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Numerical studies of dynamic stability
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An efficient numerical procedure is proposed to obtain mean-square stability regions for both single-
degree-of-freedom and two-degree-of-freedom linear systems under parametric bounded noise excitation.
This procedure reduces the stability problem to a matrix eigenvalue problem. Using this approach, ranges
of applicability to the well-known stochastic averaging method are discussed. Numerical results show that
the small parameter size in the stochastic averaging method can have a significant effect on the stability
regions. The influence of noise on the shape of simple and combination parametric resonances is studied.
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1. INTRODUCTION

The stochastic excitations arise in most real systems and their presence, generally is the rule. Very
often they have small intensity and one can use models with small parameters for the mathematical
descriptions of the systems. The most powerful method to deal with such models is the stochastic
averaging method which goes back to book by Stratonovich [1].
Consider the following dynamical system in RN :

dxj(t)

dt
= εfj(x) +

√
εξr(t)gjr(x), (1)

where fj(·) and gjr(·) are deterministic functions, xj(t) is the jth component of the vector x(t),
ε is a small positive parameter, ξr(t) is zero-mean stationary stochastic process with correlation
function.

Brs(t) = E[ξr(t+ u)ξs(u)].

It is well-known (see, e.g. [2–4]) that for sufficiently small ε, and under some conditions, the solutions
of the system (1) may be approximated by the solutions of the following Itô system:

dxj(t) = εaj(x)dt+ εσjk(x)dwk(t), (2)

where wk(t) are independent standard Wiener processes, aj and σjk can be obtained as follows:

aj =

〈

fj(x(t)) +

0
∫

−∞

gis(x(t+ τ))
∂

∂xi
gjr(x(t))Brs(τ)dτ

〉

T

, (3)

σjiσki =

〈 ∞
∫

−∞

gks(x(t+ τ))gjr(x(t))Brs(τ)dτ

〉

T

, (4)
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where 〈·〉T denotes a time-averaging operation,

〈[·]〉T = lim
T→∞

1

T

T
∫

0

[·]dt,

and σjiσki is the (j, k) element of the product of matrix σ and its transpose σ
′. This result is one

of the forms of the stochastic averaging method, and it has many extensions and applications (see,
e.g. books [3, 5–7], and surveys [8–10]).
The method allows the system to be approximated by the simpler systems only over the finite

time intervals. Nevertheless, it is often used in stability questions (see, e.g. [3, 5]). For example, in
the case of the single-degree-of-freedom (SDOF) system

d2x(t)

dt2
+ 2εζω0

dx(t)

dt
+ ω2

0[1 +
√
εξ(t)]x = 0, (5)

the method gives the following approximate condition for the stability of the nth moment [3]:

ζ >
π

8
(n+ 2)ω0S(2ω0), (6)

where S(ω) is the spectral density of excitation ξ(t). However a considerable additional work is
needed to make the approximation (2) valid in stability problems and caution is recommended in
this case [11]. It should be noted that using the condition (6) in applications has stirred a contro-
versy [12]. The quite important issue is obtaining a range of change ε, for which the stability of
the averaged system implies the stability of the basic system. It is difficult to obtain estimations
for this range, and it was analytically done for the system (5) only in the case of telegraphic noise
excitation [13], i.e., for the Markov process ξ(t) = ±b with µ−1 being the mean time between jumps.
The telegraphic noise has only two states and so its usage is very limited.
In this paper we consider the so-called bounded noise excitation model:

ξ(t) = β sin[θ + γt+ αw(t)], (7)

with w(t) standing for the standard Wiener process, θ is an uniformly distributed in [0, 2π] a random
variable independent of w(t); β, γ, α are deterministic parameters. This process is recently widely
used as a random excitation in the dynamical systems (see, e.g., [14–18]). It is a zero mean stationary
process with the following correlation function B(t) and spectral density S(ω) :

B(t) =
β2

2
exp

{

−α2|t|
2

}

cos(γt),

S(ω) =
1

π

∞
∫

0

e−iωtB(t)dt =
α2β2(ω2 + γ2 + α4/4)

4π[(ω2 − α4/4− γ2)2 + α4ω2]
. (8)

The density is considered as a good approximation to the well-known Dryden and von Karman
spectra of wind turbulence by adjusting the values of the parameters β, α, γ [3]. We consider
the mean square (asymptotic) stability for both, the system (5) and for the two-degree-of-freedom
(TDOF) coupled linear systems with parametric random excitation (7). This notion of stability
implies that all second moments of the system solutions tend to zero as t → ∞, and it is important
for many applications (see, e.g. discussions in [5]). An efficient numerical method is proposed to
obtain the stability regions. This relies on the results of the paper [19] which allow to reduce the
mean square stability investigations to some matrix eigenvalue problems.
The outline of the present paper is as follows. The mean square stability for SDOF and TDOF

coupled linear systems with the random parametric excitation (7) is considered in Secs. 2 and 3
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respectively. Here, the ranges of change ε for which the mean square stability of averaged system
implies the stability of the basic system, are obtained numerically. It should be noted that the
system (5) is not asymptotically stable if ε = 0 thus the very precise numerics are needed for
obtaining the ranges. This method is quite efficient in studing simple and combination parametric
resonances for TDOF coupled linear systems with parametric random excitation (7) as it is shown
in Sec. 4.

2. STABILITY REGIONS FOR SDOF SYSTEM

Let us consider the system (5) with excitation (7). This system may represent, e.g. the lateral
motion of a slender column under both axial and lateral excitations, when the motion is dominated
by a single mode (see, e.g. [3] for details).The mean square stability for this system, in the case of
telegraphic noise excitation, was considered in [20]. One can easily argue that the vector

y(t) := col

{

(

dx(t)

dt

)2

, x(t)
dx(t)

dt
, x2(t)

}

satisfies the following equation in R3:

dy(t)

dt
= Ay + ξ(t)Cy, t > 0, (9)

where

A =









−4εζω0 −2ω2
0 0

1 −2εζω0 −ω2
0

0 2 0









, C =









0 −2
√
εω2

0 0

0 0 −√
εω2

0

0 0 0









.

Let us note that the solution of Eq. (9) is a functional of the Wiener process and therefore we
should write y(t) = y(t;w(s)). Using the Cameron-Martin formula for the density of the Wiener
measure under translation [21] we deduce that for all nonrandom λ,

E [exp {iλw(t)}y(t;w(s))] = exp

{

−λ2t

2

}

E[y(t;w(s) + iλs)], i =
√
−1. (10)

Since

sin(θ + γt+ αw(t)) =
exp {iθ + iγt+ iαw(t)} − exp {−iθ − iγt− iαw(t)}

2i
,

it follows from (9) and (10) that

dE[y(t)]

dt
= AE[y(t)] +

β

2i
exp

{−α2t

2
+ iγt

}

CE[eiθy(t;w(s) + iαs)]

− β

2i
exp

{−α2t

2
− iγt

}

CE[e−iθy(t;w(s) − iαs)],

dE[e±ikθy(t;w(s) ± ikαs)]

dt
= AE[e±ikθy(t;w(s) ± ikαs)]

+
β

2i
C exp

{−α2t

2
∓ kα2t+ iγt

}

E[e±ikθ+iθy(t;w(s) ± ikαs + iαs)]

− β

2i
C exp

{−α2t

2
± kα2t− iγt

}

E[e±ikθ−iθx(t;w(s)± ikαs − iαs)], k = 1, 2, 3, . . . .

(11)
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With the introduction of functions

uk(t) :=
1

(2i)k
exp

{

ikγ − k2α2t

2

}

E[eikθy(t;w(s) + ikαs)],

vk(t) :=
1

(−2i)k
exp

{

−ikγ − k2α2t

2

}

E[e−ikθx(t;w(s) − ikαs)], k = 1, 2, 3, . . . .

the infinite chain (11) becomes

dE[y(t)]

dt
= AE[y(t)] + βC(u1(t) + v1(t)),

du1

dt
=

(

−α2

2
+ iγ

)

u1 +Au1 + λCu2 +
β

4
CE[y(t)],

dv1

dt
=

(

−α2

2
− iγ

)

v1 +Av1 + λCv2 +
γ

4
CE[y(t)],

duk

dt
=

(

−k2α2

2
+ ikγ

)

uk +Auk + λCuk+1 +
β

4
Cuk−1,

dvk

dt
=

(

−k2α2

2
− ikγ

)

vk +Avk + βCvk+1 +
β

4
Cvk−1, k = 1, 2, 3, . . . .

(12)

Note that if we have the cosine instead of the sine function in the excitation (7), then we obtain
again the hierarchy (12), where

uk(t) :=
1

2k
exp

{

ikγ − k2α2t

2

}

E[eikθy(t;w(s) + ikαs)],

vk(t) :=
1

2k
exp

{

−ikγ − k2α2t

2

}

E[e−ikθy(t;w(s) − ikαs)], k = 1, 2, 3, . . . .

Therefore, the mean square stability for the system (5) is reduced to the stability for infinite
hierarchy (12). We have to close the hierarchy (12) and omitting the terms un+1, vn+1 in the
equations for un, vn is a common way. Then, the index n is called the truncation index. This
procedure leads to the closed system of linear differential equations of first order with constant
coefficients and is quickly convergent [19]. It is well-known that we have the asymptotic stability
for this system, if and only, if the matrix of its coefficients has all eigenvalues with negative real
parts. For sufficiently large truncation index, the asymptotic stability or instability of this system
determines the mean-square stability or instability for the system (5). Thus, we obtain a tool for
computing the stability curves that separate the stable and unstable regions for the system (5).
Here we are mainly interested in the behavior of the curves for different ε.
In Fig. 1 these curves (solid lines) are presented in the parameter space (β, ζ) for ω0 = 1, γ = 1

and in Fig. 1a for α = 5, ε = 0.5, in Fig. 1b for α = 0.5, ε = 0.001. Also, here are presented the
curves (dashed lines) obtained by the method of stochastic averaging, i.e. by using (6), (8). One can
observe significant distinctions, but it follows from the computations that the appropriate curves
coincide if ε ≤ 0.005 and ε ≤ 0.0001 respectively for α = 5 and α = 0.5. Computations of the
eigenvalues were carried out over 1000× 250 grid of equally spaced points ranging from 0 ≤ β ≤ 10
to 0 ≤ ζ ≤ 2.5 with a help of the Mathematica. The truncation index is chosen in such a way that
a further increase does not change the stability curve. In Table 1 we list the numerical results for
the maximum real parts of the eigenvalues near the stability curve with truncation index n = 6
and n = 100. As it follows from the table, even the truncation index six gives very good results.
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a) b)

Fig. 1. The stability curves for Eq. (5) (solid lines) and the curves obtained from condition (6) (dashed
lines) for the values ω0 = 1, γ = 1. In (a) α = 5, ε = 0.5 and in (b) α = 0.5, ε = 0.001.

Table 1. Numerical results for the maximum of real parts of the eigenvalues
in the case γ = 1, ω0 = 1, α = 0.5, ε = 0.001.

Truncation index
(β, ζ)

n = 6 n = 100

(1, 0.018) −1.62337× 10−6 −1.62337× 10−6

(3, 0.16) −4.27602× 10−7 −4.27602× 10−7

(5, 0.473) −1.49448× 10−6 −1.49448× 10−6

(7, 1.01) −7.77197× 10−7 −7.77196× 10−7

(9, 1.856) −1.52326× 10−6 −1.52325× 10−6

3. STABILITY REGIONS FOR TDOF SYSTEM

We shall consider the TDOF dimensionless coupled linear system:

d2x1(t)

dt2
+ 2εζ1ω1

dx1(t)

dt
+ ω2

1x1(t)−
√
εω1ω2ξ(t)x2(t) = 0,

d2x2(t)

dt2
+ 2εζ2ω2

dx2(t)

dt
+ ω2

2x2(t)−
√
εω1ω2ξ(t)x1(t) = 0.

(13)

This system may represent, e.g. motion of a beam of thin rectangular cross-section with stochastic
follower force and its stability, considered in the paper [22] and the book [3]. Define:

z1(t) =

(

dx1(t)

dt

)2

, z2(t) = x1(t)
dx1(t)

dt
,

z3(t) =
dx1(t)

dt

dx2(t)

dt
, z4(t) =

dx1(t)

dt
x2(t),

z5(t) = x21(t), z6(t) = x1(t)
dx2(t)

dt
,

z7(t) = x1(t)x2(t), z8(t) =

(

dx2(t)

dt

)2

,

z9(t) = x2(t)
dx2(t)

dt
, z10(t) = x22(t).
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Then according to (13), these functions satisfy the following system of ten equations:

dz1(t)

dt
= −4εζ1ω1z1(t)− 2ω2

1z2(t) + 2
√
εω1ω2ξ(t)z4(t),

dz2(t)

dt
= z1(t)− 2εζ1ω1z2(t)− ω2

1z5(t) +
√
εω1ω2ξ(t)z7(t),

dz3(t)

dt
= −2ε(ζ1ω1 + ζ2ω2)z3(t)− ω2

2z4(t)− ω2
1z6(t) +

√
εω1ω2ξ(t)[z2(t) + z9(t)],

dz4(t)

dt
= z3(t)− 2εζ1ω1z4(t)− ω2

1z7(t) +
√
εω1ω2ξ(t)z10(t),

dz5(t)

dt
= 2z2(t),

dz6(t)

dt
= z3(t)− 2εζ2ω2z6(t)− ω2

2z7(t) +
√
εω1ω2ξ(t)z5(t),

dz7(t)

dt
= z4(t) + z6(t),

dz8(t)

dt
= −4εζ2ω2z8(t)− 2ω2

2z9(t) + 2
√
εω1ω2ξ(t)z6(t),

dz9(t)

dt
= z8(t)− 2εζ2ω2z9(t)− ω2

2z10(t) +
√
εω1ω2ξ(t)z7(t),

dz10(t)

dt
= z9(t).

(14)

The vector

z(t) := col (z1(t), . . . , z10(t))

satisfies the Eq. (9) in R10 with 10 × 10 matrices A, C determined by the system (14). Therefore
we can use the approach from the previous section to obtain the mean square stability curves for
the system (13). The stochastic averaging method gives the approximate mean square stability
conditions as follows [3]:

ζ1 >
π

4
ω2S

−, ζ2 >
π

4
ω1S

−,

(

ζ1 −
π

4
ω2S

−

)(

ζ2 −
π

4
ω1S

−

)

>
π2

16
ω1ω2(S

+)2,

(15)

where

S± = S(ω1 + ω2)± S(ω1 − ω2).

In Fig. 2 the stability curves (solid lines) obtained from the numerical computations are presented
together with the curves (dashed lines) obtained from the conditions (15) in the parametric space
(ζ2, ζ1). Here, the parameters are ω1 = 1, ω2 = 2, γ = 1, β = 4 and in Fig. 1a, α = 1, ε = 0.01, but
in Fig. 1b, α = 5, ε = 0.5. The appropriate curves coincide if ε ≤ 0.0001 and ε ≤ 0.1 for α = 1 and
α = 5 respectively.
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a) b)

Fig. 2. The stability curve for Eqs. (13) (solid line) and the curve obtained from condition (15) (dashed
line) for the values ω1 = 1, ω2 = 2, γ = 1, β = 4. In (a) α = 1, ε = 0.01 and in (b) α = 5, ε = 0.5.

Let us now consider the system (13) without assumption that the damping in the second equation
is small. In that case the equation takes the form

d2x2(t)

dt2
+ 2ζ2ω2

dx2(t)

dt
+ ω2

2x2(t)−
√
εω1ω2ξ(t)x1(t) = 0, ζ2 < 1. (16)

Using the stochastic averaging method, the following approximate stability condition was obtained
in the book [3]:

ζ1 >
πω2

4
(1− ζ22 )

−1/2(S+

d − S−

d ), (17)

where

S±

d =
1

π

∞
∫

0

e−ζ2ω2τ cos[(ω1 ± ω2d)τ ]B(τ)dτ,

ω2d = (1− ζ22 )
1/2ω2.

In Fig. 3 the stability curve (solid line) obtained from the numerical computation is presented
together with the curve (dashed line) obtained from the condition (17) in the parametric space

Fig. 3. The stability curve for Eqs. (13), (16) (solid line) and the curve obtained from condition (17)
(dashed line) for the values ω1 = 0.1, ω2 = 2, γ = 2, β = 10, α = 0.5, ε = 0.00001.
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(ζ2, ζ1). Here the parameters are as follows: ω1 = 0.1, ω2 = 2, γ = 2, β = 10, α = 0.5, ε = 0.00001.
One can observe substantial distinction despite the fact that the parameter ε is quite small. It
follows from the computations that the curves coincide if ε ≤ 0.0000001. As in previous cases, the
larger α leads to the larger ε in order to get the coincident curves.

4. SIMPLE AND COMBINATION PARAMETRIC RESONANCES

Let’s consider again the system (13) where the frequencies are commensurable, i.e. n1ω1+n2ω2 = 0
for some integer values of n1 and n2. It is well-known (see, e.g., [23, 24]) that, in this case, parametric
resonances occur when the excitation ξ(t) is in the form ξ(t) = β sin(γt). The simple resonances
arise when the frequency γ is near the values 2ωi/k, (i = 1, 2), while the combination resonances
arise when γ is near the values (ω1 + ω2)/k, where k is a positive integer. In real applications
a perfect periodicity may be rarely observed, and therefore the excitation model (7) can be quite
interesting. In connection with this the influence of the random perturbation on the resonances is
important. The numerical approach presented in previous sections is also efficient in this case. In
Fig. 4 the stability curves in the parametric space (γ, β) are presented for the values ω1 = 0.5,
ω2 = 1, ζ1 = ζ2 = 0.01, ε = 1; in Fig. 4a α = 0.1 and in Fig. 4b α = 0.5. One can observe
from Fig. 4a the simple resonant tongues near the values 1 and 0.5 of the frequency γ. One can
also clearly observe the combination resonant tongue near γ = 1.5 and the higher order resonance
tongues. It follows from our computations that further increase of α leads to disappearances of the
resonant tongues and the region of instability increase (Fig. 4b). However this increase leads also
to the stabilization near the resonant frequency γ = 1.5.

a) b)

Fig. 4. The stability curves for Eqs. (13) for the values ω1 = 0.5, ω2 = 1, ζ1 = ζ2 = 0.01, ε = 1.
In (a) α = 0.1 and in (b) α = 0.5.

The numerical procedure is quite efficient as one can observe from Table 2, where we list the
numerical results for the maximum real parts of the eigenvalues near the stability curve at the
resonant frequencies for the truncation indexes n = 7 and n = 100.

Table 2. Numerical results for the maximum of real parts of the eigenvalues in the case ω1 = 0.5, ω2 = 1,
ζ1 = ζ2 = 0.01, ε = 1, α = 0.1.

Truncation index
(γ, β)

n = 7 n = 100

(0.5, 0.75) −0.000437452 −0.000435079

(1, 0.38) −0.000560318 −0.000560318

(1.5, 0.04) −0.00198176 −0.00198176
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5. CONCLUSIONS

In this paper, an efficient numerical method for, of investigation of the effect of parametric random
excitation on the mean square stability of SDOF and TDOF linear systems is proposed. The
influence of the excitation is modelled using a bounded noise process. The method is based on
reduction of the stability problem to the matrix eigenvalue problem. The efficiency of applications
of the well-known stochastic averaging method to the stability problem is discussed. The results
have shown how important is a proper choice of the range of small parameter in the stochastic
averaging method, especially, if the excitation is narrow-band (α is small). The stability diagrams for
TDOF system with the parametric random excitation are presented where simple and combination
parametric resonances are observed.
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