Computer Assisted Mechanics and Engineering Sciences, 7: 23-37, 2000.
Copyright © 2000 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Steady 3D incompressible flow analysis
for the simplified train—tunnel interaction

Sungcho Kim
Department of Mechanical Engineering, College of Engineering,
Sunchon National University, 315 Maegokdong, Sunchon, Chonnam 540-742, Korea

Bharat K. Soni

NSF Engineering Research Center for Computational Field Simulation,
Mississippi State University, MS 39762, USA

(Received January 28, 1999)

This paper describes the phenomena that occur when a simplified model of train interacts with the tunnel
at three locations — before, entering and leaving the tunnel. The Navier-Stokes equation is solved by intro-
ducing the artificial compressibility to change the governing equation type from the elliptic to hyperbolic.
The Baldwin-Lomax turbulence modeling is employed to simulate the flow field with a Reynolds number
of 10° , and the computation domain is divided into three blocks considering the train and tunnel ge-
ometries. The grid is algebraically adapted determining the maximum solution change plane and solution
weighting factors. The pressure in the adapted solution is not changed much, however, the skin friction is
severely varied comparing with those of the non-adapted solutions. When the train enters into the tunnel,
there are large increase in the surface pressure and skin friction distribution on the train surface.

1. INTRODUCTION

The surface train is still important in view of the passenger and cargo transport, and its maximum
speed will have been increased from 100 km/h in 1920’s to more than 500 km/h in the near future.
It is very interesting and practically essential to understand the flow field around the train, ad hoc,
when it dashes into or comes out of the tunnel because the unbalanced substantial aerodynamic
forces affect the traveling stability. For example, the speed and relative position to the ground of
the high speed train floated and driven by the magnetic force should be controlled accurately, and
thus it is inevitable to decide and to construct the optimal tunnel geometry since there may be a
severe pressure on the surface change when a train moves into a tunnel especially.

There are little experiments for the flow field around the train running into the tunnel due to
the difficulties of the measuring data. Theoretical [29] and computational analysis [16] investigated
one- or two-dimensional inviscid compressible flow induced by the high speed, respectively. Ogawa
and Fujii [16] treated two-dimensional moving train for compressible flow with changing the train
length. Swarden [23] presented the experimental results for vehicle tunnel entry at subsonic speed,
of which geometry is simple axi-symmetric, and Aita et al. [1] investigated the train-tunnel unsteady
aerodynamics experimentally and numerically using the finite element method. Even though they
did not mention the turbulence modeling and the moving grid, the research is valuable because
the realistic train geometry is treated. It is highly complicated and needs large memory storage
and computation time to solve the unsteady three-dimensional real flow field around the train
moving into the tunnel. Especially when the flow field is compressible there are similar complex
pressure distributions at the front and rear parts of the train regardless of its relative location to
the tunnel [16]. The behavior of flow fields in the train-tunnel problem is strongly dependent on the
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parameters such as the tunnel geometry, blockage ratio (cross-sectional area ratio between tunnel
and train), ground effect, train geometry, train speed, etc. The grid system around nearly real shape
of train and simple tunnel was conceptually generated by Casella et al. [7], however, they did not
calculate the flow field and the grid quality is not good.

In this paper, it is focused to calculate the basic flow phenomena for the steady state three cases
according to the relative location of train to the tunnel, i.e., when it runs towards, begins to enter
and leave the tunnel, respectively. The highest speed of modern trains is in the range less than
Mach number 0.3, thus the total flow field can be considered as incompressible. That is, the local
compressibility is neglected in this analysis. The Reynolds number is chosen to be 10° based on
the tunnel diameter and the blockage ratio is 4. Both the cross-sections of tunnel and train are
semi-circle and both the head and tail of the train are same quarter spheres. The train-tunnel flow
is considered to be a kind of internal (inside the tunnel) and external (outside the tunnel) flow, and
these different flow regimes are treated by the multi-block method. In addition, the grid is adapted
by the algebraic method to improve the solution.

2. GOVERNING EQUATIONS
2.1. In Cartesian coordinates

The unsteady three-dimensional viscous flow is governed by the Navier-Stokes equation, which
has three kinds of types — elliptic, parabolic and hyperbolic — depending on the flow states, i.e.
incompressible or compressible. The pressure term plays a role of a dynamic parameter in the
governing equations and needs to be treated specially. If the artificial (or pseudo-) compressibility
is introduced, which Chorin [10] and other researchers proposed to reduce the large computation
time required to realize the divergence free condition, the steady state incompressible Navier—Stokes
equation can be solved effectively in a similar ways used for the compressible flow solver [8]. Basically,
this concept introduces the finite wave speed into the incompressible flow fields to distribute the
pressure, and the propagation speed of pseudo-waves directly depends on the magnitude of the
pseudo-compressibility. It is important to choose the proper value of the pseudo-compressibility to
obtain the desired solution, which is a function of the flow characteristics. Since the wave speed
depends on the pseudo-compressibility, it must be chosen carefully when the boundary layer is
separated. For example, if the pressure fields oscillate due to the finite speed waves, the separation
points may fluctuate accordingly. Now the continuity equation is modified by adding the time
derivative of pressure based on the artificial compressibility concept as below to result in a hyperbolic
system

13p  Ou; _
5ot + : pones 0, (1)

where [ is the artificial compressibility constant and should be chosen according to a Reynolds
number and characteristic length of the geometry through the wave propagation analysis [8, 19].
Theoretically, 8 should be chosen to guarantee the incompressible flow state. Otherwise this may
contaminate the solution accuracy and the numerical stability. For example, if £ is too small, the
boundary layer will not be developed properly. Therefore, the speed of the pressure wave should be
controlled and chosen to avoid the interactions with the vorticity spreading. In this research, the
optimal value of (8 is determined to be 10.

And using with the time averaged primitive variables and constant density, the Navier-Stokes
equation becomes
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where 7;; is the viscous stress tensor and can be simply expressed by the eddy viscosity model as

Bui au]'
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By nondimensionalizing all of the physical variables by a reference velocity and length, the
combination of Egs. (1) and (2) has the conservative form of

(3)
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where D is the conserved (physical) variables vector, F; the component of convective flux vectors,
and Fy; the component of viscous flux vectors, i.e.,
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2.2. In general curvilinear coordinates

In order to calculate the general three-dimensional flow field around an arbitrary geometry, it is
necessary to transform the physical coordinates into the general curvilinear ones as follows

d= ta é‘l ah éi(xaya Z), é-izi == J(xjgj Ikék =y xjgk :Ckgj)v etc.,
where J is the Jacobian of the transformation. Thus the final difference form of the conservative
Eq. (4) becomes
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where * means the vectors in transformed coordinates and § the finite difference and
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2.3. Numerical procedure

Equation (5) can be solved by the implicit, noniterative, approximately factorized and finite dif-
ference scheme. The difference for time with second order accuracy is expressed by the trapezoidal
rule [4, 5]

A 1 A X
6D =3 <6TD"+1 + 5,D”> +0(AT?) (6)
where the superscript 7 and n + 1 mean the time step and At is its size.

The convected flux vectors which are the nonlinear function should be locally linearized using
the Taylor series expansion |8, 19]

et = B+ 25D (et pry 4 oar?), (7)
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where 9F; / dD is the Jacobian matrices and denoted by A; from now on. To write the viscous flux
vector as the function of the physical variables vector, it is assumed that the coordinate system is
orthogonal, viscosity is constant and the velocity field is divergence-free, then

Ayn+1
9
where Im = [i;5], 4i; = d;; and 417 = 0.
The Jacobian matrices defined above is finally rearranged as
Ly LB Ly L3p
l Ly Q+ Liu Lou Lsu
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where @ is the contravariant velocity, Ly the grid speed and L; the metrics, i.e.,
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Substituting Eqs. (6) and (7) into Eq. (5), the linearized system in delta form can be obtained,

h
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where h = A7 (trapezoidal scheme), or 2A7 (Euler’s scheme).

Since it is very difficult to solve Eq. (9) directly, approximate factorization scheme is adopted,
ie., Eq. (9) can be splitted to use a multi-stage one-dimensional inversion scheme such as
ADI(alternating direction implicit) method, which can be effectively solved by the well-known
Thomas algorithm. Thus Eq. (9) is approximately factorized with second order central differencing
and finally comes to get the 3 block tridiagonal matrices. That is, Eq. (10) can be solved through
three-stage ADI method using a block LU (lower-upper triangular) decomposition procedure,

3
I Le (D™ — D™) = RHS, (10)
f==1
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and 7 is a unit matrix.

It is necessary to introduce the diagonal algorithm in order to solve Eq.(10) more efficiently with
the reduced calculation time, which diagonalizes the Jacobian matrices into the similarity form and
converts Eq.(10) into the uncoupled one [14, 17, 26, 27]. The block tridiagonal matrices are changed
to the scalar ones, and there is a similarity transformation which makes the Jacobian matrices to
be diagonalized such as

Ai= Tif\inl,

where A; is a diagonal matrices consisting of the eigenvectors T; of the Jacobian matrices, i.e.,
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and C is the pseudo-speed of sound defined by

C=\/@-Lo2+8Y L7

due to the artificial compressibility. T; is derived in detail in [17] and its determinant is a function
of a kind of pseudo-speed of sound. The linear, implicit and differential operator is changed to the
following form in a similar ways applied to the Jacobian matrices,

A a 5
L, =T, [I + TTJJ&,(Ai - Fi] . o

where I'; = (v + 1) J "1V, - V& TG, .

Meanwhile, the implicit approximate factorization and diagonalization algorithm make the so-
lution unstable due to the higher order oscillations because the second-order central differencing is
used for the space. This phenomena is serious in the calculation of high Reynolds number flows.
Thus some kinds of smoothing (or dissipation) term should be added to Eq. (10) to dissipate the
undesirable oscillation. In general, the following second- or fourth-order artificial dissipation term
is used.

1

2
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vagg’U, = —m(uj'+1 = 2’(1,] + Uj_l).

Thus RHS in Eq. (10) and the differencing operator are modified respectively by introducing the
numerical dissipation,
RHS — RHS — eg[S(Ve,AZ)1D™,
ol
2

(11)
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where e, €1 are the smoothing coefficients depending on the Reynolds number and grid size [9, 15].

2.4. Boundary conditions

In this research, the flow field is divided into three blocks. No-slip condition is applied on the solid
surfaces or walls, the pressure gradient normal to the solid surface is assumed to be zero, the inflow
velocity is simply specified uniform without regard to cases, and the physical variables on the other
boundaries are calculated by the extrapolation to implement new boundary conditions. Data on
the block boundaries is interactively transferred, and the symmetric condition is adopted on the
symmetric (or central) surface in the way that there is no cross-flow velocity components through
that surface, while the Neumann condition is applied on the far boundaries.

2.5. Turbulence modeling

There seems to be no results that the algorithms adopted the artificial compressibility can suc-
cessfully handle the widely used k£ — € turbulence modeling. In most cases of engineering, even an
algebraic turbulence modeling has predicted the flow field pretty well. Therefore the mixing length
theory for turbulence modeling known as Baldwin-Lomax model [3] is used, where the turbulence
viscosity is evaluated based on the vorticity magnitude.
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3. GRID SYSTEM

The simple geometries used in this research consist of the tunnel and train, which are half circular
cylinder with radius R and 1/4 sphere (nose) + half circular cylinder (main body, r = 0.5R)+1/4
sphere (tail), respectively. It is assumed that the train runs toward the tunnel from right to left.
The tunnel length is 3R and the train length (L;) 2R. The calculations are executed for the distinct
three cases, i.e.,

1. when the train is located before the tunnel by 1R,
2. when the train is entering the tunnel by 0.5R, and

3. when the train is coming out of the tunnel by 0.5R.

All of the flow fields are divided into three blocks like the following ways. z-direction is consistent
with that of the train driving, y-directions normal to the train surface, and z-direction taken from
the symmetric vertical surface to the ground. The origin of coordinates is at the ground and center
of the tunnel exit.

Three cases are calculated, i.e. case 1 consists of inside the tunnel, behind the tunnel including
the train, and behind the tunnel wall (40x25x25, 90x25x%25, 90x20x25), case 2 of left side of the
tunnel, inside the tunnel, and behind the tunnel (20x44x25, 40x25x25, 70x44x25), and case 3 of
left side of the tunnel, inside the tunnel, and behind the tunnel (45x44x25, 40x25x25, 35x44x25).
These sizes of grid guarantee the grid-independent solutions. Especially, the smallest grid spacings

near to the solid wall are chosen to satisfy y*+ < 5, where y* = 4 1;)1 .

The grid systems with the multi-blocks are effectively and easily generated using the GENIE++
[22] which is developed on the base of INGRID [20] and GENIE [21]. Figure I shows three distinct
grid systems for each case.

4. GRID ADAPTATION

The computational fluid dynamics (CFD) is mostly used to solve the flow field known or unknown by
the experiments, and its accuracy depends not only on the solution algorithm to treat the governing
equations but on the grid system. For example, it is difficult to capture the location of shock wave
accurately in the compressible flow under the restriction of the grid size even though the solution
procedures work very well, and thus the correct solution may not be obtained using the classical grid
system. The concept and necessity of the adaptive grid have been stemmed from that, in other words,
it is desirable to make the grids depending on the solution behavior such the ways as the dense grid
in large gradient of solution and the sparse grid in small gradient of solution. The adaptive grid can
be obtained by the redistribution [11, 13, 30], refinement [2, 28] or solution order increase; the first
method adjust basically the grid spacing due to the solution gradient without changing the number
of grids and may result in skewed grids, in the second one grid points are added locally in the region
with large solution gradient, and the third one uses the higher order solution algorithm in the area
with large solution gradient without changing the original grid system. The redistribution grid can
be generated through the optimization, algebraic or partial differential method. The optimization
method [28], based on the variational theory and iterative gradient optimization procedure, gives
generally the smooth, nearly orthogonal adapted grid but it needs more time consumption.

The algebraic method [11-13, 31] easily generates the concentrated grid, which may not main-
tain the smoothness or orthogonality. Finally, the partial differential method [25] is similar to the
optimization one in view of using the variational approach, but it should solve additionally the
Euler-Lagrange equations. The method based on the algebraic procedure is partially used to gen-
erate the adaptive grids. The general and distinguished features embedded are as follows:

1. it can generate three-dimensional adapted grid based on surface-by-surface algebraic method
with scaling the weight function,
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2. the subsection concept (not multi-block) is introduced to scale the weight function and to treat
the specified regions individually,

3. Non-Uniform Rational B-Spline (NURBS) interpolation, reparameterized uniform B-spline and
transfinite interpolation are adopted to redistribute the adapted grid, to retain the sharp corners
in the grid, and to remove the discontinuities between the subsections, respectively,

4. the diffusion concept is applied to obtain the local smoothness,
5. the local clustering, local orthogonality and solution interpolation are also available.

The weight factors which play a role to allot each weight to solutions or flow variables — pres-
sure, velocities, density, temperature, etc. — should be given regardless of the choice of adaptation
methods. It is suggested in this research to determine the weights and adaptation direction. The
weight function is taken by

W =1+ (S\wj)wfld;, TAj=1, (12)

where w; is a Boolean sum of solution gradient and curvature, A; the solution weight factor associ-
ated with flow parameter, wy the weight factor to enhance the total effect, and d; the distribution
factor to generate weights. A Boolean sum w is defined by

w=o0g9®Pk=aqg+pk+(1—-a-p)gk, (13)

where ¢ and k are the scaled gradient and curvature of the flow variable, respectively, and o and
B holding between 0 and 1 are parameters to be specified like that the grids are concentrated in
the region of high gradients and large curvatures, and can be determined analytically [24, 31]. The
chosen solutions are three velocity components, pressure and vorticity in this study.

The solution weight factor A; can be evaluated by Eq. (13) on the basis that the more change in
flow parameters the more weight is allotted,

8:::1-

wj
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2
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where ~ means the locally normalized value of solution. Even though the present method can
generate the adapted grid generally and efficiently, it may have some restriction to be applied in
three-dimensional flow field which contains the severe change in geometry or singularities. To avoid

Fig. 1. Comparison of the original and adapted grids at /R = 4.97 (case 1); solid: adapted, dotted: original
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Fig. 3. Comparison of the original and adapted grids at /R = 0 (case 3); solid: adapted, dotted: original

this disadvantage, the adaptation needs to be executed on the principal plane (or along the constant
axis) where solution gradients are dominant. The adaptation plane is chosen by the following criteria,

direction of adaptation = direction of MAXIMUM (|d;| + |d;|), (15)

where d; = 37, |0fk/0zi.

The principal adapted surface determined from Eq. (15) is yz-plane, i.e., z =constant plane for
three cases all. It means that flow properties are dominantly changed on the plane normal to the
direction of the main flow. Three representative adaptive grids are shown in Figs. 1-3, where it
is found that there are pretty changes in grids. Figure 1 is picked up at the mid-section of the
train, and Figs. 2 and 3 are at the tunnel entrance and exit, respectively. This method can handle
the region to be adapted individually depending on the geometry characteristics, and so the whole
region is divided into three subzones according to grid blocks.

5. COMPUTATION RESULTS

It is assumed that the train does not experience the ground effect, i.e., there is no gap between the
train and ground. There is no flow separation around the train in this calculation, and the complete
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vortex pair is not found around and behind the train. Figures 4-7 show the pressure distributions on
the train surface according to the azimuthal angle ® (measured from the symmetric plane toward
the ground), where X = (z — z)/L; and z is the location of the train nose. Comparing the body
in the pure external flow, the train head and tail meeting the ground are considered likely as the
stagnation point neglecting the effect induced by the ground. The pressure increases from the front
nose and then decreases in the train head region because the flow is accelerated, and the reverse
phenomena is found in its tail. It is easy to find in Fig. 7 that the pressure distributions are similar
each other when the train enters and leaves the tunnel (case 2 and 3). Especially, the pressure
distributions near the tunnel entrance and exit are different comparing that of case 1, in other
words, the pressure on the train surface is influenced when it just passes the two locations, entrance
and exit. The pressure distribution obtained from the adapted grid appears a little bit larger in the
train head and smaller in its tail than that calculated from the original grid. The pressure on the
surface generally decreases as ® increases except near the tail. Figure II shows schematically that
the surface pressure is high not only near the train nose but also just before its tail. Especially the
same pressure regions in case 2 and 3 appear to be banded just before the train nose due to the
influence of tunnel entrance and exit, and the pressure in the central region of the body part is
higher than that in the side. Figures 8-11 show the skin friction distribution on the train surface.
It is found that there are significant differences in skin friction distributions between the adapted
solution and the non-adapted one in contrast to the pressure distribution. Regardless of the relative

0.0 0.2 0.4 0.6 0.8 1.0
X( (x-x0)/Lt)

Fig. 4. Comparison of the pressure coefficient in case 1 (symbols: adapted)
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Fig. 5. Comparison of the pressure coefficient in case 2 (symbols: adapted)
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Fig. 6. Comparison of the pressure coefficient in case 3 (symbols: adapted)
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Fig. 7. Comparison of the pressure coefficient according to the train location (symbols: adapted)
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Fig. 8. Comparison of the skin friction coefficient in case 1 (symbols: adapted)
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Fig. 9. Comparison of the skin friction coefficient in case 2 (symbols: adapted)
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Fig. 10. Comparison of the skin friction coefficient in case 3 (symbols: adapted)
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Fig. 11. Comparison of the skin friction coefficient according to the train location (symbols: adapted)
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location of the train to the tunnel, the skin friction increases as ® increases. This means that the
flow field is highly interacted near the ground, and thus it is necessary to study the ground effect on
the train aerodynamics. And the skin friction in Fig. II is higher just before the end of train head
and just after the beginning of train tail than that in the other parts. In Figs. 9-10, there are sharp
rises of the skin friction according to entering into and exiting from the tunnel, and this phenomena
is different from that of case 1.

Thus drag by the skin friction is mostly induced in the train head and tail parts, ad hoc, the
train is suddenly confronted to the very large drag when it enters into the tunnel, in contrast to this,
the train comes to experience more small drag when coming out of the tunnel (Fig. 11). Comparing
the magnitudes of the maximum skin friction with that of case 1, case 2 has 5 times and case 3
1/3 times. The general trends of the skin friction distribution in case 2 and 3 are similar each other
except their magnitudes. Figure III shows schematically the skin friction distributions for the three
cases. Since there is no separation in this flow field, the skin friction is always positive. In case 1, the
skin friction is higher near the junction of the train and ground than the other parts, and in case 2
and 3, more higher skin friction is induced near the entrance and exit of the tunnel. As mentioned
above, the train is under the very high skin friction condition when it enters into the tunnel. These
drastic aerodynamic forces induced by the direct interaction of the tunnel have an influence on the
stability of the train, thus the concept of driving control should be introduced to compensate the
drastic unbalanced force especially when the train speed, e.g. in case of the train floated and driven
by the magnetic force, is very high. In conclusion, the train experiences suddenly very large drag
when entering the tunnel, and reduced drag when leaving it.

Finally, Fig. IV shows schematically the velocity magnitude contour on the symmetric surface.
There is small velocity region near the vertical walls of tunnel, and very high velocity is found near
the right corner of tunnel in case 2, and above the train inside the tunnel in case 3.

6. CONCLUDING REMARKS

The flow field induced by the train and tunnel interaction may be considered as an example of
the internal-external flow. Three cases are calculated for the different locations of the simplified
train shape, i.e., before the tunnel, when entering and leaving the tunnel, respectively. And the
grid is adapted to improve the solution with determining the principal plane on which the flow
variables are changed dominantly. When the train enters into the tunnel, the pressure distribution
in the train head and the skin friction distribution both in the train head and tail are severely high
comparing with the other cases, and thus the unsteady aerodynamic force is acting. Pressure is
higher in the train head than in its tail, so the positive pressure drag is formed, and the skin friction
is always positive since there is no flow separation on the train surface. When the high speed surface
train is designed, these unbalanced aerodynamic force should be considered in the design procedure
of the driving control system and some special method should be also introduced to reduce the
aerodynamic noise and unstability due to the suddenly disturbed pressure field.
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