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The torsion of bars with multiply connected cross section by means of the method of fundamental solutions
(MFS) is considered. Random numbers were used to determine the minimal errors for MFS. Five cases
of cross sections are examined. The numerical results for different cross sectional shapes are presented to
demonstrate the efficiency and accuracy of the method. Non-dimensional torsional stiffness was calculated
by means of numerical integration of stress function for one of the cases. This stiffness was compared with
the exact stiffness for the first case and with the stiffness resulting from Bredt’s formulae for thin-walled
cross sections.
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1. INTRODUCTION

The solution of the torsion problem for multiply connected cross section is more difficult than for the
simply connected one. Probably this is the reason why there are not too many papers considering
this problem. For a doubly connected cross section, the exact solution exists for the annular cross
section. Weinel [1] proposed the solution for a doubly connected cross section with eccentric circles.
In the work [2], it was found that for the doubly connected domains with a prescribed area of the
hole and the cross section, the ring bounded by two concentric circles has the maximal torsional
rigidity. The authors in the book [3] present the description of the method of solution of the torsion
problem for doubly connected cross section in which outer and inner contours are rectangles. This
method was proposed by Russian authors in a series of papers in the 1950s and it is based on
expansion of stress function into a Fourier series. In order to obtain an effective solution, this
method requires the solution of infinite system of linear equations. Wang [4] presented a method
for torsion analysis of two connected cross sections in a shape of flattened tube consisting of two
half-annular pieces and two rectangular pieces. It adopted an approximate solution in the form of
truncated series of functions of its own. In addition, to satisfy the boundary conditions, it used the
boundary element methods. In the work [5], Wang generalized this method to treat two arbitrary
connected cross sections consisting of circular arcs and straight lines, all with a uniform thickness.
A modified Fourier series method for the torsion analysis of bars with multiply connected cross
sections was presented in the work [6]. The effectiveness of this method was presented for polygonal
cross sections with polygonal holes.
Mejak [7] presented a method for an optimal shape design of doubly connected bars in torsion.

He solved the problem numerically by the finite element method. In the work [8], the Trefftz method,
using special-purpose T-functions, was utilized to solve the problem of torsion. As examples, the
singly connected, multiply connected and composite cross sections of bars in the shape of regular
polygons were considered. The proposed Trefftz function not only satisfies governing equation but
also the boundary conditions on some sides. In the article, the boundary collocation methods and
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the method of the last squares were used for the stress function. Using the analytical integration,
an analytical solution for the dimensionless stiffness of the bar was obtained.
A special group of papers considers the thin-walled cross sections. A simple formulation for

the torsion analysis of the thin-walled, hollow bars, which was proposed by Bredt [9], can be
found in elementary textbooks of strength of materials. In the work [10], the author proves that
Bredt’s theory remains truer for thin tubes with multicell cross sections than for doubly connected.
A closed-form expression for the torsion constant and the thin-walled typical multicell profiles is
presented in the work [11]. Generalization of Bredt’s method for moderately thick and hollow tubes
with polygonal shapes is given in the work [12]. The purpose of this paper is the application of the
Method of Fundamental Solutions and random numbers to torsion problem with multiply connected
cross sections.
This method belongs to the so-called meshless methods which have been more and more pop-

ular in last two decades. The MFS was first proposed by the Georgian researchers Kupradze and
Aleksidze [13]. Its numerical implementation was carried out by Mathon and Johnston [14]. The
mathematical analysis (convergence and stability) of this method was considered in papers [15–20].
The comprehensive reviews of the MFS for various applications can be found in [21–22]. However,
the method of fundamental solutions has been applied basically for simply connected regions. There
are only few papers with the application of MFS for annular region, e.g., [23–25].
This paper presents the application of this method to multiply connected cross sections, namely:

(I) circular with circular centered hole, (II) square with circular centered hole, (III) square with
square centered hole, (IV) circular with two circular symmetrically placed holes, (V) square with
two circular symmetrically placed holes.
In this paper, searching for solutions was used to determine minimal errors of the method of

fundamental solutions. In the first step, the error on the inner and outer contour was determined
for the set of variable coefficients. Next, its minimum value was determined. This method turned
out to be a very time-consuming task, because it required a lot of errors to be searched. Therefore
to reduce this very large number of searched errors, random numbers were used. So far, no authors
have used random numbers to determine the minimum errors of MRP.

2. FORMULATION OF THE PROBLEM

The problem of torsion of prismatic bars with multiply connected cross section (see Fig. 1) is
formulated in terms of stress function, which satisfies Poisson’s equation [26]:

∇2ψ = −2µω in Ω, (1)

with boundary condition on the outer contour:

ψ = 0 on Γ0, (2)

and boundary conditions on the inner contour:

ψ = ψi on Γi, i = 1, 2, . . . , n, (3)

where ψ(x, y) is stress function, µ is shear modulus of bar material, ω is angle of twist of bar per
unit length, ψi are unknown values of constant of stress function at inner contours, n – number of
hollow areas.
For determination of unknown constants ψi the following integral relations (Bredt’s theorem)

are given:
∮

Γi

∂ψ

∂n
ds = −2Ωiµω, i = 1, 2, . . . , n, (4)

where Ωi is area bounded by Γi.
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Fig. 1. Multiply connected cross sections of bar.

After introducing the non-dimensional variables:

X =
x

a
, Y =

y

a
, Ψ(X,Y ) =

ψ(x, y)

a2µω
. (5)

The considered boundary value problem has the following dimensionless form governing equation
for stress function:

∂2Ψ

∂X2
+
∂2Ψ

∂Y 2
= −2 in Ω̃, (6)

with boundary condition at outside contour:

Ψ = 0 on Γ̃0 (7)

and boundary condition at inner contour:

Ψ = Ψi on Γ̃i, i = 1, 2, . . . , n (8)

and integral relation in the form:

∮

Γ̃i

∂Ψ

∂n
ds = −2 · Ω̃i, i = 1, 2, . . . , n, (9)

where Ω̃i is dimensionless area bounded by Γ̃i.

3. METHOD OF SOLUTION

In the MFS, the approximate solution of the problem is represented in the form of a linear super-
position of source functions (fundamental solutions) with singular points that are located outside
the domain of the problem. These points, called source points, are located on a “pseudo-boundary”
outside the region. The “pseudo-boundary” has no common points with the boundary of the re-
gion. Because the fundamental solution satisfies the differential equation at any point, except at the
source point; it follows that this representation satisfies exactly the governing equation, whereas
the boundary conditions are only satisfied approximately. Therefore, the MFS belongs to the group
of Trefftz methods for which it is essential that the governing equation is exactly satisfied. The
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weights of coefficients, which occur in the approximate solution, are determined by the satisfaction
of the boundary condition, usually on a set of boundary points (collocation points). Using MFS,
the solution of boundary value problem formulated by (6–9) can now be given as the sum of the
particular solution and the homogeneous solution:

Ψ = −
1

2

(
X2 + Y 2

)
+

MO∑

j=1

cj ln
[
(X − XSOj)

2 + (Y − YSOj)
2
]

+

n∑

i=1

WIi∑

k=1

c
(i)
k ln

[(
X −XSI

(i)
k

)2
+

(
Y −YSI

(i)
k

)2
]
, (10)

where XSOj, YSOj are coordinates of source points which are placed outside the region Ω̃ (Fig. 2),

XSI
(i)
k , Y SI

(i)
k are coordinates of source points which are placed inside of inner contours Γ̃i, where

i = 1, 2, . . . , n, MO is the number of source points outside the region Ω̃, MIi is the number of

source points inside each inner contours Γ̃i, cj and c
(i)
k are unknown coefficients.

Fig. 2. Arrangement of the source points on the similar contour.

The unknown coefficients cj , c
(i)
k and constants Ψi are determined by collocation of boundary

conditions (7, 8) and application of the integral relations (9).

In order to do this, NCO collocation points on outer contour with coordinates XCOl, YCOl as

well as NCI collocation points on each inner contour with coordinates XCI
(i)
m , YCI

(i)
m are chosen.

Substituting solution (10) into the boundary condition (7) we obtain:

MO∑

j=1

cj ln
[
(XCOl − XSOj)

2 + (YCOl − YSOj)
2
]

+
n∑

i=1

MIi∑

k=1

c
(i)
k ln

[
(XCOl − XSI

(i)
k )2 + (YCOl − YSI

(i)
k )2

]

=
1

2
(XCO2

l + YCO
2
l ), l = 1, 2, . . . ,NCO. (11)
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Similarly, substitution of solutions (10) into boundary condition (8) leads to a system of linear
equations:

MO∑

j=1

cj ln
[
(XCI(i)m + XSOj)

2 + (YCI(i)m − YSOj)
2
]

+
n∑

i=1

MIi∑

k=1

c
(i)
k ln

[
(XCIm − XSI

(i)
k )2 + (YCIm − YSI

(i)
k )2

]

=
1

2
(XCO2

l + YCO
2
l ) + Ψi, m = 1, 2, . . . ,NCI. (12)

Using Bredt’s conditions (9) on the inner contour Γ̃i we have:

MO∑

j=1

cj

∮

Γ̃i

∂

∂n
ln

[
(Xs +XSOj)

2 + (Ys − YSOj)
2
]
ds

+

n∑

i=1

MIi∑

k=1

c
(i)
k

∮

Γ̃i

∂

∂n
ln

[(
Xs − XSI

(i)
k

)2
+

(
Ys − YSI

(i)
k

)2
]
ds = 0, (13)

for i = 1, 2, . . . , n.
In this way we obtain NCO+ n · NCI+ n equations with MO + n ·MIi+ n unknowns.
For further numerical calculations the following assumptions: M = MO + MIi and NC =

NCO+ NCI were adopted.

4. TORSIONAL STIFFNESS AND STRESS

The relations between the nonzero components of stress and stress function are given by following
formulae:

τyz = −
∂ψ

∂x
, τxz =

∂ψ

∂y
. (14)

The torsional moment is given by integral of the shear stresses over the area, which gives:

SZ =

∫∫
(τyzx− τxzy) dxdy = −

∫∫
∂ψ

∂x
xdxdy −

∫∫
∂ψ

∂y
ydxdy + 2

n∑

i=1

Ωiψi. (15)

After simple manipulation, we get:

SZ = 2

∫∫
ψdxdy + 2

n∑

i=1

Ωiψi. (16)

By introducing the non-dimensional variables into (16) the torsional moment can be related to
non-dimensional stress function:

SZ = µ · ω · a4 ·

[
2

∫∫
Ψ(X,Y )dXdY + 2

n∑

i=1

Ω̃iΨi

]
. (17)

Next, the non-dimensional torsional stiffness can by expressed as:

Ms =
SZ

µ · ω · a4
= 2

∫∫
Ψ(X,Y )dXdY + 2

n∑

i=1

Ω̃iΨi. (18)
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Fig. 3. Thin-walled bar with closed cross-section.

In the elementary textbooks about strength of materials [9] one can find the expression for
torsion stiffness for the thin-walled hollow bars (Fig. 3), known as Bredt’s formula:

SZ =
4 · µ · A2

mid
· ω

∮ ds

t

, (19)

where Amid is the area bounded by the centerline of the wall cross section, t is thickness.

5. TEST EXAMPLES

In order to demonstrate the accuracy and the effectiveness of the proposed method, seven cases
of cross sections are considered: (I) circular with circular centered hole, (II) square with circular
centered hole, (III) square with square centered hole, (IV) circular with two circular symmetrically
placed holes and (V) square with two circular symmetrically placed holes.

The formulation of boundary values problems for seven considered cross sections in terms of
non-dimensional stress function Ψ(X,Y ) is given in Figs. 4–8. In this problem, the thickness E is
a parameter of structure which changes in a permissible range, i.e., 0 < E < 0.5 for problems I-III
and 0 < E < 0.25 for problems IV and V.

Fig. 4. Formulation of boundary value problem for circular with circular centered hole cross section
of a bar. Problem I.



Method of fundamental solutions and random numbers for the torsion of bars. . . 105

Fig. 5. Formulation of boundary value problem for square with circular centered hole cross section of a bar.
Problem II.

Fig. 6. Formulation of boundary value problem for square with square centered hole cross section of a bar.
Problem III.

Fig. 7. Formulation of boundary value problem for circular with two circular symmetrically placed holes
cross section of a bar. Problem IV.

Fig. 8. Formulation of boundary value problem for square with two circular symmetrically placed holes
section of a bar. Problem V.
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On the basis of [27], the maximum relative error on the outer and inner boundary is determined
as follows:

δMAXo =
max |Ψouter|

max(i) |Ψmidouter i
|
, (20)

δMAXin i =
max |Ψouter i − Ψmidinner i |

max(i) |Ψmidinner i |
, (21)

where δMAXo – is the maximal error on the outer contour, δMAXin i – is the maximal error on the
inner contour, where i = 1 for the problems I-III and i = 1, 2 for the problems IV and V, Ψouter –
is the value of the stress function on the outer contour, Ψmidinner i – is the middle value of the stress
function on the inner contour, where i = 1 for the problems I-III and i = 1, 2 for the problems IV
and V.

6. NUMERICAL RESULTS

In this paper, the MFS applied to the problem of torsion of a prismatic bar depends on number
of parameters. These parameters are as follows: the distance of the outer contour containing the
source points from the boundary – Sd, the distance of the inner contour containing the source
points from the boundary – Sm (Fig. 2), number of source points – NC, number of collocation
points – M , and thickness of the elements – E. A minimum error was founded for different values
of E in the paper. In this case, the error is multidimensional, with many local minima (Fig. 9).
Figure 9 shows that the error function has many local minimums.

Fig. 9. Searched errors.

On the basis of [27] it was found that the error of the method in MRP increases with increasing
of distance Sd and Sm. The method of determining the minimal value of error on outer and
inner contour by using searching has become well-founded for this reason. On the basis of previous
studies [27] the optimal values of N and NC were founded. For this reason, the article assumes it
to be fixed. It was found that proposed random choice of independent variable (distance from the
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contour) is better than the sparse initial tabulation with possible zooming in the zone of expected
extrema. On the basis of [27] it was concluded that for assumed measures of error for the internal
contour it is not recommended to adopt fixed values for the solution to the internal contour.
In the first case, for given M , NC equal to 100 for problems I and II, and 120 for cases III-VII,

Sd was searched in a range from 0.01 to 1 with step 0.01 for problems I-III and with step 0.005
for problems IV and V. In addition, Sm was searched in a range from 0.01 to E-0.01 with step
0.01 for problems I-III and 0.005 for problems IV and V – method I. This method turned out very
time-consuming. A very large number of errors has to be searched for determining optimal values
of the errors.
To reduce the number of searched points, value Sd was multiplied by random numbers generated

from a range 0-1, M, NC remained constant/retained the same/constant value and the value of Sm
was searched within the assumed range from 0.01 to E-0.01 for the cases I-III, and 0.005 for the cases
IV-V – method II. In this way, in all studied cases, the amount of searched points was significantly
reduced, what led to a reduction of 2,440 points in the most extreme case. The minimum values
of errors on the outer and inner contour for cases I, III, IV and V are of the same range, as well
as on the inner contour for the case II, as compared with searching within a given range of Sd. By
contrast, for case II, the values of errors on the outer contour became deteriorated.
In the next step, the value of the Sm was multiplied by random value generated in a range 0–1,

constant values M, NC were retained the same as in the previous methods and Sd was searched
in a range from 0.01 to 1 with step 0.01 for cases I-III and 0.05 for IV and V – method III. By
using random numbers, 800 points of search were assumed for cases I-III and 1580 for cases IV
and V. As a result, the minimum values of errors on the internal contour for all studied cases and
minimum values of errors on the outer contour for cases I, IV and V are comparable with the first
of these methods, whereas minimum values of errors on the outer contour for cases II and III have
deteriorated.
Also numerical experiments were carried out, which determined the Sd and Sm by multiplying

established ranges of random values generated from the interval 0–1 and assuming values of M ,
NC from other methods – the method IV. In this case, only 100 values of errors were searched.
Comparing with the first of these methods, for cases I, II and III, an increase of value of error
occurred at the outer contour follows, while for cases II and V the same increase occurred on
the internal contour. In other cases, the errors on the values of inner and outer contours were
comparable.
Based on the numerical results presented in Tables 1–10, it can be concluded that the smallest

values of error were obtained for case I and the largest for case III (square with square centered
hole). The possible explanation of the large error in latter case can be the existence of the corners
of the inner boundary. In the remaining cases when the inner contour or contours were smooth
(circular) the values of error were much smaller.
The calculation of the dimensionless torsional stiffness was conducted for the circular with

circular centered hole. The calculation of stiffness based on the approximate solution was completed
by dividing of the cross section into triangular elements, which were integrated with the seven-point
Gauss quadrature. The obtained results were compared with the exact formula for dimensionless
stiffness of the annular region:

Ms =
π

2
·

((
1

2

)4

− E4

)
. (22)

Next, the result was compared with the results of the dimensionless stiffness resulting from
Brendt’s formula for the annular region:

Ms−Bredt =
π

4
·

(
1

2
+ E

)3

·

(
1

2
− E

)
. (23)

The results of the comparison are presented in Fig. 10.
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Table 1. The maximum value of the local error on an inner contour – the case I, M = 100, NC = 100,
for optimum values of Sd and Sm.

E

Method I Method II Method III Method IV

Inner
contour

NES∗
Inner
contour

NES∗
Inner
contour

NES∗
Inner
contour

NES∗

0.1 2.43E-15 360 3.47E-15 180 2.20E-15 800 8.13E-15 100

0.15 3.78E-15 520 4.64E-15 260 2.32E-15 800 5.32E-14 100

0.2 9.58E-14 760 1.37E-13 380 9.74E-14 800 1.52E-12 100

0.25 8.34E-12 960 1.00E-11 480 9.35E-12 800 5.27E-11 100

0.3 3.10E-10 1120 5.35E-10 560 3.79E-10 800 1.63E-09 100

0.35 9.32E-09 1320 1.29E-08 660 1.16E-08 800 3.81E-08 100

0.4 1.61E-07 1560 2.70E-07 780 1.64E-07 800 4.15E-07 100

0.45 3.98E-06 1760 5.98E-06 880 3.56E-06 800 7.35E-06 100
∗ NES – number of searched errors

Table 2. The maximum value of the local error on an outer contour – the case I, M = 100, NC = 100,
for optimum values of Sd and Sm.

E

Method I Method II Method III Method IV

Outer
contour

NES∗
Outer
contour

NES∗
Outer
contour

NES∗
Outer
contour

NES∗

0.1 7.76E-06 360 1.36E-05 180 2.65E-05 800 8.74E-03 100

0.15 8.18E-06 520 3.59E-05 260 1.22E-05 800 4.42E-04 100

0.2 8.46E-06 760 1.28E-05 380 1.00E-05 800 1.75E-04 100

0.25 9.38E-06 960 1.44E-05 480 9.93E-06 800 5.65E-05 100

0.3 1.15E-05 1120 1.68E-05 560 1.16E-05 800 3.76E-05 100

0.35 1.23E-05 1320 2.57E-05 660 1.46E-05 800 4.72E-05 100

0.4 2.07E-05 1560 2.99E-05 780 2.06E-05 800 4.22E-05 100

0.45 2.60E-05 1760 6.47E-05 880 3.80E-05 800 5.79E-05 100

Table 3. The maximum value of the local error on an inner contour – the case II, M = 100, NC = 100,
for optimum values of Sd and Sm.

E

Method I Method II Method III Method IV

Inner
contour

NES∗
Inner
contour

NES∗
Inner
contour

NES∗
Inner
contour

NES∗

0.1 1.29E-10 360 2.60E-10 180 1.60E-10 800 9.37E-06 100

0.15 1.70E-09 520 1.86E-09 260 1.97E-09 800 3.63E-05 100

0.2 1.46E-08 760 2.09E-08 380 1.84E-08 800 9.59E-05 100

0.25 1.49E-07 960 2.72E-07 480 1.68E-07 800 1.35E-04 100

0.3 1.73E-06 1120 2.71E-06 560 1.85E-06 800 5.45E-04 100

0.35 2.14E-05 1320 2.78E-05 660 2.12E-05 800 8.87E-04 100

0.4 2.61E-04 1560 3.41E-04 780 2.61E-04 800 4.55E-03 100

0.45 2.38E-03 1760 2.47E-03 880 2.59E-03 800 1.08E-02 100
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Table 4. The maximum value of the local error on an outer contour – the case II, M = 100, NC = 100,
for optimum values of Sd and Sm.

E

Method I Method II Method III Method IV

Outer
contour

NES∗
Outer
contour

NES∗
Outer
contour

NES∗
Outer
contour

NES∗

0.1 1.08E-03 360 2.01E-01 180 2.20E-01 800 4.32E-01 100

0.15 1.03E-03 520 2.11E-01 260 1.17E-03 800 3.56E-02 100

0.2 1.21E-03 760 2.25E-01 380 1.60E-01 800 1.31E-01 100

0.25 9.24E-04 960 2.53E-01 480 1.75E-01 800 1.09E-02 100

0.3 1.08E-03 1120 1.96E-03 560 1.93E-03 800 3.24E-03 100

0.35 9.59E-04 1320 3.34E-01 660 2.31E-03 800 8.03E-03 100

0.4 1.17E-03 1560 3.05E-03 780 2.40E-03 800 1.45E-02 100

0.45 2.43E-03 1760 6.92E-01 880 7.40E-01 800 2.35E-01 100

Table 5. The maximum value of the local error on an inner contour – the case III, M = 120, NC = 120,
for optimum values of Sd and Sm.

E

Method I Method II Method III Method IV

Inner
contour

NES∗
Inner
contour

NES∗
Inner
contour

NES∗
Inner
contour

NES∗

0.1 6.17E-02 360 9.11E-01 180 2.09E-02 800 1.52E-02 100

0.15 9.30E-02 520 4.00E-01 260 6.28E-02 800 5.63E-02 100

0.2 2.54E-02 760 2.29E-01 380 2.77E-02 800 1.28E-02 100

0.25 1.56E-02 960 4.37E-02 480 3.74E-02 800 2.04E-02 100

0.3 5.93E-02 1120 1.14E-01 560 2.91E-02 800 9.14E-02 100

0.35 4.49E-02 1320 7.07E-02 660 3.96E-02 800 2.11E-02 100

0.4 1.52E-02 1560 1.66E-02 780 3.13E-02 800 9.20E-02 100

0.45 7.53E-02 1760 1.72E-02 880 1.32E-01 800 6.59E-02 100

Table 6. The maximum value of the local error on an outer contour – the case III, M = 120, NC = 120,
for optimum values of Sd and Sm.

E

Method I Method II Method III Method IV

Outer
contour

NES∗
Outer
contour

NES∗
Outer
contour

NES∗
Outer
contour

NES∗

0.1 1.30E-06 360 4.12E-06 180 1.22E-03 800 3.30E-04 100

0.15 1.40E-06 520 4.64E-06 260 6.48E-05 800 1.21E-03 100

0.2 1.68E-06 760 5.27E-06 380 5.37E-04 800 2.33E-03 100

0.25 1.75E-06 960 5.50E-06 480 4.59E-04 800 2.65E-03 100

0.3 1.94E-06 1120 6.16E-06 560 1.81E-03 800 3.15E-03 100

0.35 2.35E-06 1320 7.58E-06 660 9.06E-04 800 3.95E-03 100

0.4 3.13E-06 1560 1.07E-05 780 2.20E-03 800 5.40E-03 100

0.45 3.55E-06 1760 6.80E-02 880 3.12E-02 800 1.16E-02 100
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Table 7. The maximum value of the local error on an inner contour – the case IV, M = 120, NC = 120,
for optimum values of Sd and Sm.

E

Method I Method II Method III Method IV

Inner
contour

NES∗
Inner
contour

NES∗
Inner
contour

NES∗
Inner
contour

NES∗

0.025 6.13E-09 160 6.15E-09 40 2.59E-04 1580 6.21E-09 100

0.05 7.68E-09 470 7.77E-09 120 3.33E-09 1580 9.02E-09 100

0.075 1.95E-09 940 4.89E-09 240 1.13E-09 1580 4.51E-09 100

0.1 1.44E-09 1340 3.89E-09 340 3.32E-09 1580 1.17E-08 100

0.125 1.54E-08 1740 1.64E-08 440 1.73E-08 1580 1.83E-08 100

0.15 6.12E-08 2040 6.65E-08 520 6.25E-08 1580 9.30E-08 100

0.175 3.94E-07 2440 4.07E-07 620 3.93E-07 1580 4.84E-07 100

0.2 1.20E-05 2920 1.22E-05 740 1.25E-05 1580 1.22E-05 100

0.225 2.57E-04 3320 2.58E-04 840 2.59E-04 1580 2.59E-04 100

Table 8. The maximum value of the local error on an outer contour – the case IV, M = 120, NC = 120,
for optimum values of Sd and Sm.

E

Method I Method II Method III Method IV

Outer
contour

NES∗
Outer
contour

NES∗
Outer
contour

NES∗
Outer
contour

NES∗

0.025 1.01E-05 160 8.09E-05 40 1.87E-02 1580 1.01E-05 100

0.05 1.06E-05 470 8.60E-05 120 1.69E-04 1580 1.11E-05 100

0.075 1.19E-05 940 6.34E-03 240 1.12E-03 1580 3.03E-05 100

0.1 1.43E-05 1340 3.55E-05 340 4.17E-04 1580 9.72E-05 100

0.125 1.95E-05 1740 6.32E-05 440 2.07E-05 1580 1.86E-04 100

0.15 3.27E-05 2040 5.08E-05 520 9.32E-05 1580 3.40E-04 100

0.175 8.46E-05 2440 2.96E-04 620 4.39E-04 1580 3.91E-04 100

0.2 3.96E-04 2920 2.09E-03 740 2.13E-03 1580 1.74E-03 100

0.225 4.21E-03 3320 1.05E-02 840 1.87E-02 1580 7.65E-03 100

Table 9. The maximum value of the local error on an inner contour – the case IV M = 120, NC = 120,
for optimum values of Sd and Sm.

E

Method I Method II Method III Method IV

Inner
contour

NES∗
Inner
contour

NES∗
Inner
contour

NES∗
Inner
contour

NES∗

0.025 4.02E-09 160 2.73E-09 40 6.21E-09 1580 2.33E-07 100

0.05 6.35E-09 475 5.20E-09 120 5.14E-09 1580 1.30E-08 100

0.075 7.56E-10 950 1.23E-09 240 1.97E-06 1580 1.49E-08 100

0.1 3.54E-09 1345 2.03E-09 340 3.10E-09 1580 2.42E-08 100

0.125 1.31E-08 1740 8.76E-09 440 1.69E-08 1580 4.78E-08 100

0.15 4.85E-09 1840 6.64E-08 520 7.82E-08 1580 1.14E-07 100

0.175 1.23E-06 2450 1.44E-06 620 1.97E-06 1580 1.46E-06 100

0.2 1.89E-05 2920 1.87E-05 740 1.97E-05 1580 1.94E-05 100

0.225 1.99E-04 3320 2.04E-04 840 2.00E-04 1580 2.10E-04 100
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Table 10. The maximum value of the local error on an outer contour – the case IV M = 120, NC = 120,
for optimum values of Sd and Sm.

E

Method I Method II Method III Method IV

Outer
contour

NES∗
Outer
contour

NES∗
Outer
contour

NES∗
Outer
contour

NES∗

0.025 1.13E-03 160 3.16E-03 40 3.49E-03 1580 2.68E-03 100

0.05 1.15E-03 475 3.22E-03 120 7.91E-02 1580 2.89E-03 100

0.075 1.19E-03 950 7.15E-03 240 4.02E-01 1580 3.24E-03 100

0.1 1.25E-03 1345 2.80E-01 340 6.19E-03 1580 3.40E-03 100

0.125 1.33E-03 1740 3.45E-03 440 4.15E-03 1580 3.38E-03 100

0.15 1.25E-03 1840 3.30E-01 520 3.97E-03 1580 3.71E-03 100

0.175 1.52E-03 2450 1.64E-01 620 4.02E-01 1580 5.10E-03 100

0.2 1.83E-03 2920 4.68E-03 740 4.78E-03 1580 7.95E-03 100

0.225 2.79E-03 3320 5.57E-03 840 5.05E-03 1580 2.04E-02 100

Fig. 10. Comparison of results given by proposed formula (19) – points, Bredt’s formula (23) – solid line
and exact solution (22) – broken line for circular with circular centered hole; M = 46, NC = 46.

7. CONCLUSION

The method of fundamental solutions was successfully applied to solve the boundary problem of the
torsion of bars with multiply connected cross sections. On the basis of the numerical results for the
circle with circular hole cross section of a bar, it was concluded that a well-known Brendt’s method
of calculating stiffness of thin-walled bars can be successfully applied to bars with the dimensionless
thickness larger than E = 0.4. In all studied cases, it was observed that the boundary condition is
satisfied. Stress function values along the X axis converge to zero, reaching zero at the edge of the
outer section.

It was found that the introduction of random numbers particularly in searching of Sd signifi-
cantly improved the speed of setting minimum value of errors. For the case of a circle with two
symmetrically located round holes it was sufficient to search only 100 values of error to specify
a minimum value. Application of random numbers, especially in case of a search of Sd, signif-
icantly increased the speed of finding the minimum error in comparison with other methods of
searching.
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