiu

class ThreeDPanel

{
protected:
int NoOfNodesInPanel;
vector *xNode; // pointer to an array of pointers to the nodes
vector *Edge; // pointer to an array of edges
vector CollocationPoint;
vector NormalVector;
double Area;
double Perimeter;
public:
ThreeDPanel(); // default constructor which does nothing
ThreeDPanel (vector* nodel, vector* node2, vector* node3,
vector* node4 = NULL);
// constructor with arguments: pointers to the node coordinates (either 3 or 4)
// Argument 4 is optional, which is assumed to have a NULL value if omitted.
vector GetCollocationPoint();
// member function which returns the coordinates of the collocation point of the 3D panel
vector GetNormalVector();
// member function which returns the normal vector of a 3D panel
double NeumannCondDueTo(vector FreeStream);
// member function which computes the external Neumann boundary conditions
// due to a freestream at the collocation point of ‘this’ panel

ig

Again the details of the bodies of the member functions, etc., are not given here. The constructor
should be so defined that it will take the coordinates of the nodes and compute the edges, collocation
points, normal vector, area and perimeter of the panel. For instance, somewhere in the main program,
a statement like

ThreeDPanel panl(nodel, node2, node3, node4) s

will make use of the constructor and declare a variable (object) named pan1 as a ThreeDPanel
and the edges, collocation points, normal vector, area and perimeter of panl will be computed
automatically as defined in the constructor.

3.3. A constant source panel class — class inheritance

We will never need to use a generic 3D panel as described in the previous section. If we consider
the non-lifting potential flow over a three-dimensional body, we will need constant or linear source
panels. If we consider the lifting flow over a wing, however, we will need, for instance, constant or
linear doublet panels. Sometimes we may need a combination of these panels in a particular problem.
However, no matter which type of panel we want to use, they share some very similar properties.
They will all have nodes, edges, a collocation point, a normal vector, an area and a perimeter, for
instance. It would be nice not to have to define each of these panel types from scratch.

Some OOP languages such as C++ offer the powerful tool of class inheritance, which allows us
to produce new classes from existing classes by inheriting their properties. The class from which one
or some other classes are derived is called the base class, while the classes inheriting its properties
are called the derived classes.

class ConstantSourcePanel: public ThreeDPanel

{
protected:

OOP in Boundary Element Method 189

double *Strength;
public:
ConstantSourcePanel () ;
ConstantSourcePanel (double *S, vector* nodel, vector* node2,
vector* node3, vector* node4 = NULL);
// Constructor for ConstantSourcePanel, which will make use of the contructor of
// the ThreeDPanel class, and give the member variable ‘Strength’ the value ‘S’
// from the list of arguments
double ContributesNeumannCondTo(ThreeDPanel *pan2);
// member function which computes the contribution of pan2 to the Neumann Boundary
// Condition at the collocation of ‘this' panel. In other words, the function computes an
// entry of the matrix on the left-hand side of the linear system to be solved.
vector VectorialInfluenceCoefAt(vector* pointl);
// influence coefficient induced by ‘this’ panel at a point with position vector ‘pointl’
vector VectorialInfluenceCoefAt (ThreeDPanel *pan2);
// influence coefficient induced by ‘this" panel at the collocation point of another panel, ‘pan2’
vector InducesVelocityAt(vector* pointl);
// velocity induced by ‘this’ panel at the point ‘pointl’. This is equal to the product
// of the Vectorial Influence Coefficient and the source strength of the panel.
vector InducesVelocityAt(ThreeDPanel *);
// velocity induced by ‘this’ panel at the collocation point of another panel, ‘pan2’

F;

In the above example we derive the ConstantSourcePanel class from the ThreeDPanel class.
This means that the derived class will automatically have all the class data members and member
functions of the base class, plus some additional data members and functions as above. Similarly
we can derive other panel types, e.g. doublet panel, from the ThreeDPanel class. It is also possible,
if required, to derive classes from a derived class. In that case, ThreeDPanel will have grandchildren
(Fig. 1)!

3D Panel

U U

Piecewise Constant

Piecewise Constant

Source Panel Doublet Panel
[l U
Piecewise Linear Piecewise Linear
Source Panel Doublet Panel
V !

Piecewise Quadratic
Source Panel

Piecewise Quadratic
Doublet Panel

Fig. 1. A simple class hierarchy for panel method applications

190 T.W. Chiu

3.4. What would the main program be like?

We can, and should indeed, continue to create higher level classes. For instance, a Body class can
be defined such that each Body object will have a certain number of ConstantSourcePanel objects
(or pointers to those objects) as its data members. The idea will be similar. But for now we will
not further the hierarchy so that we can illustrate the interactions of the panels in a main program.
When the classes are properly defined, the main program will be extremely easy to write, read
and manage. For instance, in a program which deals with non-lifting potential flows, we can see
statements like:

void main()

it
ConstantSourcePanel** Panel = NewArray(Panel,TotalNumberOfPanels);
// declares an array of pointers to ConstantSourcePanel of dimension equal to the
// TotalNumberOfPanels: Panel[1] ... Panel[TotalNumberOfPanels]
for (k=1;k<=TotalNumberOfPanels;k++) 4
{
RHSV[k] = Panel[k]->NeumannCondDueTo (FreeStream) ; B
for(j=1;j<=TotalNumberOfPanels;j++) c1
{
LHSM[k] [j] = Panel[j]->ContributesNeumannCondTo (Panel(k]); Cc2
}
}
i

Within the double-loop beginning with line A, the system of linear equations is formed: LHSM
being the left-hand-side-matrix containing the influence coefficients, RHSV being the right-hand-side-
vector containing the (external Neumann) boundary conditions. Line B can actually be read as “the
entry RHSV [k] is Panel[k]’s Neumann boundary condition due to the freestream”. Line C2 can be
read as “the entry LHSM[k] [j] is what Panel[j] contributes Neumann boundary condition to (the
collocation point of) Panel [k]”.

One should of course take OOP even further by defining a Body class which will have 3D panels
as its data members, and then a Flow class with some bodies and a Freestream as its members.
This will create a highly organised object oriented structure, suitable for large scale CFD software
development. In that case the main program may look like:

void main()

{
Flow NonLiftingFlow; // declares a flow called NonLiftingFlow
NonLiftingflow.run(); // calls the member function called run

}

Whether this might look a bit too object-oriented or over-simplified is only a matter of taste.

4. APPLICATIONS IN GROUND VEHICLE AERODYNAMICS

In the applications of panel methods in ground vehicle aerodynamics, object orientation helps to
make programs more logically organised when different parts of the vehicle body requires different
types of panels. For instance, in the formulation presented in [2] and [3] for the flow over a train
in a cross-wind, the train body consists of constant source panels while the wake is made up of

OOP in Boundary Element Method 191

Flow
Body Body Part
Freestream Constant Source Panel
Body Constant Source Panel
Part

I Node | I Node I
Body = | Edge | ... | Edge |
| Strength | ... | Strength |

Fig. 2. An object ownership structure for panel method applications

Fig. 3. An example of the result of an OOP panel method computation. The colours represent the pressure
on the car surface. A key has not been included due to confidentiality

192 T.W. Chiu

vortex panels. Similarly, in the formulation described in [2, 5, 8] for the flow over a racing car, the
car body consists of constant source panels while the downforce-producing elements, i.e. the front
and rear wings, consist of mainly doublet panels. These different parts of a body can conveniently
be programmed as different objects (body parts), each having different types of panels. Figure 2
illustrates the organisation of such an object oriented system. This type of organisation makes a
panel method program easy to design, write, understand and modify. Figure 3 is a typical example
of such a programming strategy as applied to racing car aerodynamics. The colours represent the
pressure on the car surface. A key to the figure has not been included due to confidentiality in the
Formula One industry.

It is worth noting that, although OOP offers many benefits in terms of software development
and management, it does not usually enhance the accuracy of the original algorithm. Our tests have
shown that results from OOP packages produce identical results as their procedural counterparts.

5. CONCLUSIONS

This paper illustrates how object oriented programming can help to produce well organised high
quality programs for boundary element (panel) methods. Although the computational fluid dynam-
ics (CFD) scene has been dominated by procedural programming languages such as Fortran77 until
now, the use of OOP will surely benefit present and future programmers for years to come.

6. DEFINITION OF SOME PROGRAMMING TERMS

pointer: The memory address of a variable/object. There are many situations in which the use of
the pointer to a variable/object is more desirable than the use of the variable/object itself. Refer
to any programming reference book, such as [7], for details. In C++, the pointer to an object
vecl is given by &vecl. Conversely, the object to which a pointer pvecl is pointing to is given
by *pvecl.

data member: A data that belongs to an object, which is declared in the class definition. For
instance, for a vector class, the data members are the three components, 7, 7, and k. The data
member can be accessed, in C++, using the syntax <ObjectName>.<DataMemberName> such
as vecl.k or <PointerToObject>-><DataMemberName> such as pvecl->k

member function: A function that is defined within a class, which controls how a object of
the class operates on its data members and interacts with other objects. The C++ syntax
for accessing member functions is similar to that for data members.

public, protected, private: Special keywords in some OOP languages which controls the acces-
sibility of data members and member functions by derived classes and other classes. The detailed
meanings of these keywords are not relevant in the discussions in this paper.

REFERENCES

[1] T.W. Chiu. Complez Variable Boundary Element Method for the Design of Multi-Aerofoil Wings, with NWING
for Windows. Computational Mechanics Publications, UK, 154 pages, April 1997.

[2] T.W. Chiu. The applications of modern panel methods to vehicle aerodynamics: racing car and trains. In: H.
Schmitt, ed., Flow of Incompressible Fluids at High Reynolds Numbers. Advances in Fluid Mechanics Series,
Chapter 2, 35-74. Computational Mechanics Publication, UK, May 1997.

[3] T.W. Chiu. Prediction of the aerodynamic loads on a railway train in a cross-wind at large yaw angles using an
integrated two- and three-dimensional source/vortex panel method. Journal of Wind Engineering and Industrial
Aerodynamics, 57: 19-39, 1995.

[4] T.W. Chiu. A two-dimensional second order vortex panel method for the flow in a cross-wind over a train and
other two-dimensional bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics, 37: 43-64, 1991.

OOP in Boundary Element Method 193

[5] T.W. Chiu, C.A.M. Broers, B.D. Wood, A.H. Berney. The application of modern panel method techniques to
sport aero/hydrodynamics. AIAA paper 95-2210, 1-9, 26-th AIAA Fluid Dynamics Conference, 19-22 June
1995, San Diego, USA, 1995.

[6] T.W. Chiu, B. Wood, D.J. Buckingham. Investigation of the aerodynamic performance of a Formula I multi-
aerofoil spoiler using a second order complex variable boundary element method. In: C.A. Brebbia, P.W.
Partridge, eds., Boundary Elements in Fluid Dynamics, 75-90. Computational Mechanics Publications and
Elsevier Applied Science, 1990.

[7] R. Lafore. C++ Interactive Course. Waite Group Press, 1996.

[8] A. Terzi, T.W. Chiu. Modern panel method techniques for modelling wake-body interference. AIAA paper
97-1829, 1-9, 28-th AIAA Fluid Dynamics Conference, 29/06-02/07/97, Snowmass, Colorado, USA, 1997.

[9] B.D. Wood, T.W. Chiu, A.H. Berney. Application of B.E.M. C.F.D. in Formula-One car aerodynamics. Proceed-
ings of the International Conference on Numerical Methods in Continuum Mechanics, High Tatras, Slovakia,
19-22 September, 1994, 1-8, 1994.

