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In the paper some results of investigations of two intelligent information systems: a feedforward neural
network and an adaptive fuzzy expert system, are presented. The systems can be used for example in
approximation and control problems or in diagnostics. The adaptive fuzzy expert system is constructed
as a hybrid in which a fuzzy inference system is combined with a neural network. In the learning process
for given set of training points an optimal value of the so-called generalized weight vector is searched. The
Lapunov theory is used to examine the non-sensitivity of the optimal value of a generalized weight vector
to initial conditions and training data. Some necessary and sufficient conditions are formulated in terms
of the Hessian matrix of the error function.
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1. INTRODUCTION

Feedforward neural networks capable to approximate with a given accuracy any continuous real-
valued functions defined on a given compact subset A of R* and known only in a finite number of
points of its domain, are called mapping neural networks.

The architecture of a neural network is described by a number of neuron layers and number of
neurons on each layer. Each neuron is characterized by its activation multi-parameter function and
is related to other neurons in a subsequent layer by means of a multi-parameter affine functions.
All those parameters form the so-called generalized weight vector ® and have to be fixed after the
so-called training process during which the network (i.e. the function realized by the net) is adapted
to the known values of the approximated functions in those finite number of points.

There is another type of large intelligent information systems used in the class of problems
covered by feedforward neural networks, namely fuzzy inference systems. Such systems combined
with neural networks can form the so-called adaptive fuzzy systems or the more general class of
systems, if constructed with additional module, namely adaptive fuzzy exzpert systems. Sometimes
such systems are called adaptive fuzzy inference ones, since, in the contrast to the classical expert
systems, there is a lack of an explanation facility (cf. [1, 2, 9]).

The structure a fuzzy inference system is similar to a two-wing multi layer feedforward network,
in which each node performs a particular function on incoming signals using a set of parameters
specific to this node.

Both information systems: feedforward neural networks and adaptive fuzzy inference systems
(and the more general: adaptive fuzzy expert systems) can be used for a particular problem is
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a learning procedure is build for them according to which parameters of the systems are updated,
or better to say: they are adapted to given training data. The latter is called a set of training pairs.
Each learning procedure has some specific algorithm for finding an optimal set of parameters.

The learning procedure is realized in the form of a the so-called ¢raining process, which is a prob-
lem of minimization of some error function of the system F(©.X,Y), where X,Y represents the
whole set of training pairs and ® describes the set of system parameters, regarded as a vector in
multidimensional space.

The training process is a realization of some adaptation algorithm. Adaptation algorithm reflects
finding an asymptotically stable equilibrium solution to the following ordinary differential equation
for some O,

O - eve r©:xy), )
t

with an initial value ©(0) = ©°, where x,y € S. Here S C R**! is a set containing all training
pairs (X,Y) C AxR

In the sensitivity analysis conditions are formulated for the independence of the equilibrium point
of the choice of the initial value ®(0) and for the whole set S C R**! containing the training pairs
(X, Y)CAxR

Sensitivity considerations of mathematical models that often have to describe physical systems,
are most important in the everyday life of engineers and researchers engaged in modelling. The
mathematical models of the systems are idealized, inexactly identified, or themselves are subject to
unpredictable changes with time due to influence of other systems. Moreover, the environment or
date that have been used to build the models could be not exact or given with some errors. So there
is always a discrepancy between the physical reality and the mathematical model.

Such a discrepancy is often due to some parameter deviations. Sensitivity analysis provides
the engineers and the researchers with methods for investigating or minimizing the effects of such
parameters deviations. This is of particular importance to modern control theory which plays a main
role in designing and running high sophisticated systems with prescribed or optimal behaviour on
the basis of some mathematical models. Then results are useless in practice if they prove to be very
sensitive to parameter changes.

Besides the control theory sensitivity considerations are useful in designing mapping neural net-
works and in general adaptive systems such as fuzzy inference and expert systems, and in applica-
tion of gradient descent method, in constructing adaptive algorithms for training processes for such
schemes.

Sensitivity analysis has its well developed methods applied to mechanical and electrical engineer-
ing ([3]). It is rather not well situated in the computer science nor in the artificial intelligence.

The aim of this paper is to give some fundamental notions and very first results of sensitivity
considerations in designing neural networks, fuzzy inference and expert systems.

The present investigations on sensitivity and convergence of learning algorithms, the latter ap-
pearing in the constructed expert system, play an important role for the whole designed systems.

2. FUZZY EXPERT SYSTEMS VERSUS NEURAL NETWORKS

Ezpert systems are computer consulting programs that perform reasoning using previously estab-
lished rules for a well-defined and narrow domain. They combine knowledge bases of rules and
domain-specific facts with information from users or clients about specific instances of problems in
the knowledge domains of the expert systems.

Knowledge supplied to the expert system comes mainly from human experts. It can be in the
form of experimental results or measurements, and finally it can come from a survey of the literature
related to the domain of the expert system. Knowledge bases in expert systems can be modified.
Expert systems are knowledge driven so changes can be made only if the knowledge is being changed.
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Expert systems and neural networks are particularly good technologies to integrate because
of their complementary natures. However, either or both can be combined with other intelligent
subsystems to address deficiencies in current solutions to real-world problems. Hence, in order to
mimic an aspect of human reasoning by doing approximate reasoning fuzzy systems based on fuzzy
set theory [15] and associated techniques should be developed. Fuzzy systems apply techniques that
can broaden the usefulness of expert systems, allowing operation in gray areas where precise values
may not be known or may not be necessary for drawing conclusions.

The adaptive fuzzy expert system (AFES) has to solve some drawbacks of the expert system and
to use the main advantages of neural computing and at the same time to give the possibility to deal
with imprecise data forming useful conclusions for end users. Adaptive fuzzy expert systems are
less precise than conventional systems but are more like our everyday experience as human decision
makers. This feature makes knowledge engineering accessible to a wider variety of analysts, end
users, and experts.

Constructing an AFES one can abandon the help of the human expert in the formation of fuzzy
inference rules and membership functions of fuzzy sets involved. The adaptive features of neural
networks are used to tune-up (adjust) the shapes of the functions when the training data is given.
The neural network component is useful in constructing an optimal set of rules. On the other hand
the fuzzy logic makes possible to formalize knowledge in a block of imprecise (fuzzy) rules that
mimic more accurate aspects of human reasoning. It is interesting that for the adaptation process
the true nature of the information coming in the form of training is irrelevant. However, a uniform
distribution of the training sample over the whole domain is relevant for the process and the further
use of the system.

A major limitations of expert system approach arises from the fact that experts do not always
think in terms of rules. Hence the knowledge acquisition becomes a fundamental limitation of the
expert system approach. Another difficulty arises in the area of large system development, i.e.
for real-world applications, where the development process becomes difficult to manage. Working
with experts and dealing with the complexity of large systems validation and verification of the
constructed expert system becomes difficult, if not impossible, as many lines of reasoning must be
checked.

Other limitations are related to the fact that expert systems do not automatically benefit from
experience with their use of novel examples and thus do not learn from failures.

Adjustment limitations of an expert system to the varying environmental conditions form the
other difficulty in fuzzy expert system applications.

Neural networks can be preferable to expert systems when rules are not known, either because
the topic is too complex or no human expert is available. If an appropriate (i.e. uniformly distributed
in the domain) training data can be generated, the neural network may be able to learn enough
information to function as well as, or better than, an expert system. Moreover, modifications are
exercised by retraining with updated data set, thus eliminating programming changes and rules
reconstruction. The data-driven property of neural networks allows adjustment of changing envi-
ronments and events. Another feature and advantage of the neural network implementation is the
speed of operation after the network is trained.

All above propositions do not prevent the following statement: the adaptation process is equally
important for the both systems: feedforward neural networks and adaptive fuzzy systems. Hence
the sensitivity analysis devoted to the results of the optimizations problems is necessary.

3. HOMOGENEOUS M-DELTA BACKPROPAGATION LEARNING LAWS

The architecture of a neural network is described by a number of the neuron layers and number
of neurons on each layer. Here we restrict our considerations to one hidden layer. It is worthwhile
to mention that from the theoretical point of view each multi layer feedforward network can be
designed as one-hidden network.
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In the vector notation the output vector z from the network is given by the composition of two,
general non-linear activation functions f/ and f/ with linear (affine) functions, namely

z = [ (%)), (2)

where x = (29, 1,...,2,) is the input vector enlarged by the bias component zy = 1. Each of
the activation functions f%, L = 1,2, depends of a set of the parameters m, ¢’s. Using a common
denotation f{ for activation functions of the both layers L = I or II and each neuron h = Jork,
we have assumed

5
my

L(yy —
) = 1+ exp(—=6F\)

3)

Here X stands for zJI- or zXl input values (activations) in the hidden (I) layer, and the output (IT)

one, respectively. The control parameters m,’; of the range of the threshold functions form a vector
M and 67 parameters control the shape of the threshold functions and form a vector A.

Let uj}Z = fJI(z]I) be output value of j-th neuron in the hidden (I) layer, and ull = fH(27) -
output value of neuron « in the output (II) layer. The u’s outputs being functions of z’s inputs
are related through the threshold (activation) functions fff taken from a class of sigmoidal-type
functions given by (3). For the p-training pair (pattern) we can write the a-th component of the
output vector of the network as:

Yo = fa(x¥;©) = ug = fI(2]) (4)
with
l n
CEDI AR (0 N R D 8

where the zero coordinate of each x is assumed equal to 1 (and in this way the so-called bias
can be written under the sum sign), and we have defined © as the generalized weight vector of the
network the components of which consist of three parts. The first part ® is formed of the connection
(standard) weights of all neurons of the network, starting with the weight wyo of the first neuron
on the input layer and ending with the weight wy, of the last neuron of the output layer. The next
parts of ® are the vectors A and M, respectively. Let us notice that the both vectors A and M
form two additional sets of neuron’s parameters which are introduced in order to improve the actual
sensitivity of the network [4, 8, 11, 12].

In the adaptation algorithm the improvement of the accuracy of the approximation of the func-
tion f is gained by the change of ® in “time” and here is determined by the error backpropagation
algorithm. This algorithm is based on the minimization of the quadratic error function of the net-
work

P

F(@,X,Y)=3 F(6.XY) (5)

p=1

in which at each p-presentation the component error function F,(®,X,Y) corresponds to the p-th
training pair:

Fy(©,X,Y) = 5 3 [falx®, ©) — 12]°
a=1

where fo(xP,0) = a”(a:’f,a:@,...,a:ﬂ,@) is the a-th component of the output vector obtained
in response to the current state of the weight vector ® and X = {x!,x? ... ,x"}, while Y =

{y',¥?,...,y"}. Here a general m-dimensional output is allowed.
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After a single presentation, corrections of each weight component are made in the direction of
the maximum decrease of F},(®) given by its negative gradient with respect to ®. It means that the
adaptation algorithm reflects finding an asymptotically stable equilibrium solution to the following
ordinary differential equation (compare (1)) for some ©

OO _ _¢ve FO:1x.y), )
5
with an initial value @(0) = ©°, where x,y € S. Here S C R"! is a set containing all training
pairs (X,Y)C Ax R

In the numerical treatment the minimization is gained according to so-called learning iterative
algorithm:

el(l) = ®0 —’I’IVQFl(GO,X,Y), (7)
B (1) = eiP) - Vel P), X, X), (8)
©’(p+1) = ©%(p) — Ve Fp11(0°(p),X,Y), (9)

e U Sl 2 Si=2 5w,

where @ is the initial value and the index s correspond to a “time” ¢ = s AT, while A7 is the time
increment and n = A7 ¢ is called a learning step.

4. ADAPTIVE FUZZY EXPERT SYSTEM AFES

The basic idea of the complex fuzzy expert system is to realize the process of fuzzy reasoning and
to express parameters of fuzzy reasoning by connection weights of an neural network and forms of
membership functions of fuzzy sets.

In general case a fuzzy expert system AFES can be composed of 5 principal elements [8, 11,
14]: functional consequent part unit, fuzzifier of premise parts, premise part unit, fuzzy rules and
defuzzifier. The fuzzifier performs a mapping from the crisp input space 4 € R™ to fuzzy sets
defined in A, where a fuzzy set is characterized by a membership function p4 : A — [0,1]. A fuzzy
rule consists of a set of linguistic rules in the form: If a set of conditions are satisfied, Then a set
of consequences are satisfied. The defuzzifier performs a mapping from fuzzy sets in R™ to crisp
point in R™.

The proposed approach can either refine the fuzzy if-then rules from human experts or automat-
ically derive them from input-output examples. Our adaptive neural network is a two-wing multi
layer feedforward network, in which each node performs a particular function on incoming signals
using a set of parameters specific to this node.

Let us notice, that if the set X is the range of one of physical variables, (e.g. velocity), then with
a fuzzy subset covering [Aj]le we can combine a set of linguistic variables, by attaching to each
of A; its name, e.g. if k = 3 , then we can call A; - small, Ay — medium, A3 — large velocity, for
example. In the case of fuzzy rules the condition “z; is A;” can be expressed as follows “z; is small
velocity” and pa, (1) is the level (degree) at which we regard z; as a small velocity.

Then in the fuzzifier for each component of input variable z; a corresponding fuzzy subset covering
[Aj]§:1 is chosen. Let us notice that in general more than one fuzzy subset covering can be defined,
especially in the case when knowledge from more than one expert is used.

In the premise part unit premise parts of fuzzy rules are constructed and the corresponding crisp
weights are determined.

A fuzzy expert system AFES maps families of fuzzy sets in to families of functions in the input-
output product space X x Y. In the simplest case AFES encodes the fuzzy rule (A, By) in which
Ap is a (family of) fuzzy sets defined on the universal sets X of inputs and By, is a (family of)
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functions for Y outputs. A L-fuzzy rule (Ar, Br), where L = (j1,...,jn), AL = (4j,,...,4;,) can
be expressed in the natural language as

- =zpisd; and 2pisAj, ... and . gnis Ay, Then  y=B(z1,...,2n). (10)

Firing strength of L-fuzzy rule x is

wr(x) = [] nay, (@) (11)
i=1
where
Lok e
pa; (zi) = & exp ¢ 0.5 [(@#) (12)

is a membership function of the set A;, assumed here as a generalized Gaussian function with 4
parameters [11, 12, 13]. Final output of the AFES at x is

M M -1
z=h(x,a,b,c,d,R) = w(x)B(x) {Z wL(x)} : (13)
=1 L=1

The constructed for the approximation problem the fuzzy expert system is based on Takagi
and Sugeno’s fuzzy if-then rules forms of which have fuzzy sets involved in premise parts, while
consequent part (i. e. output of each rule) is a function of input variable (originally it was an affine
function). The final output of the network is the weighted sum of all rule’s output. This kind of
form of fuzzy rules is one of three types of fuzzy reasoning proposed in the literature. Two other
types of rules have fuzzy sets in both: premise and consequent parts.

Then an adaptation procedure for parameters of AFES is to design. A typical procedure uses
a modified gradient descent method during which the parameters of the system are updated accord-
ing to given training data. '

An adaptation algorithm is built when an error function F'(a,b,c,d,R,X,Y) depending on the
parameters a, b, c,d, R and the whole set of training pairs (X,Y) has been chosen. Here
ki
Ji=1?

ks ki ks 3
v [ajl]j-— R [bh]ji:l ) g [ch]ji:1 ) d = [d"]

are vectors composed of premise part parameters, and

R=[Rf]., L=L2...,M,

is the vector composed of consequent part parameters. Let Q = [B,R] with B = [a, b, ¢, d]. This
vector we will call further a generalized weight vector.

The adaptation of the weight vector Q is gained by the change it in “time” exactly in the same
as the generalized weight vector of the neural network © in “time” with the help of a very similar
to (1) learning law (compare (6)). We define the error function F' as

P
F(a,b,c,d,RX,Y) =) Fy(a,b,c,d,R,x,y), (14)
=1
with
Fq(aa b, c, d7 Ra X, Y) = (h(l'(l]’ xga >y 737%7 Q) o yq)27 (15)
where the partial error function F,(Q,x,y) corresponds to the g-th training pair: (z{,...,z%;y9)

with ¢ = 1,..., P, and y7 is the target vector, h(z{,zd,..., 2}, Q) is the output function from (13),
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obtained in the response to the current state of the weight vector Q. The adaptation process is an
iterative procedure corresponding to the continuous, ordinary vector differential equation
dQ(?)

5 = ¢VaF(Qixy), (16)

where ¢ is responsible for the speed of learning and can depend on the iteration step and x,y €
X,Y) denotes a typical element of the training pairs. To this equation we ought to add the initial
conditions: Q(0) = Q. In the numerical treatment the adaptation algorithm relies to calculate
succeeding iterative values of the generalized weight vector Q°, for s =1,2,...,andp=1,2,...,P
with initial value Q° = (B?, R’) according to some learning iterative equations.

Since the error function is quadratic in the vector Q2 = R we are applying the least square
method in the process of adaptation of Q. Hence we are using two different algorithms for correcting
both parts of the generalized weight vector Q.

The first part of weight vector Q, namely Q; = B is adapted in the course of a non-linear
gradient descent method while the second part, namely Q2 = R is adapted according to a recursive
least square method (RLS). The first part of iterative equations look like

B!(1) =B’-uVeFR(B%Rx,y),

Bt (1) = B*(P) — uVeFi(B*(P),R*(P),x,1), Pre=19 ... (17)

B’(p+1) = B*(p) — 4 VBFp11(B°(p), R*1(P),x,y), (18)
for=p —d 20 =B - Candis =03

B'(p+1) = B'(p) — p VBF,11(B'(p), R, x,), (19)

Sy OB PG S geapig SRU

Here the index s corresponds to a “time instant” ¢ = s A7, while 4 = A7¢ is the learning step.

5. SENSITIVITY ANALYSIS OF ADAPTATION ALGORITHMS

Sensitivity theory can be treated as a section of a general system theory, taking into account
parameter variations as inputs instead of signals. It is useful to subdive sensitivity theory into two
categories: sensitivity analysis and synthesis. Sensitivity analysis provides the basic methods to
study the sensitivity of a system under consideration to parameter variation. On the other hand,
according to [3] sensitivity synthesis is defined as the design of dynamic systems, especially feedback
systems, with due regard to sensitivity to parameter variation. In this paper we will be concerned
mainly with the methods of sensitivity analysis.

To examine sensitivity of the training (adaptation) processes for both intelligent systems dis-
cussed in the previous two sections we will use a common denotation for their training pairs and
the generalized weight vectors ® and Q.

For discussing the sensitivity of a system with respect to different parameters, input data from
the training set, we introduce an example of sensitivity measure.

Let TRE be the training set defined by :

TRE = {(x%,y) | y? = g(x?), ¢=1,2,3,...,P}, (20)

where P is the number of elements of training set. Let the output (transition) of an intelligent
system (i.e. a neural network or a fuzzy system) will be characterized by a quantity

g =1{x9),

with x € R™, and called a system or output function, which among a dependence on the input
vector x € R", is a function of the generalized weight vector ®. We may introduce the sensitivity
of the output with respect to the input vector x represented by the set of training pairs TRE. This
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is not typical in the classical sensitivity theory (cf. [3]). However, in the process of construction and
adaptation of a given structure of a neural network to the training set TRE, one wants to check
which of output components are relevant to the TRE and which are redundant. On the other hand
in the adaptation process we can follow the classical approach [3], where sensitivity functions are
given in terms of the partial derivatives of the system function z = f(x, ®) with respect to ©. In
such a process we are interested in the proper choice of an optimal value of ©® and training pairs
from TRE are regarded as parameters. Then we define the next notion.

Definition 1. Sensitivity of the system output f(x,®) with respect to the initial choice of the
weight vector is defined as

C = C(x,0(t),0°) := Vgof(x, O(2)). (21)

This sensitivity matrix will appear in the restricted form in the further analysis.

As it was shown in the previous sections for both intelligent information systems characterized
by the error function system F'(®;x,y) the optimal value of the weight vector © is determined with
the help of an iterative adaptation algorithm corresponding to a discrete version of a continuous
process that deals with finding an equilibrium solution of a vector differential equation

de(t)
dt

with an initial value ®(0) = @° and x,y € D, where D contains TRE.

Let us notice that the minimization of the error function F' by changing the vector ® in “time”
t is a kernel of the learning process. If the minimal value of the error function is reached at some
value ®* then the gradient of F with respect to ® should vanish at this point. If this minimal value
is the same for all elements (x,y) € D, where set D contains the training set TRE, then we can end
the optimization process and at the same time the adaptation of the value of the weight vector ©,
i.e. the learning process. From the point of view of the differential equation (6) that solution will
be constant. Now coming the “time” ¢ that make the order in the learning process, we can see that
if there exist t* such that @(¢t*) = ©* that

de
Ve F(©®*;x,y) =0 then % & Oiidor: b2 & (23)

= —-{Ve F(0;x,y), (22)

Let us use the following denotation for the right hand side of the system (6).
U(0®;x,y) = —{ Ve F(O;x,y). (24)

Now, according to the classical concepts form the theory of dynamical systems we can introduce
the following

Definition 2. Let the following system of the differential equations

% =U(6ixy), S8, yehci- ™ (25)

is given. A point ©* is called the point of equilibrium of the system (25), if ©(t) = ©®* is the
solution of this system, where

U(e*;x,y) =0.

In the adaptation process the interesting point of equilibrium corresponds to the optimal choice of
the (generalized) weight vector ©, for which the function F reaches the minimum for all (x,y) € D.
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To examine the sensitivity of the adaptation algorithm with respect to:
e the choice of the initial parameters ®@° of the system,

|
e to choice of the elements of the training set TRE,

we can formulate the following common requirements:

1. There exists a point of equilibrium, as a limit value of the solution ®(¢) for ¢ tending to infinity,
for each choice of the initial value ®° from some non-empty set O*.

2. There exists a point of equilibrium, independent of elements (x,y) from the set D.

3. The value of the equilibrium point is independent of the initial value ®° and of elements (x,y)
from D.

The Lapunov theory [6] examines the necessary and sufficient conditions for the stability and
asymptotic stability of nonlinear system differential equations. There exist theorems concerning the
continuous dependency of solutions on the initial conditions and initial value of parameters. For a
clarity we write

% =U(©;Z), ©€cR?, Z=(xy)eDcR"™ (26)

instead of (25). Following the standard approach and developing the right hand side of Eq. (26) in
the vicinity of @ :

U(0;Z) =U(0y;Z) + Ve U(O; Z)(® — Oq) + R2(0; Z), (27)

we obtain the corresponding equation in the first approximation, where the third element is small
of the second order

Ry =0(© -6y |*). (28)

Due to U(®;x,y) = —€ Ve F(O;x,y), the square matrix VoU(@®y; Z) is proportional to the
Hessian H of the error function F' at the point @y,

VoU(®y;Z) = —¢H(O;Z), H(®:Z):=VeVeF(O®;Z). (29)

Notice, that if @y = ©@*, the first element in (27) vanishes. If @ is not a point of equilibrium, then
U(®y;Z) # 0 and in the linearized case we will search for a solution of the nonhomogeneous system
of linear equations.

Notice, that the Hessian is a symmetric matrix and all its eigenvalues are real. Hence the condition
for the negative Hessian H to be a stability matrix can be formulated as the requirement for H to
be a positive matriz.

The basic result of the qualitative theorem tells that the stability properties of the nonlinear
system is the same as the linearized one, when the nonlinear term Ry is bounded. Hence assuming
that on the domain O* x D the nonlinear part Ry is bounded we can formulate the following:

Theorem 1. The sufficient condition for the point of equilibrium ©* of the nonlinear system (6)
for each Z = (x,y) € D C R?,
de

= = ~Ver(©;2), )

to be asymptotically stable is that the Hessian H is a positive matrix. And moreover
e The point of equilibrium is not sensitive to a choice of the initial value, i.e. the function w(t) :=

Veo®(t) tends to the zero matrix for the increasing to infinity “time” (i.e. when t tends to co),
provided the Hessian of the error function is positive.
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e The point of equilibrium is not sensitive to a choice of the training vectors, i.e. the function
W (t) := VzO(t) tends to the zero matrix for the increasing to infinity time, provided the Hessian
of the error function is positive. and the mixed gradient of the error function M := VzVgF
vanishes at the point of equilibrium for Z,

M(®*;Z) := VzVeF(®*;Z) =0, for Z €D. (31)
O

6. SENSITIVITY ANALYSIS OF THE SHAPE OF MEMBERSHIP FUNCTIONS

In the case of fuzzy inference and expert systems the choice of the initial shape of the membership
functions of fuzzy numbers appearing in premise parts of fuzzy rules can influence the final adapted
form. Let us try to formulate the conditions of its sensitivity.

If in a fuzzy system the weight vector ® is adapted in the course of solving a differential equation
of the type (25) with the output function f(x,®), then we can define a corresponding sensitivity
matrix.

Definition 3. Sensitivity of the system output f(x,®) to the choice of the initial shape of the

membership function, i.e. to the choice of the initial values of the parameters ©Y, is the matrix

function
C = C(x,0(t),0°) := Ve, f(x,0(t)) Vo © (t) (32)
where

(a’ b,C, da R) S (617 ®2)

It is a submatrix of the matrix C defined by (21). From the classical results of qualitative analysis
of dynamical system governed by differential equations follows that the gradient of solution of (25)
with respect to the initial condition, i.e. the vector w(t) = Vgo®;(t) that describes the sensitivity

of actual values of the membership function parameters @ (¢) to its initial value @Y, satisfies the
equation:
dw(t
™ — _em©u;DwE (3)

with the initial condition w(0) = 1. Moreover, the solution of (33) tends to zero with ¢t — oo, if the
Hessian H is positive defined.
Notice, that from (32) we obtain

C(t) = Ve, f(x,0) w(t). (34)
Now we may formulate

Corollary 1. If the assumptions of Theorem 1 are satisfied and the gradient V@? f(x,©) is

bounded then at a equilibrium point (i.e. for the optimum value of weight of vector ®* ) the
output of the system is not sensitive to the initial shape of membership function.

Corollary 2. If at the equilibrium point the gradient of the system output V@? f(x, ®*) vanishes,
then the same happens with the sensitivity matrix C(x, ®*, @°).
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We will close this section with a short discussion concerning the representation of the Hessian
H(®;Z) in the case of ARSE. Since then the error function F(©1, @5, Z) is

P P
F(©;2) = 5 3 (F(x1,0) )’ = 2 3~ Fy(@;x, )2, (35)

First we can calculate the Hessian of the component F of the error function
v®1v®1 Fq b v@1v@1 f(xq, ®17 92) ¥ 2V@1fq ® VG‘)lfq (36)

where

_OF, OF

oy, On 5

I = —2(yq =t f(xq7 917 92)) &

It is clear, that the Hessian is the sum of positive matrices

P
2) " Ve,f!®Ve,f!

g=1

and of the matrix

P
Z I'"Ve,Ve, f(x%,0,0,),
q=1

which in general is non-defined. Knowing this representation one can try to formulate next conditions
of positiveness.

As a illustration of the use of the formulated equation of the adaptation algorithms we will
show, how the membership functions of the fuzzy sets involved in the premise parts change after
the adaptation in the fuzzy expert system.

Pictures presented in Fig. 1 illustrate the membership functions before and after training proce-
dure.

In our example these functions are generalized Gauss functions with several parameters to be
adapted during the learning process. Moreover, different types of membership functions of the fuzzy
sets involved in the definition of fuzzy multi-conditional inference rules can appear. In the numerical
applications we have shown that this particular class of membership functions allows to obtain a
very high level of accuracy when applied to approximation of the multivariate fun(j:tions. This feature
may be due to the exponent b’ appearing in the definition of the membership functions.

7. THE CONDITION OF THE CONVERGENCE OF THE ADAPTATION ALGORITHMS

We are going to iterative learning algorithm
Ot = @° —¢Ves F(O°,X,Y), Sz . L. (38)

where index s corresponds of the number of iteration step, and ¢ is called a learning step. From our
tests and experiments and from experiments other authors (for example [7, 8]) we conclude that the
parameter { responsible for the speed of learning cannot be constant during process of adaptation.
In the first stage of learning, when we are far from optimal solution & bught to be large, so that the
process reaching the minimum of the error function is quick enough. Close to the optimal solution
¢ should decrease in order to omit large oscillations and to speed up the process of learning.
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The necessary condition of convergence of the learning algorithm is the following relation

lim @ -@°|,=0, (39)

$—00

where @° € R?, and @ is the number of components of the generalized weight vector.
Let us write the iterative relation (38) in the following formula

oF

oF s

Ll R IS R ufhilas 00
i 0

where the relation between £° and +* is following

1 1

S S S
= =7 41
£ =V et o7 (41)
005 003 0% |,
The condition (39) will be satisfied if
v¢ = 0. (42)

There are some laws that govern changes of £ and introduce its dependence on the step number.
Results of Pol’ak [10] indicate that beside the condition (42) we have

3. o et (43)

In the case of a convex function F'(®%) the iterative algorithm is convergent to minimum value
of function F'. This condition gives the wanted dependency of the parameter v on the step s. The
examples of functions that fulfill the both (42) and (43) are

v = 70, ceR 73=—2, Uepsls 4 = £ ; (44)
s+c T slog s

where 7° is a constant value, which we can treat as an initial value. It is obvious, that is sufficient
for (44) to satisfy the last condition for all s big enough.
In our papers we have used the following relation for a variable parameter ¢°

0

et o
S TN T (45)

The numerical experiments confirm the applied heuristic and the choice of dependent £°. In the first
stage of learning process we chose v on based on the maximum value of the norm of vectors from
the training set. We calculate v° as

1
A0 = e (46)

n b
ma. Z IL‘p 2
p:1,2,.).(.,P ( (z7) )

=0
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8. CONCLUSIONS

Derived and formulated in Sec. 6 conditions of sensitivity and nonsensitivity are formulated in
the terms of matrices of partial differential equations of the error function, and hence they are
local conditions. It means that they can be treated as some hints for sensitivity of the actual
iterative adaptation laws. However, having those conditions we can try to formulate their iterative
counterparts.

In our opinion the crucial characterization of the insensitivity of the optimal value of the gener-
alized weight vector, at least in the continuous case, is the positiveness of the Hessian matrix of the
error function. Hence, in either case, one should control the sign of the eigenvalues of the Hessian
during the iteration process, in order to stay on the secure side of the optimization process.

As far as the condition of the convergence of the adaptation algorithms in the paper [4], the
authors make some simulation with proposed above formulae for the parameter ¢ responsible for
the speed of learning. Further numerical simulation are made in the recent paper [5]. The more
detailed discussion will be made in the doctoral thesis of Mr. Gotabek, which is under preparation.
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