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Shakedown of elastic-thermo-plastic structures!
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Recently formulated shakedown theorems for materials with temperature-dependent yield stress [1] are
applied to evaluation of the elastic shakedown boundary. In order to simulate actual shakedown behavior
of elastic-thermo-plastic structures resulting from experimental investigations, the material model of the
German mild steel St 37 is considered. It is found that the obtained elastic shakedown boundaries are
within the corresponding boundaries based on the classical shakedown theory.

Two examples are compared with the well-known solutions obtained for the neglected yield stress
dependence on temperature.

1. INTRODUCTION

Two central theorems of the classical shakedown theory (Melan and Koiter theorems) provide criteria
for determining whether the elastic shakedown occurs for a given structure under a specified variable
load range or not. Melan and Koiter theorems were extended to the thermal loading of materials with
the temperature-dependent yield stress by Prager [11] and Konig [6, 7]. These extended theorems
preserve the formal simplicity of the classical theorems but have various undesirable theoretical and
computational disadvantages in shakedown analysis. Namely, the extended kinematic theorem [6,
7] can be expressed as the upper bound theorem only for a simple case of thermally isotropic yield
function and linear temperature-dependent yield stress. Neither of the extended theorems allows for
the simplified computational procedure where only the vertices of the polyhedral thermo-mechanical
load domain need to be considered, except when the yield function is convex in an enlarged stress—
temperature space.

In their recent paper [1], Borino and Polizzotto have established the static and kinematic shake-
down theorems for a class of materials with the temperature-dependent yield stress that avoid the
described undesirable features. Formulation of these theorems is based on general thermo-plasticity
theory that has recently been proposed for metals by Simo and Miehe [12].

The present paper deals with application of these shakedown theorems to an elastic perfectly
plastic material with the temperature-dependent yield stress employing a realistic material model
for the German mild steel St 37. Temperature dependence of the yield stress is experimentally
determined by Szepan [13].

Two problems are solved as examples demonstrating the feasibility of this approach. These ex-
amples show the necessity for defining of the modified elastic shakedown multipliers for the class
of materials with the temperature-dependent yield stress. Their values are lower than those of the
corresponding shakedown multipliers based on the classical shakedown theory.

! Abbreviated version of this paper was presented at the VII Conference Numerical Methods in Continuum Me-
chanics, Stara Lesna, High Tatras, Slovakia, October 6-9, 1998, and published in its Proceedings.
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2. SHAKEDOWN PROBLEM CONSIDERING MATERIALS WITH TEMPERATURE-DEPEND-
ENT YIELD STRESS

Experimental data for a wide class of materials show that the yield stress is a concave function of
temperature in the range 0-600 °C. Such materials can be modelled by using the yield function

F(o,0) = f(o) —0y(6) <0, (1)

where f(o) is a degree-one homogeneous function of stresses convex and smooth by hypothesis and
the yield stress oy (6) is a concave function of the process temperature € in °C. Therefrom, the yield
function F(o,0) is convex and smooth in the stress-temperature space. The yield surface shrinks
homothetically with the increase in 6 (isotropic softening process), that is %% > 0 for all & > 0. For
this class of materials, the associative thermoplastic flow laws are adopted [12]:

. OF . OF
gl PECTES P = —_
F(o,0) <0, A>0, AF(o,0)=0. (3)

where &° denotes plastic strain rate, A is the rate of plastic multiplier and n® denotes plastic entropy
rate.

Let us consider a solid body composed of material defined by (1)—(3) which occupies the volume V
referred to three orthogonal Cartesian axes x = (z1, 2, z3), let it be bounded by the surface S which
may be divided into a part S, with constrained displacements and a part S; on which given surface
tractions occur (S, US; = S). The body is loaded by body forces, imposed strains that are caused by
the temperature field 0(x,t) in V, by tractions on S; , all of which vary with time ¢ in a quasistatic
manner. All these thermo-mechanical actions, collectively denoted as F(x,t), can be represented
as a path arbitrarily shaped within a given load domain II of functional space, that is, any path
within IT is an admissible load history. The domain II is shaped as a convex hyperpolyhedron of
n vertices. The vectors Fy(x), ¢« € I(n) = {1,2,...,n}, that specify these vertices are referred to
as the (thermo-mechanical) basic loads. Any load F(x,t) € II may be described as a linear convex
combination of the basic loads,

F(x,t) =Y Bi(t)Fi(x), (4)
3=1
where the coefficients [3; satisfy the admissibility condition,
n
o ey 1 e R (5)
=1

According to the shakedown theory (see, e.g. [3]), an elastic-thermo-plastic solid body subjected
to the thermo-mechanical loads (4) whose values are below the elastic shakedown limit, may suffer
plastic deformation of limited magnitude during the transient period; after that, it responds elasti-
cally without any further plastic deformation (steady-state response). During the stationary period,
the thermoelastic stress response o®(x, t) and temperature field 6(x, t) corresponding to F(x,t) € II
have the forms

o"(x,t) = > Bi(t) oF(x), (6)
i=1

0(x,t) = Bi(t)6i(x), (7)
=1

where, by definition, o} (x) and 0;(x) denote the analogous quantities corresponding to the basic
loads F(x). Based on the classical Melan and Koiter theorems, Borino and Polizzotto [1] have
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reformulated the extended shakedown theorems in the discrete format [6, 7, 11] in a form suitable
to the present thermo-plastic materials model.

The static shakedown theorem can be formulated as follows. A necessary and sufficient
condition for elastic shakedown to occur in an elastic-thermo-plastic structure subjected to thermo-
mechanical loading variable within a hyperpolyhedral domain II, with basic loads F; , is the existence
of a time independent self-stress field p, such that the total stress fields o;(x) = o} (x) + p(x) and
temperature fields ;(x) nowhere violate the yield function, i.e.

F(oi, 6;) in V, forall i€ I(n). (8)

The kinematic shakedown theorem for elastic-thermo-plastic structure subjected to thermo-
mechanical loading is formulated as follows. In order for the elastic shakedown to occur, the variable
within a hyperpolyhedral domain II, with basic loads F; , should satisfy the following inequality for
arbitrary choices of plastic strain-entropy mechanisms

n n
Z/D(ef,n{)dVZZ/(Uf:equHmf)dV in V. (9)
g i=1"V

The plastic strain field €”(x) related to the strain path has to be compatible with the displacements
u(x) vanishing on S :

n
1
gix)= Z & (x)= §[gradu + (gradu)T) inV, (10)
ge=1.
u=20 on Sy . (11)
For the plastic entropy field n*(x), the following relation holds:

n
=l

The proof procedure for both theorems is similar to that of classical shakedown theory [1].

3. THE ELASTIC-THERMO-PLASTIC MATERIAL MODEL

The experimental investigations [13] of the German mild steel St 37 performed at temperatures
25°C, 100°C, 200°C, 300°C and 400°C show that the yield stress depends strongly on the tem-
perature. By interpolating a polynomial experimental data can be approximated. The yield stress
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Fig. 1. Material model of the German mild steel St 37
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of the German mild steel St 37 is a concave function of the process temperature within the range
25-400°C, as shown in Fig. 1. These investigations also suggest that, under the assumption of
isothermal material behavior, the deviation from the associativity of the flow can be neglected.

4. EXAMPLES

Two simple structures have been studied to illustrate the application of Borino and Polizzotto
shakedown theorems [1], considering the realistic material model of the mild steel St 37.

4.1. Two bar structure

The two bars have equal length, cross-sections equal to A; = A, Ay = 4A, respectively, and are
connected with a rigid block (Fig. 2a). The bar 2 is kept at constant ambient temperature, whereas
the bar 1 is subjected to temperature variation as shown in Fig. 2b. A steady mechanical load
F = aFy, with 0 < a <1 and Fy = 540y(0) (plastic collapse limit load at ambient temperature),
is applied on rigid block.

Elastic stress responses to constant load 0© and variable temperature oV are obtained from the
equilibrium equation, compatibility condition and stress—strain relationship:

1
0? =2 Uzc = aay(O), O-I/H = ——;Bay(O), U;/H = Zﬂay(o) ) J?,A = U;/A =0,
where
Or
p= -2
Uy(O)

is the shakedown multiplier, oy (0) is the yield stress at ambient temperature 6y, o = %aTﬂE is
the maximal thermoelastic stress, ar is the thermal expansion coefficient, ¥ is the temperature step
and F is the Young’s modulus.

The subscripts H and A refer to the values at the heating phase and ambient temperature,
respectively.

According to the static shakedown theorem for materials with the temperature-dependent yield
stress, the stress in the bar 1 violates the yield surface at the heating phase and ambient temperature:

aay (0) - foy(0) + p1 = —0, (9), (13)
aoy(0) + p1 = 0y(0), (14)

or the bar 1 yields in tension at the ambient temperature, while the bar 2 yields in tension at the
heating phase temperature:

a0y (0) + i — 0,(0), (15)
1
aoy(0) + Zﬂay(o) + p2 = 0y(0), (16)
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Fig. 2. Two-bar structure: a) geometry and loading, b) thermal loading history
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where p; and py denote the time-independent self stresses in bars and oy () is the yield stress at
heating phase temperature 6 = 6 + 9.
The elastic shakedown boundary can be evaluated from (13), (14) and (15), (16), respectively:

Uy(ﬂ)
oy (0) :
B=5-5a. (18)

B=1+ (17)

The yield stress at heating phase temperature oy (%) is a function of shakedown multiplier £.
Considering material constants F = 200 GPa and oy =12 - 1076 1/°C as well as the interpolation
function for oy (9) of the German mild steel St 37 from Fig. 1, the shakedown multiplier (17) is:

B=171. (19)

Figure 3 presents the elastic shakedown boundary for the German mild steel St 37 compared
with the solution obtained by the classical shakedown theory [8].

Classical shakedown solution [8]
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Fig. 3. Elastic shakedown boundary of two-bar structure for material model with temperature-dependent
yield stress

4.2. Slab

Let us consider the slab made of the German mild steel St 37. The slab is constrained on the long
sides by sliding hinges, while the short sides are free. The constant stress distribution o, = aoy(0),
with parameter o > 0 and oy(0) (yield stress at ambient temperature) is applied in direction 1, as
shown in Fig. 4a. The slab temperature 6 varies between ambient and heating phase temperatures
(Fig. 4b).

The compatibility condition and stress—strain relationship provide the elastic stress components
for constant stress and variable temperature at heating phase and ambient temperature:

ch e aay(O), Uzc = O‘VUy(O) ) UYH =0, U;/H = —,Hay(O), UYA = U;,A =0,

where v denotes Poisson’s ratio and

arE
Oy (0)

is the shakedown multiplier with thermal expansion coefficient arr , the temperature step ¢ and the
Young’s modulus E.

=
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Fig. 4. Slab: a) structure scheme and loading, b) thermal cyclic load

Since p; = 0 and py = p the time-independent residual stress components, the stress components
o, and o, in the slab can be written as

o = aoy(0), o = avay(0) — Boy(0) + p, (20)

o1a = aoy(0), o2n = avoy(0) +p. (21)

By adopting the Mises yield criterion, the static shakedown theorem for materials with the
temperature-dependent yield stress is as follows,

Ot + Oy — O1a0zn < 03(79), (22)

&L + ofA — 01704 < 03(0) : (23)

where oy () and oy (0) are the yield stresses at heating phase temperature 6 = 65+ and at ambient
temperature 6 , respectively.

An elastic shakedown solution is obtained by use of a polynomial interpolation based on exper-
imental data [13] on the German mild steel St 37 with £ = 200 GPa and ay = 12-10~6 1/°C.
In Fig. 5, the Bree diagram in plane (a, ) is presented. The elastic shakedown boundary for class
of materials with the temperature-dependent yield stress is inside the corresponding boundary ob-
tained by the classical shakedown theory [2].
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Fig. 5. Bree-diagram of slab for material model with temperature-dependent yield stress

5. CONCLUSION

For the elastic perfectly plastic materials with convex yield functions in the stress-temperature
space, Borino and Polizzotto established the static and kinematic shakedown theorems which present
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a theoretical and computational improvement with respect to the classical shakedown theorems
extended to the materials with temperature-dependent yield stress [6, 7, 11]. The application of
Borino and Polizzotto theorems to the realistic material model of the German mild steel St 37, led
us to the conclusion that resulting elastic shakedown boundary depends on the Young’s modulus
and thermal expansion coefficient as well as on the yield stress. Consequently, the elastic shakedown
multipliers obtained by means of these theorems have to be different from those of the classical
shakedown theory. Their values are generally lower than the corresponding multipliers obtained for
the materials with constant yield stress.
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