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This paper presents a coupling technique for integrating the fractal finite element method (FFEM) with
element-free Galerkin method (EFGM) for analyzing homogeneous, isotropic, and two-dimensional linear-
elastic cracked structures subjected to Mode I loading condition. FFEM is adopted for discretization of
domain close to the crack tip and EFGM is adopted in the rest of the domain. In the transition region
interface elements are employed. The shape functions within interface elements which comprise both
the element-free Galerkin and the finite element shape functions, satisfy the consistency condition thus
ensuring convergence of the proposed coupled FFEM-EFGM. The proposed method combines the best
features of FFEM and EFGM, in the sense that no structured mesh or special enriched basis functions
are necessary and no post-processing (employing any path-independent integrals) is needed to determine
fracture parameters such as stress-intensity factors (SIFs) and T -stress. The numerical results show that
SIFs and T -stress obtained using the proposed method, are in excellent agreement with the reference
solutions for the structural and crack geometries considered in the present study. Also a parametric
study is carried out to examine the effects of the integration order, the similarity ratio, the number of
transformation terms, and the crack-length to width ratio, on the quality of the numerical solutions.

Keywords: crack, Element-free Galerkin method, Fractal Finite Element Method, Stress-Intensity Factor,
T -stress, Linear-Elastic Fracture Mechanics, Mode I.

1. INTRODUCTION

Recently, the methods based on fractal geometry concepts to generate infinite number of finite
elements around the crack tip to capture the crack tip singularity, have been developed or investi-
gated to solve linear-elastic fracture mechanics (LEFM) problems [1–5]. The fractal finite element
method (FFEM) is one of such methods developed for calculating SIFs in linear-elastic crack prob-
lems. Since its origin, it has been successfully applied to solve many kinds of crack problems under
Mode I and mixed mode loading conditions in 2D [6–15] and 3D [16]. Basically, FFEM separates
a 2D or 3D cracked elastic body into a regular and a singular regions (see Fig. 1), with the latter
enclosing the crack tip. Both the regular and the singular regions are modelled by conventional
isoparametric finite elements. However, within the singular region an infinite number of elements
are generated by a self-similar, fractal process to capture the singular behaviour at the crack tip.
The nodal displacements in the singular region are transformed to a set of unknown coefficients
using Williams analytical solution for the displacements near the crack tip [17]. Since the stiffness
matrix of an isoparametric element depends only on its shape and not its actual dimensions, the
above transformation can be performed at the element level and the results summed up as a ge-
ometrical progression series to be assembled to the global stiffness matrix. The contributions of
the infinite number of elements in the singular region are therefore fully accounted for, while the
number of degrees of freedom involved remains finite.
Compared with other numerical methods like the finite element method (FEM), FFEM has

several advantages. First, by using the concept of fractal geometry, infinite number of finite ele-
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Fig. 1. Cracked body domain with regular region, singular region, and fractal mesh.

ments can be generated virtually around the crack tip, and hence the effort for data preparation
is minimized. Second, based on the eigenfunction expansion of the displacement fields [17, 18], the
infinite number of finite elements that generate virtually by fractal geometry around the crack
tip are transformed in an expeditious manner. This results in reducing the computational time
and the memory requirement for fracture analysis of cracked structures. Third, no special finite
elements and post–processing are needed to determine the SIFs and T -stress. Finally, as the ana-
lytical solution is embodied in the transformation, the accuracy of the predicted SIFs and T -stress
is high.

In recent years, as an alternative to FEM, a class of meshfree or meshless methods, such as the
element-free Galerkin method (EFGM) [19–21], has emerged to demonstrate significant potential
for solving moving boundary problems typified by growing cracks. Fundamental to all meshless
methods, a structured mesh is not used, since only a scattered set of nodal points is required in
the domain of interest. This feature presents significant implications for modeling fracture propa-
gation, because the domain of interest is completely discretized by a set of nodes. Since no element
connectivity data are needed, the burdensome remeshing required by FEM is avoided. A growing
crack can be modeled by simply extending the free surfaces, which correspond to the crack. By
sidestepping remeshing requirements, crack-propagation analysis can be dramatically simplified.

Although meshless methods are attractive for simulating crack propagation, because of their
versatility, the computational cost of a meshless method typically exceeds the cost of a regular
FEM. Furthermore, given the level of maturity and comprehensive capabilities of FEM, it is often
advantageous to use meshless methods only in the sub-domains, where their capabilities can be
exploited to the greatest benefit. In modeling the crack propagation in a complex engineering
structure with stiffeners, connections, welds, etc., it is more effective to apply meshless methods at
the sites of potential crack growth and FEM in the remainder of the domain. Therefore, numerical
methods need to be developed for combining meshless and finite element methods.

This paper presents a coupling technique for integrating FFEM with EFGM for analyzing ho-
mogeneous, isotropic, and two-dimensional linear-elastic cracked structures subjected to Mode I
loading condition. FFEM is adopted for discretization of domain close to the crack tip and EFGM
is adopted in the rest of the domain. In the transition region, interface elements are employed.
The interface element shape functions which comprise both the element–free Galerkin and the fi-
nite element shape functions, satisfy the consistency condition thus ensuring convergence of the
proposed coupled FFEM-EFGM. The proposed method combines the best features of FFEM and
EFGM, in the sense that no structured mesh or special enriched basis functions are necessary and
no post-processing (employing any path-independent integrals) is needed to determine fracture



Mode I crack problems by coupled fractal finite element and meshfree method 115

parameters such as SIFs and T -stress. Three numerical examples are presented to illustrate the
proposed coupled FFEM-EFGM by calculating SIFs and T -stress.

2. FRACTAL FINITE ELEMENT METHOD

As depicted in Fig. 1, FFEM divides the domain of a two-dimensional body into a regular and
a singular region, with the latter enclosing the crack tip. In Fig. 1, the boundary curve Γ0 separates
the two regions. Both the regular and singular regions are modeled using conventional finite ele-
ments. With the crack tip as the centre of similarity and using ξ as the similarity ratio, an infinite
set of curves {Γ1, Γ2, . . .}, similar to Γ0 but with proportional constants (ξ1, ξ2, . . .), are generated
inside the singular region. Between the two curves Γk−1 and Γk, the region is named the k-th layer.
Straight lines that connect the crack tip to the corner nodes lying on Γ0 are then created, dividing
each layer into a mesh of elements with a similar pattern in the process. A fractal mesh is thus
generated in the singular region with conventional finite elements only being used. All nodes located
on Γ0 are called the master nodes (m), while those inside Γ0 are called the slave nodes (s).

2.1. Williams eigenfunction expansion

For a plane crack with traction-free faces subjected to arbitrary far field loading, the linear elastic
displacement field at the crack tip obtained by the Williams eigenfunction expansion technique [17]
can be expressed as
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where µ is the shear modulus, (r, θ) are the polar coordinates, κ = (3− ν)/(1 + ν) for plane stress
and κ = 3− 4ν for plane strain, with ν being the Poisson’s ratio.

The coefficients an can be determined after imposing loading and other boundary conditions.
Mode-I SIF,KI is related to the first degree coefficients (a1) in the series which is directly associated
with the r−1/2 term accounting for the singular stress behaviour at the crack tip, as follows:

a1 =
KI√
2π
. (3)

The first non-singular stress term, which acts parallel to the crack tip, of the Williams eigen-
function expansion series and is known as T -stress, can be related to the coefficient (a2), as follows

T = 4a2. (4)

2.2. Fractal transformation

In conventional FEM, according to the conservation of strain energy the stiffness equation system
can be written as

Kd = f , (5)
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where K is the stiffness matrix, d is the nodal displacement vector and f is the nodal force vector.
For the regular region, the stiffness equation system can be partitioned with respect to the nodes
other than the master nodes (r) and the master nodes (m) as follows:

[
KR
rr KR

rm

KR
mr KR

mm

]{
dr

dm

}
=
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fRr

fRm

}
, (6)

where dr are the displacements of the nodes in the regular region other than the master nodes
(r), and dm are the displacements of the master nodes (m), etc. Similarly, for the first layer in the
singular region, the stiffness equation system

K1std1st = f1st, (7)

can be partitioned with respect to the master nodes (m) and the slave nodes (s) as follows:
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where d1sts are the displacements of the slave nodes (s) in the first layer of the singular region.
Using the Williams eigenfunction expansion in Eqs. (1) and (2), d1sts can be expressed as a function
of the generalized coordinates a = {a0, a1, a2, . . .}T as

d1sts (r, θ) = T1st
s (r, θ)a, (9)

where T1st
s = T1st

s (r, θ) is a transformation matrix in terms of the polar coordinates (r, θ) for
the slave nodes (s) in the first layer. Using the transformation matrix T1st

s (r, θ) Eq. (8) can be
transformed into
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Since the second and subsequent layers in the singular region i.e. k ≥ 2, comprise only the slave
nodes (s), the final assembled global stiffness equation system has the form
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where ni = (i− 1) for i = 1, 2, 3, . . .. Based on a similar procedure, the global generalized force

vector f
inn
s can also be expressed in terms of f1st.
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3. COUPLING PROCEDURE

The coupling between FFEM and EFGM domains is accomplished by introducing interface el-
ements between those domains (see Fig. 2). In these interface elements, a hybrid displacement
approximation is defined that satisfies displacement continuity across the interface boundaries. For
the detailed characteristics of interface elements, the papers [22, 23] can be referred. FE and EFG
displacement approximations are briefly outlined before interface elements are described in detail.
For displacement approximation in the Galerkin procedure, both FE and EFG use similar forms:

uhi (x) =

n∑

I=1

Φ̃I (x) diI , (13)

where uhi (x) is the nodal value of displacement component i at point x, Φ̃I(x) are shape functions
that depend on the method, and diI are the nodal parameters of displacement component i at
node I.

Fig. 2. Details of FFEM-EFGM coupling.
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3.1. FE shape functions

The displacement approximation ui, in an isoparametric element is given by

uhi (x) =

nen∑

I=1

NI(ξ(x))diI , x ∈ Ωe
F , (14)

where nen is the number of element nodes. Because Q8 (8-node serendipity) and L9 (9-node La-
grangian) elements are used in FFEM discretization, in the present study a 5-node element is
adopted for interface elements, the shape functions, NI(I = 1− 5) of which in the parent domain
(ξ ∈ [−1, 1], η ∈ [−1, 1]) (see Fig. 2) are as follows:
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1

4
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1

4
ξ(ξ + 1)(1 − η),
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1

4
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4
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1

2
(1− ξ2)(1− η).

(15)

3.2. EFG shape functions

In the EFG method, the displacement is approximated by moving least-squares approximations
(MLS) [24]. The MLS approximation uhi (x) is given by

uhi (x) =

n∑

I=1

ΦI(x)diI , x ∈ ΩE , (16)

where n is the number of nodes in the neighborhood of x, for which the weight function wI(x) > 0
and the EFG shape functions are defined as

ΦI(x) =

m∑
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[
A−1(x)C(x)

]
JI
, (17)

with p(x) being a vector of complete basis functions of order m, and A(x) =
n∑
I=1

wI(x)p(xI)p
T (xI)

and C(x) = [w1(x)p(x1), w2(x)p(x2), . . . , wn(x)p(xn)].
In the present study, a linear basis in two dimensions, pT (x) = {1, x1, x2}, m = 3 in conjunction

with the following exponential weight function [19] is used,

wI (x) = wI (r) =





e−(r/c)
2 − e−(1/c)

2

1− e−(1/c)
2

0 ≤ r ≤ 1

0 r > 1

, (18)

where c is a parameter that sets the relative weight inside the domain of influence (in the present
study c = 0.25 is adopted), r = zI/zmI with zI = ||x − xI|| being the distance from a sampling
point x to a node xI , zmI being the domain of influence of node I such that

zmI = zmaxzcI ; (19)

here zcI is the characteristic nodal spacing distance which is chosen such that the node I has
the number of neighbors sufficient for regularity of A(x) (which is used to determine the MLS
approximation), and zmax is a scaling parameter.
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3.3. Interface displacement approximation

A detailed schematic of interface domain is shown in Fig. 2. In ΩE, the displacement at a point is
approximated using the MLS approximants in Eq. (16), and in ΩF , the FE interpolants in Eq. (14)
are employed in each element subdomain Ωe

F . In ΩI , the interface region, the displacement at
a point is approximated using the following expression:

uhi (x) = uFEi (x) +R(x)
[
uEFGi (x)− uFEi (x)

]

≡ [1−R(x)] uFEI (x) + R(x)uEFGi (x), x ∈ Ωl, (20)

where uFEi and u
EFG
i are approximations for ui, in ΩI given by the FE and EFG approximations,

respectively, and R(x) is a ramp function [25] for coupling the FE and EFG regions. R(x) is defined
using the FE shape functions in Eq. 14:

R(x) =
∑

J
xI∈ΓE

NJ(x). (21)

It can be verified that

R (x) =

{
1 x ∈ ΓE
0 x ∈ ΓF

, (22)

and it varies linearly along interface element boundaries adjacent to other interface elements. There-
fore, the approximation Eq. (20) reduces to uEFGi Eq. (16) on ΓE and u

FE
i Eq. (14) on ΓF , ensuring

continuity. The interface shape functions can be developed by substituting the displacement ap-
proximations Eqs. (14) and (16) into Eq. (20):

uhi (x) = [1−R(x)]
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NI(ξ(x))diI +R(x)
nsn∑
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ΦI(x)diI ≡
nsn∑
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where the interface shape functions ΦI(x) are

ΦI(x) =

{
[1−R(x)]NI (ξ(x)) +R(x)ΦI(x) xI ∈ Ωe

I ,

R(x)ΦI(x) xI /∈ Ωe
I .

(24)

4. VARIATIONAL FORMULATION AND DISCRETIZATION

For small displacements in two-dimensional, homogeneous, isotropic and linear-elastic solids, the
equilibrium equations and boundary conditions are

∇ · σ+ b = 0 in Ω (25)

and

σ · n = t on Γt (natural boundary conditions),

u = u on Γu (essential boundary conditions),
(26)

respectively, where σ = Dǫ is the stress vector, D is the material property matrix, ǫ = ∇su is
the strain vector, u is the displacement vector, b is the body force vector, t and u are the vectors
of prescribed surface tractions and displacements, respectively, n is a unit normal to the domain
Ω, Γt and Γu are the portions of boundary, Γ where tractions and displacements are prescribed,
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respectively, ∇T = {∂/∂x1, ∂/∂x2} is the vector of gradient operators, and ∇su is the symmetric
part of ∇u.
Since the nodal parameters and the nodal displacements are the same in the finite elements,

essential boundary conditions in the FFEM region can be applied by adopting the procedures
similar to that in the FE analysis. In the following, the concept of application of essential boundary
conditions in the EFGM and the transition regions is outlined. For an easy illustration, consider
a single boundary constraint, ui(xJ) = gi(xJ ) applied at node J (which belongs to the EFGM
region or the transition region) in the direction of coordinate xi. Then, the variational or weak
form of Eqs. (25) and (26) can be expressed by

∫

Ω

σ
T δǫdΩ + fi(xJ )δui(xJ ) =

∫

Ω

bT δudΩ −
∫

Γt

t
T
δudΓ, (27)

δfi(xJ) [ui(xJ )− gi(xJ)] = 0, (28)

where fi(xJ) and ui(xJ ) are the ith component of f(xJ) and u(xJ ), respectively. From Eqs. (13),
(14), (16) and (23), the approximation of ui(xJ) can be written as

uhi (xJ ) =

N∑

I=1

Φ̃I(xJ )diI , (29)

where

Φ̃I(x) =





NI (ξ(x)) x ∈ Ωe
F

ΦI(x) x ∈ ΩE
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I

(30)

and N is the total number of nodal points in Ω. Using Eqs. (29) and (30) in the coupled FFEM-
EFGM discretization (involving the master nodes (m), the slave nodes (s) and the nodes other
than the master nodes (r)) of Eqs. (27) and (28) and application of the FFEM concepts outlined
in Sec. 2, results in
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where the submatrices and the subvectors in Eq. (31) are respectively obtained by partitioning and
transforming the global stiffness matrix, whose the IJ-th component is given by

[K]IJ =

∫

Ω

BT
I DBJdΩ ∈ L

(
ℜ2 ×ℜ2

)
, (32)

and the global force vector whose I-th component is given by

[f ]I =

∫

Ω

Φ̃Ib
TdΩ −

∫

Γt

Φ̃It
T
dΓ ∈ ℜ2. (33)

In Eq. (32), BI and D are respectively the strain displacement matrix and the linear elastic
constitutive matrix.
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In order to perform numerical integration in Eqs. (32) and (33), a background mesh is needed
in the EFGM and in the transition regions. This background mesh can be independent of the
arrangement of nodes; however, the nodes of the background mesh may coincide with the nodes
in the EFGM and in the transition regions. In the present study, standard Gaussian quadrature is
used to evaluate the integrals for assembling the stiffness matrix and the force vector by adopting
8× 8 quadrature in the EFGM and in the transition regions. In the FFEM region, the integration
order is varied from 2 × 2 to 4 × 4 quadrature to study its effect on the quality of the numerical
solutions.

5. ESSENTIAL BOUNDARY CONDITIONS

Lack of Kronecker’s delta properties in the meshless shape functions, ΦI poses some difficulties in
imposing essential boundary conditions in the EFGM and in the transition regions. Nevertheless,
several methods are currently available for enforcing essential boundary conditions. In this work,
a full transformation method [26, 33] is adopted.

Consider the following transformation relating the nodal parameters and the nodal displacements
of the master nodes (m), and the nodes other than the master nodes (r),

{
d̂r

d̂m

}
= Λ

{
dr

dm

}
, (34)

where d̂m and d̂r are respectively the nodal displacements of the master nodes (m), and the nodes
other than the master nodes (r), and

Λ =
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...
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...
...

0 0 0 1 0

0 0 0 0 1





︸ ︷︷ ︸
master nodes (r)




∈ L
(
ℜ2(r+m) ×ℜ2(r+m)

)
, (35)

is the transformation matrix. Note that along ΓF which contains the master nodes (m), the interface
shape functions ΦI(x) reduces to the finite element shape functions in Eq. (15). Multiplying the
first two sets of matrix equations in Eq. (31) by Λ−T , one obtains
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Exchanging the rows to replace the redundant equations by the constraint equation using the
procedure outlined in [26, 33], leads to the following equation:

K





dr
dm
a



 = F , (37)

where K and F are the modified stiffness matrix and force vectors respectively. Using Eq. (37),
{dr dm a}T can be solved efficiently without needing any Lagrange multipliers. In the case of
multiple boundary constraints, similar procedures are repeated. Knowing a = {a0, a1, a2, . . .}T ,
SIFs and T -stress can be calculated using Eqs. (3) and (4) respectively.

6. NUMERICAL EXAMPLES

Three numerical examples comprising of single edge crack tension (SECT), double edge crack ten-
sion (DECT) and center crack tension (CCT) are presented to illustrate the proposed coupled
FFEM-EFGM. In Example 1, in order to check the numerical accuracy and stability, convergence
studies on the estimates of KI and T -stress using the proposed method are performed. The conver-
gence is checked against Q8 and L9 fractal mesh configurations. The convergence study includes:
(i) the effect of the scaling parameter zmax in the EFGM region on the solution; (ii) the effect of
the integration order adopted in the FFEM region on the accuracy; (iii) the effect of the fractal
mesh size on the accuracy; and (iv) the effect of different weight functions adopted in the EFGM
region on the solution. The experience gained in the convergence study of Example 1 is used to
analyze the problems presented in Examples 2–3. In all the numerical examples, elastic modulus E
and Poisson’s ratio ν are assumed to be 30× 106 units and 0.25 respectively.

6.1. Example 1: Single Edge Crack Tension (SECT) Specimen

Consider a single edge crack tension specimen as shown in Fig. 3, that has length 2L = 3 units,
width W = 1 unit, and crack length a = 0.5 units. The far-field tensile stress, σ = 1 unit. Due to
symmetry, only half of the plate is analyzed. Effect of both Q8 and L9 fractal mesh configurations
on the estimates of KI and T -stress are examined. Typical coupled FFEM-EFGM discretization
with L9 fractal mesh configurations of rectangular and circular shapes having a similarity ratio ξ
of 0.8, are shown in Figs. 4a and 4b respectively. The size of fractal mesh (distance from the crack
tip to the curve Γ0 on which the master nodes (m) are located) is 0.5a. Plane stress condition is
assumed. The number of fractal transformation terms used in Tk-th

s is 20. It can be easily verified
that the discretization (shown in Figs. 4a and 4b) and the number of fractal transformation terms
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Fig. 3. Single edge crack tension specimen with geometry and loads.

a) b)

Fig. 4. Coupled FFEM-EFGM discretization with L9 fractal elements for single edge crack tension
specimen: a) circular fractal mesh, b) rectangular fractal mesh.

adopted in the analysis, result in the total number of unknowns to be solved in Eq. (37) as 138.
In the EFGM and the transition regions 8 × 8, Gaussian quadrature is adopted, whereas in the
FFEM region the integration order is varied from 2 × 2 to 4 × 4 quadrature to study its effect on
the quality of the numerical solutions. The analytical solution of KI for SECT specimen given by
Tada et al. [34], for different a/W ratios is as follows:

KI = σ
√
πa

√
2W

πa
tan

πa

2W



0.752 + 2.02 (a/W ) + 0.37

(
1− sin

πa

2W

)3

cos
πa

2W


 . (38)

Similarly, the analytical solution of T -stress for SECT specimen with L/W = 1.5 is given by
Fett [35], for different values a/W ratios.
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Table 1 shows the results of parametric study carried out by varying the scaling parameter zmax
in the EFGM region, using exponential weight function. In the FFEM region, the 2 × 2 Gaussian
integration is used. It can be observed from Table 1 that for the discretization adopted (shown in
Figs. 4a and 4b), zmax = 2.51 along with L9 elements, provides accurate estimates of KI/ (σ

√
πa)

and T (1− a/W )2 /σ values, when compared with the benchmark solution of KI/ (σ
√
πa) = 2.8266

units [34] and T (1− a/W )2 /σ = −0.106 units [35].

Table 1. Effect of scaling parameter zmax value in EFGM region on predicted KI and T -stress (Example 1).

Element type Scaling parameter
KI/ (σ

√
πa) T (1− a/W )

2
/σ

Proposed method SIF ratioa Proposed method T -stress ratiob

Circular fractal mesh configuration

L9 2.01 2.7729 0.9810 −0.1045 0.9858

L9 2.51 2.8319 1.0019 −0.1053 0.9934

L9 3.01 2.8459 1.0068 −0.1075 1.0142

Q8 2.01 2.7603 0.9765 −0.1039 0.9802

Q8 2.51 2.7661 0.9786 −0.1042 0.9830

Q8 3.01 2.9021 1.0267 −0.1079 1.0179

Rectangular fractal mesh configuration

L9 2.01 2.7721 0.9807 −0.1043 0.9840

L9 2.51 2.8325 1.0021 −0.1050 0.9906

L9 3.01 2.8451 1.0065 −0.1071 1.0104

Q8 2.01 2.7412 0.9698 −0.1030 0.9717

Q8 2.51 2.7511 0.9733 −0.1037 0.9783

Q8 3.01 2.9031 1.0271 −0.1081 1.0198
a SIF ratio = (KI/ (σ

√
πa) by proposed method)/2.8266.

b T -stress ratio = (T (1− a/W )2 /σ by proposed method)/−0.106.

The effect of the integration order adopted in the FFEM region on the quality of the estimates
of KI/ (σ

√
πa) and T (1− a/W )2 /σ is studied, using the coupled FFEM–EFGM discretization

with fractal mesh configurations of rectangular and circular shapes, as shown in Figs. 4a and 4b
respectively. The similarity ratio, the number of fractal transformation terms, the size of fractal
mesh, and zmax are respectively 0.8, 20, 0.5a and 2.51. In the EFGM region, the exponential
weight function is used. Table 2 presents the results of KI/ (σ

√
πa) and T (1− a/W )2 /σ obtained

using different integration orders in the FFEM region for fractal mesh configurations of rectangular
and circular shapes. It can be observed from Table 2 that convergent and accurate estimates of
KI/ (σ

√
πa) and T (1− a/W )2 /σ can be obtained by adopting 2 × 2 Gaussian integration in the

FFEM region.
Table 3 shows the effect of the nodal refinement in the EFGM region alone (keeping the dis-

cretization in FFEM region unchanged) on the predicted KI/ (σ
√
πa) and T (1− a/W )2 /σ values,

obtained using exponential weight function along with Q8 and L9 elements for fractal mesh configu-
rations of rectangular and circular shapes. The similarity ratio, the number of fractal transformation
terms, the size of fractal mesh and zmax, are respectively 0.8, 20, 0.5a and 2.51. In the FFEM re-
gion 2 × 2 Gaussian integration is used. Table 3 also includes the details of the total number of
unknowns to be solved in Eq. (37) for the discretization and the number of fractal transformation
terms adopted. It can be observed from Table 3 that the nodal refinement in EFGM region alone
has very small influence on the accuracy of KI/ (σ

√
πa) and T (1− a/W )2 /σ estimates obtained

using L9 elements, when compared with those obtained using Q8 elements. The convergence of the
solutions with respect to the nodal refinement in the EFGM region alone, obtained by means of L9
elements shows more stability than those obtained using Q8 elements.
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Table 2. Effect of integration order adopted in FFEM region on predicted KI and T -stress (Example 1).

Element type Order of integration
KI/ (σ

√
πa) T (1− a/W )

2
/σ

Proposed method SIF ratioa Proposed method T -stress ratiob

Circular fractal mesh configuration

L9 2× 2 2.8319 1.0019 −0.1053 0.9934

L9 3× 3 2.8291 1.0009 −0.1052 0.9925

L9 4× 4 2.8291 1.0009 −0.1052 0.9925

Q8 2× 2 2.7661 0.9786 −0.1042 0.9830

Q8 3× 3 2.7664 0.9787 −0.1043 0.9840

Q8 4× 4 2.7664 0.9787 −0.1043 0.9840

Rectangular fractal mesh configuration

L9 2× 2 2.8325 1.0021 −0.1050 0.9906

L9 3× 3 2.8293 1.0010 −0.1051 0.9915

L9 4× 4 2.8293 1.0010 −0.1051 0.9915

Q8 2× 2 2.7511 0.9733 −0.1037 0.9783

Q8 3× 3 2.7535 0.9741 −0.1041 0.9821

Q8 4× 4 2.7535 0.9741 −0.1041 0.9821
a SIF ratio = (KI/ (σ

√
πa) by proposed method)/2.8266.

b T -stress ratio = (T (1− a/W )
2
/σ by proposed method)/−0.106.

Table 3. Effect of nodal refinement in EFGM region on predicted KI and T -stress (Example 1).

Element type
Number
of EFGM
nodes

Number
of unknowns

KI/ (σ
√
πa) T (1− a/W )

2
/σ

Proposed method SIF ratioa Proposed method T -stress ratiob

Circular fractal mesh configuration

L9 45 110 2.8463 1.0070 −0.1074 1.0132

L9 59 138 2.8319 1.0019 −0.1053 0.9934

L9 69 158 2.8251 0.9995 −0.1051 0.9915

L9 83 186 2.8249 0.9994 −0.1052 0.9925

Q8 45 110 2.7665 0.9787 −0.1079 1.0179

Q8 59 138 2.7661 0.9786 −0.1042 0.9830

Q8 69 158 2.7951 0.9889 −0.1048 0.9887

Q8 83 186 2.7804 0.9837 −0.1052 0.9925

Rectangular fractal mesh configuration

L9 45 110 2.8592 1.0115 −0.1075 1.0142

L9 59 138 2.8325 1.0021 −0.1050 0.9906

L9 69 158 2.8321 1.0019 −0.1052 0.9925

L9 83 186 2.8346 1.0028 −0.1051 0.9915

Q8 45 110 2.7465 0.9717 −0.1021 0.9632

Q8 59 138 2.7511 0.9733 −0.1037 0.9783

Q8 69 158 2.7791 0.9832 −0.1032 0.9736

Q8 83 186 2.7801 0.9835 −0.1035 0.9764
a SIF ratio = (KI/ (σ

√
πa) by proposed method)/2.8266.

b T -stress ratio = (T (1− a/W )
2
/σ by proposed method)/−0.106.
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Using the proposed method, the effect of the fractal mesh size is studied, using the coupled
FFEM-EFGM discretization with fractal mesh configurations of rectangular and circular shapes
similar to that shown in Figs. 4a and 4b respectively. The similarity ratio, the number of fractal
transformation terms and zmax, are respectively 0.8, 20, and 2.51. In the FFEM region, the 2 × 2
Gaussian integration is used. In the EFGM region exponential weight function is used. Table 4
shows the results of KI/ (σ

√
πa) and T (1− a/W )2 /σ, obtained using Q8 and L9 elements for

fractal mesh configurations of rectangular and circular shapes. It can be observed from Table 4
that the results are insensitive to the fractal mesh sizes in combination with the similarity ratio,
the number of fractal transformation terms, and the similarity ratio considered in the present study.
In addition, from Table 4 it can be observed that the estimates of KI/ (σ

√
πa) and T (1− a/W )2 /σ

obtained using L9 elements are more accurate when compared with those obtained using Q8 ele-
ments.

Table 4. Effect of fractal mesh size on predicted KI and T -stress (Example 1).

Element type Size of fractal domain
KI/ (σ

√
πa) T (1− a/W )

2
/σ

Proposed method SIF ratioa Proposed method T -stress ratiob

Circular fractal mesh configuration

L9 0.25 2.8181 0.9970 −0.1062 1.0019

L9 0.5 2.8319 1.0019 −0.1053 0.9934

L9 0.75 2.8152 0.9960 −0.1054 0.9943

Q8 0.25 2.7523 0.9737 −0.1082 1.0208

Q8 0.5 2.7661 0.9786 −0.1042 0.9830

Q8 0.75 2.9134 1.0307 −0.1046 0.9868

Rectangular Fractal Mesh Configuration

L9 0.25 2.8318 1.0018 −0.1054 0.9943

L9 0.5 2.8325 1.0021 −0.1050 0.9906

L9 0.75 2.8108 0.9944 −0.1051 0.9915

Q8 0.25 2.7359 0.9679 −0.1031 0.9726

Q8 0.5 2.7511 0.9733 −0.1037 0.9783

Q8 0.75 2.8019 0.9913 −0.1031 0.9726
a SIF ratio = (KI/ (σ

√
πa) by proposed method)/2.8266.

b T -stress ratio = (T (1− a/W )
2
/σ by proposed method)/−0.106.

Using the proposed method, the effect of the similarity ratio on the predicted KI/ (σ
√
πa)

and T (1− a/W )2 /σ values is studied by varying the similarity ratio ξ from 0.1 to 0.9, using the
coupled FFEM-EFGM discretization with fractal mesh configurations of rectangular and circular
shapes similar to those shown in Figs. 4a and 4b respectively. The number of fractal transformation
terms, the size of fractal mesh and zmax, are respectively 20, 0.5a and 2.51. In the FFEM region
2 × 2 Gaussian integration is used. In the EFGM region exponential weight function is used.
Figures 5a and 5b show respectively the convergence of SIF ratio (KI/ (σ

√
πa) by the proposed

method/2.8266) and T -stress ratio (T (1− a/W )2 /σ by the proposed method/−0.106) estimates
with the similarity ratio ξ employed, for fractal mesh configurations of rectangular and circular
shapes respectively. It can be observed from Figs. 5a and 5b that accuracy increases with the
similarity ratio. This is quite natural, because finer fractal meshes will be generated for higher
value of similarity ratios and therefore will give better results. However, when very high value of
similarity ratio is used, numerical errors arise and cause large discrepancies. It can be observed
from Figs. 5a and 5b that L9 elements produce better results when compared with those obtained
using Q8 elements.
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a) b)

Fig. 5. Effect of similarity ratio (Example 1): a) convergence of KI , b) convergence of T -stress.

Using the proposed method, the effect of the number of fractal transformation terms on the
predicted KI/ (σ

√
πa) and T (1− a/W )2 /σ values is studied, by varying the number of fractal

transformation terms used in Tk-th
s from 4 to 24. Coupled FFEM-EFGM discretization with fractal

mesh configurations of rectangular and circular shapes, as shown in Figs. 4a and 4b respectively, is
adopted. The similarity ratio, the size of fractal mesh and zmax are respectively 0.8, 0.5a and 2.51.
In the FFEM region 2 × 2 Gaussian integration is used. In the EFGM region exponential weight
function is used. Figures 6a and 6b show respectively the convergence of SIF ratio and T -stress ratio
estimates with the number of fractal transformation terms used, for fractal mesh configurations of
rectangular and circular shapes, respectively. It can be observed from Figs. 6a and 6b that L9
elements produce better results when compared with those obtained using the Q8 elements.

a) b)

Fig. 6. Effect of number of fractal transformation terms (Example 1); a) convergence of KI , b) convergence
of T -stress.

For crack length-to-width ratio a/W = 0.5, the angular variations of the stress components σrr,
σθθ, and shear stress, τrθ at radial distance to crack length r/a = 0.01, are shown in Fig. 7. Coupled
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FFEM-EFGM discretization with L9 fractal mesh configurations of rectangular and circular shapes,
as shown in Figs. 4a and 4b respectively, is used. The similarity ratio, the number of fractal
transformation terms, the size of fractal mesh, and zmax, are respectively 0.8, 20, 0.5a and 2.51.
In the FFEM region 2 × 2 Gaussian integration is used. In the EFGM region, exponential weight
function is used. Figure 7 also includes the plots of exact stresses from the LEFM singularity
field near the crack tip [36], obtained by using the benchmark solution of KI/ (σ

√
πa) = 2.8266

units [34]. The stresses predicted by the proposed method match very well with the exact stresses.

Fig. 7. Angular variations of σrr, σθθ, and τrθ (Example 1).

The effect of a/W ratio on the estimates of KI/ (σ
√
πa) and T (1− a/W )2 /σ is studied, using

the coupled FFEM-EFGM discretization, with fractal mesh configurations of rectangular and cir-
cular shapes similar to that shown in Figs. 4a and 4b respectively. The similarity ratio, the number
of fractal transformation terms and zmax, are respectively 0.8, 20, and 2.51. The size of fractal
mesh for a/W = 0.1− 0.5, 0.6, 0.7, 0.8, and 0.9 are respectively 0.5a, 0.333a, 0.214a, 0.125a, and
0.056a. In the FFEM region, 2× 2 Gaussian integration is used. In the EFGM region, exponential
weight function is used. Figures 8a and 8b show respectively the estimates of KI/ (σ

√
πa) and

T (1− a/W )2 /σ as a function of a/W ratio, obtained using Q8 and L9 elements for fractal mesh
configurations of rectangular and circular shapes. Figures 8a and 8b demonstrate that the estimates
of KI (σ

√
πa) and T (1− a/W )2 /σ as a function of a/W ratio obtained using the proposed method

are in good agreement with the benchmark solutions of KI/ (σ
√
πa) [34] and T (1− a/W )2 /σ [35].

a) b)

Fig. 8. Effect of a/W ratio (Example 1); a) KI , b) T -stress.
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6.2. Example 2: Double Edge Crack Tension (DECT) Specimen

Consider a double edge crack tension specimen as shown in Fig. 9, that has length 2L = 3 units,
width W = 1 unit, and crack length a = 0.5 units. Due to symmetry, only a quarter of the plate
is analyzed. Coupled FFEM-EFGM discretization and other parameters are same as those used
in Example 1. The analytical solution of KI for DECT specimen given by Leung and Su [3], for
different a/W ratios is as follows:

KI = σ
√
πa

[
1.12 − 0.61 (a/W ) + 0.13 (a/W )3√

(1− a/W )

]
. (39)

Similarly, the analytical solution of T -stress for DECT specimen with L/W = 1.5 is given by
Fett [35], for different a/W ratios.

Fig. 9. Double edge crack tension specimen with geometry and loads.

Figures 10a and 10b shows respectively the convergence of SIF ratio (KI/ (σ
√
πa) by the pro-

posed method/1.1756) and T -stress ratio (T/σ by proposed method/−0.522) estimates with the

a) b)

Fig. 10. Effect of similarity ratio (Example 2); a) convergence of KI , b) convergence of T -stress.
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similarity ratio ξ employed, obtained using L9 elements for fractal mesh configurations of rectan-
gular and circular shapes. It can be observed from Figs. 10a and 10b that accuracy increases with
similarity ratio and that the circular fractal mesh configurations produce slightly better results
when compared with those obtained using the rectangular mesh configurations.
Figures 11a and 11b show respectively the convergence of SIF ratio and T -stress ratio estimates

with the number of fractal transformation terms used, obtained using L9 elements for fractal mesh
configurations of rectangular and circular shapes. It can be observed from Figures 11(a) and 11(b)
that the circular fractal mesh configurations produce slightly better results when compared with
those obtained using the rectangular mesh configurations.

a) b)

Fig. 11. Effect of number of fractal transformation terms (Example 2); a) convergence of KI ,
b) convergence of T -stress.

For crack length-to-width ratio a/W = 0.5, the angular variations of the stress components
σrr, σθθ, and shear stress, τrθ at radial distance to crack length r/a = 0.01, are shown in Fig. 12.
Figure 12 also include the plots of exact stresses from the LEFM singularity field near the crack
tip [36], obtained by using the benchmark solution of KI/(σ

√
πa) = 1.1756 units [3]. The predicted

stresses from the proposed method match very well the exact stresses.

Fig. 12. Angular variations of σrr, σθθ, and τrθ (Example 2).

Figures 13a and 13b show respectively the estimates of KI/(σ
√
πa) and T/σ as a function of

a/W ratio, obtained using L9 elements for fractal mesh configurations of rectangular and circular
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shapes. Figures 13a and 13b demonstrate that the estimates of KI/(σ
√
πa) and T/σ as functions

of a/W ratio obtained using the proposed method, are in good agreement with the benchmark
solutions of KI/(σ

√
πa) [3] and T/σ [35].

a) b)

Fig. 13. Effect of a/W ratio (Example 2); a) KI , b) T -stress.

6.3. Example 3: Center Crack Tension (CCT) Specimen

Consider a center crack tension specimen as shown in Fig. 14, that has length 2L = 3 units, width
W = 1 unit, and crack length a = 0.5 units. Due to symmetry, only a quarter of the plate is
analyzed. Coupled FFEM-EFGM discretization and other parameters are the same as those used
in Example 2. The analytical solution of KI for CCT specimen given by Benthem and Koiter [37],
for different a/W ratios, is as follows:

KI = σ
√
πa

[
1.0− 0.5 (a/W ) + 0.326 (a/W )2√

(1− a/W )

]
. (40)

Fig. 14. Centre crack tension specimen with geometry and loads.



132 B.N. Rao, K.N. Rajesh

Similarly, the analytical solution of T -stress for CCT specimen with L/W = 1.5 can be obtained
from Fett [35].

Figures 15a and 15b show respectively the convergence of SIF ratio (KI/(σ
√
πa) by the pro-

posed method/1.1759) and T -stress ratio (T (1− a/W ) /σ by the proposed method/−0.6236) esti-
mates with the similarity ratio ξ employed, obtained using L9 elements for fractal mesh configu-
rations of rectangular and circular shapes. It can be observed from Figs. 15a and 15b that accu-
racy increases with the similarity ratio and that the circular fractal mesh configurations produce
slightly better results when compared with those obtained using the rectangular mesh configura-
tions.

a) b)

Fig. 15. Effect of similarity ratio (Example 3); a) convergence of KI , b) convergence of T -stress.

Figures 16a and 16b show respectively the convergence of SIF ratio and T -stress ratio estimates
with the number of fractal transformation terms used, obtained using L9 elements for fractal mesh

a) b)

Fig. 16. Effect of number of fractal transformation terms (Example 3); a) convergence of KI ,
b) convergence of T -stress.



Mode I crack problems by coupled fractal finite element and meshfree method 133

configurations of rectangular and circular shapes. It can be observed from Figs. 16a and 16b that
the circular fractal mesh configurations produce slightly better results when compared with those
obtained using the rectangular mesh configurations.

For crack length-to-width ratio a/W = 0.5, the angular variations of the stress components
σrr, σθθ, and shear stress, τrθ at radial distance to crack length r/a = 0.01, are shown in Fig. 17.
Figure 17 also includes the plots of exact stresses from the LEFM singularity field near the crack tip
[36], obtained by using the benchmark solution of KI/(σ

√
πa) = 1.1759 units [37]. The predicted

stresses from the proposed method match very well the exact stresses.

Fig. 17. Angular variations of σrr, σθθ, and τrθ (Example 3).

Figures 18a and 18b show respectively the estimates of KI/ (σ
√
πa) and T (1− a/W ) /σ as

functions of a/W ratio, obtained using L9 elements for fractal mesh configurations of rectangu-
lar and circular shapes. Figures 18a and 18b demonstrate that the estimates of KI/(σ

√
πa) and

T (1− a/W ) /σ as functions of a/W ratio obtained using the proposed method are in good agree-
ment with the benchmark solutions of KI/(σ

√
πa) [37] and T (1− a/W ) /σ [35].

a) b)

Fig. 18. Effect of number of fractal transformation terms (Example 3); a) convergence of KI ,
b) convergence of T -stress.
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7. SUMMARY AND CONCLUSIONS

This paper presents a coupling technique for integrating FFEM with EFGM for analyzing ho-
mogeneous, isotropic, and two-dimensional linear-elastic cracked structures subjected to Mode I
loading condition. FFEM is adopted for discretization of domain close to the crack tip and EFGM
is adopted in the rest of the domain. In the transition region interface elements are employed.
The interface element shape functions which comprise both the element-free Galerkin and the fi-
nite element shape functions, satisfy the consistency condition, thus ensuring convergence of the
proposed coupled FFEM-EFGM. The proposed method combines the best features of FFEM and
EFGM, in the sense that no structured mesh or special enriched basis functions are necessary and
no post-processing (employing any path-independent integrals) is needed to determine fracture
parameters such as SIFs and T -stress. Three numerical examples are presented to illustrate the
proposed method by calculating SIFs and T -stress. The convergence is checked against Q8 and L9
fractal mesh configurations. The convergence study includes: (i) the effect of the scaling parameter
zmax in the EFGM region on the solution; (ii) the effect of the integration order adopted in the
FFEM region on the accuracy; (iii) the effect of the fractal mesh size on the accuracy; and (iv) the
effect of different weight functions adopted in the EFGM region on the solution.
The present study indicates that using the proposed coupled FFEM-EFGM, convergent and

accurate solutions can be obtained by adopting an exponential weight function along with the
scaling parameter equal to 2.51, 2×2 Gaussian integration in the FFEM region, the number of fractal
transformation terms equal to 20, and the similarity ratio equal to 0.8. The results are insensitive to
the fractal mesh sizes in combination with the similarity ratio, the number of fractal transformation
terms, and the similarity ratio considered in the present study. The nodal refinement in EFGM
region alone has very little influence on the accuracy of solutions obtained using L9 elements, when
compared with those obtained using Q8 elements. The convergence of the solutions with respect to
the nodal refinement in the EFGM region alone, obtained using L9 elements, shows more stability
than those obtained using Q8 elements. It is observed that L9 elements produce better results when
compared with those obtained using Q8 elements. The predicted LEFM stress singularity field near
the crack tip stresses from the proposed coupled FFEM-EFGM using L9 elements, match very well
the exact stresses. The estimates of SIFs and T -stress obtained as a function of a/W ratio using
the proposed method are in good agreement with the benchmark solutions. Numerical examples
based on Mode-I deformations show that the circular fractal mesh configurations produce slightly
better results when compared with those obtained using the rectangular mesh configurations.
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