Computer Assisted Mechanics and Engineering Sciences, 7: 81-90, 2000.
Copyright © 2000 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Computation of stress intensity factors
by the compliance approach

Sameer A. Hamoush
Department of Architectural Engineering, North Carolina A&T State University,
Greensboro, NC 27411 USA

Hisham Abdel-Fattah

Department of Civil Engineering, Kuwait University, Kuwait

(Received March 24, 1999)

A numerical method based on compliance approach is presented for analyzing an isotropic homogeneous
sheet enclosing a crack. The method calculates the strain energy release rate and determines the stress
intensity factors K1 and Kir. This method is suitable for any load combination in pure mode I, pure
mode IT and mix mode loading. A simple and efficient solution approach is developed in which the strain
energy release rate is calculated by combining the finite element method with the fundamental relationships
in fracture mechanics. The solution technique converges to accurate results for a small crack extension
of the finite element mesh. The solution approach is also shown to be suited for separating the mode I
and mode II stress intensity factors for a mixed mode loading. Numerical examples are presented to
demonstrate the accuracy of the proposed approach.
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1. INTRODUCTION

The computation of the stress intensity factors of cracks has received considerable attention in the
literature. Analytical methods were developed in closed form solutions for special cases with specific
loading configuration [7]. However, these solutions are for specific geometry and loading. For more
general configuration of loading and geometry, numerical approach is necessary to evaluate the stress
intensity factors.

In conjunction with the finite element method, the J-integral approach was used by several
researchers [1, 3, 5] to evaluate the stress intensity factors. Other techniques such as the crack
closure integral [2] and the stiffness derivative [4] were implemented for the same purpose.

In this paper, an alternate method based on the compliance technique is developed to calculate
the total energy release rate. The numerical examples presented demonstrate the accuracy of the
proposed approach in calculating the pure mode I and mode II stress intensity factors as well as
the separation of the two modes in a mixed mode loading.

2. FORMULATION

When a crack in an isotropic homogeneous media of length a extends to a new length a + Aa, the
strain energy release rate G is defined as shown in [6].
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where AU is the change in the potential energy and AA the formed new crack area when the crack

extension takes place.
The strain energy release rate for plane stress conditions can be expressed in terms of the stress

intensity factors as follows,

K? + K2
i 14 2
E (2)

Equation (2) relates the strain energy release rate G to the stress intensity factors for mode I (k)
and mode II (K7r). For a single mode problem, the stress intensity factor can be evaluated directly
by Eq. (2) based on the knowledge of the strain energy release rate.
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Fig. 1. The analyzed plate with center crack

If the crack shown in Fig. 1 extends by a very small increment Aa from a length 2a to a new length
of 2a + 2Aa under the applied external loads f;; the strain energy release rate can be expressed
numerically as follows:

i

where, Av; are the change in load displacements in direction of the load f; when the crack extends
from the length 2a to the new length 2a + 2Aaq, b is the thickness of the specimen.

The strain energy release rate calculated by Eq. (3) depends on the amount of the crack extension
Aa. To show the convergence of Eq. (3), numerical investigation is performed in the following section.

3. NUMERICAL INVESTIGATION

The technique described in the preceding section has been incorporated into a conventional finite
element code. Four node elements are used in the finite element mesh shown in Fig. 2. The finite
element mesh is optimized based on the study performed in [2, 3, 4]. It was noted that the finite
element solution converges when a total of 424 elements and 482 nodes are used in the analysis.
All elements of the mesh have an aspect ratio below 5. The discretization of the mesh is done in
a manner such that the number of elements and nodes is kept constant when a change in crack
extension is processed. This implies changing the elements discretization of the continuum in the
crack tip zone as shown in Fig. 2.

3.1. Pure mode I and pure mode II stress intensity factors

The computation of stress intensity factors for pure mode I loading and pure mode II loading of the
plate shown in Fig. 1 is analyzed. An isotropic homogeneous plate enclosing a center crack with the
ratio 2w/2a of 10 is studied.



Computation of stress intensity factors by compliance approach

83

\ll\ \'I\
e
w/2
_’4 i

The crack tip

Details of the crack tip zone
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Fig. 3. The analyzed plate in pure mode I and pure mode II
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For the pure mode I modeling, a normal tensile stress equal to 100 MPa is applied at the edges
as shown in Fig. 3. For the pure mode II modeling, a uniform shear stress equal to 100 MPa is
applied at the boundaries of the plate as shown in Fig. 3. The closed form asymptotic solutions for
the above problems are given in the Appendix.

The stress intensity factors for mode I and mode II are evaluated for crack extensions in the range
of [0.005a—0.5a]. It was noted that the solution converges to accurate values for a crack extension
close to the crack tip and away from the near crack tip stress concentration. The obtained numerical
results are compared to the known analytical solution given by Eqgs. (A1) and (A2) in the Appendix.

The difference between the analytical stress intensity factors obtained from Eqs. (A1) and (A2),

and the numerical stress intensity factors obtained from the finite element solutions for different
values of crack extension Aa are plotted in Figs. 4 and 5.
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Fig. 4. The normalized stress intensity factor for mode I in a pure opening mode problem versus the crack
extension Aa
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Fig. 5. The normalized stress intensity factor for mode II in a pure sliding mode problem versus the crack
extension Aa
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Figure 4 shows the variation of the normalized K with crack extension Aa and Fig. 5 shows the
variation of the normalized K7y . The results show that values of the stress intensity factors become
more accurate when the value of the crack extension Aa is in the neighboring of the value of 0.01a.

3.2. Mixed mode stress intensity factors

For the mixed mode problem shown in Fig. 6, values of K7 and Kjj can be separated by superim-
posing two states of equilibrium.

The original state of equilibrium where the stress intensity factors need to be evaluated is su-
perimposed by an auxiliary state of equilibrium. The combined state of equilibrium in conjunction
with the two independent states of equilibrium is used to separate the stress intensity factors.

Figure 7a (noted as case 1,2) shows the state of equilibrium for two combined states of equilib-
rium, the first state of equilibrium is the original state (Fig. 7b noted as case 1), and the second
state is the auxiliary state of equilibrium (Fig. 7c, case 2).

The analytical closed form solution for original state of equilibrium (Fig. 7b) is given by Eqs. (A3)
and (A4) in the Appendix. In order to carry out the numerical solution, the formulation is carried
out as follows:

To evaluate K, the original state of equilibrium in Fig. 7b is super imposed over the state in
Fig. 7c. The strain energy release rates G(!), G and G(1? for loading in states (1), (2), and the
combined state (1,2) respectively can be expressed in terms of the stress intensity factors as follows:
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The numeric superscripts in Egs. (4)-(6) indicate the specific state of equilibrium where (1) is the
first state, (2) is the second state, and (1,2) is the combined state.
Since
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Fig. 6. The analyzed mix mode problem
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Fig. 7. Separation of the mode I stress intensity factor: a) combined state of equilibrium (case 1,2);
b) original state of equilibrium (case 1); ¢) auxiliary state of equilibrium (case 2)
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therefore, Eqgs. (4), (5) and (6) can be combined as follows,
2 2 2 2 2
(B el o (B (R () (V) aplid
o) o e 3 3 et o
E E E E E

2k K®
= g

But the numerical strain energy release rate for the combined state of equilibrium for a thickness b
is given by

=G0+ 6O +

1
G(1,2) = (Pl + PQ)(AUl + AUQ)

(PlA’u,l + PyAuq + P Aug + P2AU2)

8b Aa SbA
1 1
= SbA —— P Auy + ——— 8bA PyAug + —— BbA (PlA'LLQ —|-P2Au1). (8)

In Eq. (8), the subscripts 1 and 2 represent the individual states of equilibrium. Aw; is the change
in load displacements in direction of the load P; for the first state of equilibrium, and Awus is the
change in load displacements in direction of the load P» for the second state of equilibrium. Since

G(l) = PlAUI (9)

8b Aa
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and

1

(2) =
G 8b Aa

P2A'LL2 3 (10)
therefore, Eq. (8) becomes

1
a2 — gV L @ 4 s (PrAu + PyAuy). (11)

When b equals to one unit, Egs. (7) and (11) lead to:

2k M K ?)

1
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Equation (12) is used to determine the mode I stress intensity factor KI(I). In order to determine
values of P, and Aug, the known closed form solution of the auxiliary state of equilibrium is used
in which KI(Q) is assigned to be equal to 1. The value of P; is calculated using Eq. (A5) given in the
Appendix.

The values of Au; and Awug are obtained numerically using the finite element program. Thus,
for each crack extension Aa, the value of Kl(l) can be calculated.

A similar method is used to separate the mode II stress intensity factor. The state shown in
Fig. 8a is the superposition of two states of equilibrium (noted as case (1,2)). Fig. 8b is the original
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Fig. 8. Separation of the mode II stress intensity factor: a) combined state of equilibrium (case 1,2);
b) original state of equilibrium (case 1); ¢) auxiliary state of equilibrium (case 2)
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state and Fig. 8c is the auxiliary state. The KI(I1 ) is calculated in the same manner as Kl(l). The
final equation is given as

2k KD

1
s (PlA'LLQ + P2A'U;2) = B . i

8Aa

The normalized plots of K7 and Ky versus the crack extension Aa. are shown in Figs. 9 and 10.
It can be noticed that the numerical scheme’s convergence is directly related to the magnitude
of crack extension Aa. The calculated normalized stress intensity factor decreases with increasing
the crack extension Aa. When Aa is very close to the crack tip stress concentration, the stress
intensity factors become higher than the exact solution and the convergence of the solution will
not be achieved. At crack extension of 0.01a, the calculated stress intensity factor becomes within
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Fig. 9. The normalized stress intensity factor for mode I in a mixed mode problem versus the crack
extension Aa
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Fig. 10. The normalized stress intensity factor for mode II in a mixed mode problem versus the crack
extension Aa
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2% of the exact value. In the analyzed problem, the crack extension of 0.0la may be adopted to
implement the technique.

4. CONCLUSION

A method of analysis based on the compliance technique and fundamental relationships is fracture
mechanics has been proposed for determining the stress intensity factors K1 and Ky for pure mode I,
pure mode II loading. The analysis is also suitable for separating the two stress intensity factors
in a mixed mode problem. The present analysis can be conveniently conducted in conjunction with
any numerical methods such as the finite element or boundary element methods. Good agreement
between analytical exact solutions and present results has been demonstrated by solving problems
available in the literature. Accuracy and convergence of the present method are not very sensitive
to the finite element discretization of the continuum. It can be concluded form the analysis that
selecting the crack extension Aa significantly influences the convergence of the solution. The crack
extension Aa should be chosen away from the crack tip stress concentration and bounded by the
limit where the closed form auxiliary solution applied. It appears that ratio Aa/a should be selected
within the range of 0.01 to 0.025” in order for this method to converge to a good agreement with
exact analysis within an acceptable accuracy.

APPENDIX

For the center-cracked sheet under pure mode I loading, the stress intensity factor is expressed as
follows,
1

Ki=ovFa( =)’ (A1)

ma
tos 72

where a is half the crack length, and 2w is the total width of the cracked sheet.
For pure mode II loading, a similar expression is used,

Ki=r 7ra( - )2 (A2)

cos 5=
For the mixed mode loading, the separate values for K7 and Kjj are
K1 = oy/ma sin’a (A3)
K1 = ov/ma sina cos a (A4)
For a crack in Fig. 7a the stress intensity factor K is

P a—+ xo
ma a—Tg

Ky =

where zq is the distance between the force P, and the crack center.
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