Computer Assisted Mechanics and Engineering Sciences, 6: 263-277, 1999.
Copyright © 1999 by Institute of Fundamental Technological Research, Polish Academy of Sciences
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This paper presents a finite-difference solution of the two-dimensional, time dependent incompressible
Navier-Stokes equations for laminar flow about fixed and oscillating cylinders placed in an otherwise
uniform flow. Using boundary fitted coordinates, the equations are transformed to a non-inertial reference
frame fixed to the cylinder. The primitive variable formulation is used for the solution of the problem. A
special transformation provides a fine grid scale near the cylinder walls and a coarse grid in the far field.
Forward difference is used in time, fourth order central difference in space except for convective terms
for which a modified third-order upwind scheme is used. Velocity values are obtained explicitly, and the
successive over-relaxation (SOR) method yields the pressure distribution. Computed drag coefficients and
dimensionless vortex shedding values were compared with experimental results for rigid cylinders and a
very good agreement has been obtained. Amplitude bounds of locked-in vortex shedding due to forced
crossflow oscillation of a circular cylinder are also determined for Re = 180.
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1. INTRODUCTION

Flow about bluff bodies has received much experimental, analytical and numerical study due to
its practical importance. When a bluff body is exposed to the flow, vortices are shed from both
sides of the body into the wake. This vortex shedding gives rise to a periodic lift force act-
ing on the body. When the frequency of vortex shedding coincides with the natural frequency
of the body, large amplitude oscillation or resonance can occur. This phenomenon is known as
Kérman vortex excitation, synchronization or lock-in. This type of oscillation can be observed in
many engineering practices, e.g. structures placed in the flow of air or liquid, or flow around the
tubes of heat exchangers and other equipment. That is the reason why much effort has been de-
voted to clarify the mechanism of vortex excitation. This is of primary importance if one wishes
to predict this phenomenon and to develop methods for suppressing or controlling the exciting
forces. Numerical studies of vortex shedding first have primarily addressed the flow of a uniform
stream normal to a rigid circular cylinder [9, 2, 8]. Since the cylinder is fixed, no information
about vibration interaction is thus obtained. If the cylinder is vibrating, either in forced or in
natural motion, a nonlinear interaction occurs as the cylinder frequency approaches the vortex
shedding frequency. The major characteristic of this interaction is that the natural shedding fre-
quency is suppressed and vortex shedding occurs instead at the cylinder vibration frequency over
a range of flow velocities. This is known as lock-in or synchronization phenomenon. This effect
occurs when the cylinder is vibrating either transverse or in-line with the freestream direction. The




264 L. Baranyi and M. Shirakashi

lock-in range is somewhat dependent on Reynolds number and oscillation amplitude of cylinder.
There are several methods worked out for the investigation of lock-in phenomenon and near wake
flows [7, 3, 12, 11]. Some of the more recent advances on the investigations of bluff body flows are
reviewed in [1].

The present study transforms the Navier-Stokes equations to a non-inertial reference frame fixed
to the oscillating cylinder placed in an otherwise uniform stream, thus simplifying the boundary
condition specification. The transformed equations are solved by finite difference method. Results
for flow about fixed cylinder is compared with those of experiments. Amplitude bounds of locked-in
vortex shedding due to forced crossflow oscillation of a circular cylinder are also determined for
Re = 180.

1.1. Nomenclature

ap — acceleration of cylinder oscillation

Cp — drag coefficient (= Cpp + Cpy)

Cpy — skin friction drag coefficient

Chop — pressure drag coefficient

Cr — lift coefficient (= Crp + CLy)

CLy — skin friction lift coefficient

CrLp — pressure lift coefficient

D — cylinder diameter (length scale L)

fe — frequency of cylinder oscillation, nondimensionalized by U/D
2 — frequency of vortex shedding, nondimensionalized by U/D
J — Jacobian

L — length scale (= D)

P — pressure, nondimensionalized by pU?

R — radius, nondimensionalized by D

Re — Reynolds number, UD /v

S — Strouhal number, f,D/U

t,T — time, nondimensionalized by D /U

At — time step :

Uy U — velocities in z and y directions, nondimensionalized by U
T,y — Cartesian coordinates, nondimensionalized by D

a,v,p,0 — metric parameters

&n — general curvilinear coordinates

© — dilation

%) — angle around the cylinder from the point facing downstream

1.2. Subscripts

1,7 — denotes position

n — components in the direction of the outer normal

pot — refers to potential flow

T,y — denotes vector components or differentation in z and y directions, respectively
&n — denotes vector components or differentation in £ and 7 directions, respectively

0 — refers to the motion of the cylinder
00 — denotes conditions at infinity
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2. GOVERNING EQUATIONS

The primitive variable formulation is used for the solution of the problem. The governing equations
are: two components of the non-conservation form of the Navier-Stokes equations and the equation
of continuity. These equations contain only dimensionless quantities and they can be written as
follows [13]
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The Navier-Stokes equations are written for a two-dimensional laminar flow in the non-inertial
coordinate system fixed to the cylinder oscillating with acceleration ag. In this way we can avoid
the necessity of interpolating the initial conditions for the grid points at every time step. Although
equations are derived for an oscillating cylinder, naturally all of our forthcoming derivations remain
valid for flow about fixed cylinder as well. In this case we simply substitute ag = 0 into our equations.

The major difficulty in obtaining a time-accurate solution for an incompressible flow arises from
the fact that the continuity equation does not contain the time derivative explicitly [10]. This diffi-
culty can be overcome by introducing a separate equation for pressure. By adding the z-derivative
of Eq. (1) and y-derivative of Eq. (2), rearranging it, and neglecting all terms related to © except
its partial derivative with respect to time ¢, finally yields a Poisson equation for pressure [13]
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Although strictly the dilation ® = 0 by continuity (3), but in the primitive variable formulation
when the finite difference scheme does not exactly conserves mass due to truncation errors then
these terms may be non-zero. In this case it is advisable to retain some terms containing dilation
to give a correction to dilation and avoid instability [5]. Our careful numerical investigation has
revealed the fact that all terms containing © except 0©/dt have negligible effect on the solution.
This is the reason why only this term was retained in Eq. (4). Equations (1), (2) and (4) will be
solved while the continuity Eq. (3) is satisfied at every time step.

The body force, which is assumed to be due to gravity only, does not appear in Egs. (1) and (2)
explicitly. This force is included in the pressure term p. In this way hydrodynamic and buoyancy
forces acting on the body placed in the flow can be separated. The components of drag and lift due to
pressure p acting on the body mean the hydrodynamic components originated from the interaction
of the body and viscous fluid-flow. The real lift acting on a body placed in a flow field can be
obtained as the sum of the buoyancy force and the hydrodynamic lift obtained by the solution of
Egs. (1)-(4). As it can be proved easily the involvement of the body force into the pressure term
does not influence the drag.

2.1. Boundary conditions
On the surface of the cylinder (R;) (see Fig. 1):

e Velocity: no-slip condition

== (5)
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e Pressure:
0 i
o STl 6)

where n refers to components in the direction of the outer normal. This expression is obtained
from the Navier-Stokes equations of (1) and (2).

Far from the cylinder (R»):

e Velocity: potential flow

U = Upot — U0,

(7)

V = Upot — V0,

where ug, vy means the velocity components of the oscillating cylinder, and subscript ‘pot’ stands
for potential flow.

e Pressure:

Op Jp
an (8n)pot' (8)

It is to be noted that the assumption of potential flow in the far field region is reasonable except for
the narrow wake. The outer boundary of the computational domain is very far from the cylinder,
hence it is not surprising that our computational experience shows that these assumptions result in
a small distortion of the velocity field near the outer boundary wake region only.

1%

Nmax (RZ) C

Fig. 1. Physical and computational planes

3. TRANSFORMATION OF THE GOVERNING EQUATIONS

Boundary conditions (BC) can be represented accurately when the boundary is such that it coin-
cides with some coordinate line. In this case there is no need for interpolation. To avoid interpolation
is particularly important for boundaries with strong curvature or slope discontinuity. The genera-
tion of a curvilinear coordinate system with coordinate lines coincident with all boundaries, called
boundary fitted system, is thus an essential part of a general numerical solution of a partial differ-
ential equation (PDE) system. Any PDE system can be solved on the boundary fitted coordinate
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system by transforming the set of PDEs and associated BCs to the curvilinear system. The trans-
formed equations can be approximated for example by using finite difference expressions and solved
numerically on the transformed plane.

First we have to transform the physical plane into the computational one. ThlS will provide the
computational meshes, too. Figure 1 shows these two planes.

We have chosen the way of description where both the coordinate system and the grid are fixed
to the accelerating cylinder. This non-inertial system formulation has triple benefits:

e the computational grid has to be generated only once;

e since grid points are fixed even on the physical plane, there is no need for interpolation of the
initial conditions at the beginning of every time step;

e the transformed governing equations have simpler forms.

A unique, single-valued relationship between the coordinates on the computational domain
(&,7m,7) and the physical coordinates (z,y,t) can be written as

z (&,m) = R(n) cos[g (€)],
y(&,n) = —R(n)sinfg ()], (9)
t = Ty

where the dimensionless radius

R (n) = Ryexp[f (n)]. ‘ (10)

This choice of the structure of the mapping function automatically assures that the obtained grid
is orthogonal on the physical plane for arbitrary functions f (n) and g (£¢). At present our choice for
functions f (n) and g (§) is as follows

SV [ENE RS SN S

émax
where a; is a constant parameter, and subscript max stands for maximum value. If a; = 0 cylindrical
coordinates with logarithmically spaced radial cells are obtained on the physical plane which provide
a fine grid scale near the cylinder wall and a coarse grid in the far field. By changing the parameter
a; we can control the grid resolution in the vicinity of the cylinder. The value of a; can not be
arbitrary. Transformations (9), (10) are unique and single-valued only for non-vanishing Jacobian

g(&) =2m

J = YnTe — Yen - (12)
Taking into account this consideration parameter a; has to be chosen between the limits
~l<a; <3. (13)

Finally, in the knowledge of the functional relationships (9)-(11), governing Egs. (1)—(4) on the
physical plane can be transformed into corresponding equations on the computation plane containing
partial derivatives with respect to £ and 7. While deriving the transformed equations we apply the
forms of (9) and (10). In this way equations will be valid for quite general cases, not only for the
special one specified by Egs. (11).

The z and y components of the Navier-Stokes equations, (1) and (2), will be transformed as
follows
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The Poisson equation for pressure (4) will have the form
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Boundary conditions for pressure, expressions (6) and (8) will be transformed as
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In Eqgs. (14)-(18) variables «, v, ¢ and o are defined as follows
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In these equations J is the Jacobian defined by Eq. (12), g11 and goo are elements of the metric
tensor. Because of the structure of transformation (9) and (10) the grid is always orthogonal. Hence
the off-diagonal elements of the metric tensor g12 = g21 = 0. That is also the reason why the mixed
second derivatives are missing from the equations above, see [4].

Since the mapping is given by elementary functions, all of the metric parameters and coordi-
nate derivatives can be computed from closed forms. In this way the numerical differentiation of
coordinates subjected to numerical errors can be avoided.

It can be shown by using Eqgs. (9), (10), (12) and (20) that when g (§) is a linear function,
as in Eq. (11), then ¢ = 0. If f is a linear function of 7, e.g., when a; = 0 in Eq. (11), then
o = 0, too, as can be shown using Egs. (9), (10), (12) and (21). In these cases our equations can
be simplified further, and the grid aspect ratio will become constant. By choosing the number of
grid points in directions £ and 7 properly, this constant can be set to unity resulting in conformal
transformation [4].

4. NUMERICAL APPROACH

A computational code was developed for the solution of the problem. The governing equations are
solved by the finite difference method. The time derivatives in the Navier-Stokes equations (14) and
(15) are approximated by forward differences. Fourth order central difference scheme is used for the
diffusion terms and pressure derivatives except for the points in the vicinity of the boundary where
the proper stencils are not available. In these points fourth order difference formulae were derived
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based on inner points by using the Taylor series. The widely used modified third order upwind
scheme proposed by Kawamura [9] proved to be successful in handling the convective terms in the
Navier—Stokes equations.

The equations of motion are integrated explicitly giving the velocity distribution at every time
step. Since the computational grid is fixed on both the computational and physical planes, there is
no need for interpolation for initial conditions at all. In the knowledge of the velocity distribution
in an arbitrary time step, the pressure is calculated from Eq. (17) by using the successive over-
relaxation method (SOR). Since the dilation ©"*! is chosen to be zero at every time step [13], the
time derivative of © in this equation is approximated as

oen oen ®n+1 —en on

(22)

or ot At o

where superscripts n and n + 1 refer to the nth and the (n + 1)th time step.
The pressure on the cylinder surface is calculated by the third order formula derived from the
Taylor series at every time step

9
—pi3+4pi2 — 2 5 i,l
pig = 3

5. RESULTS AND DISCUSSION

The computational grid used is a 145x79 O-mesh, part of the grid points of which is shown in Fig. 2.
The diameter of the outer boundary of computation is 30D. For the sake of simplicity A{ = Anp =1
was chosen on the computational plane. For all calculations At = 0.001 dimensionless time step was
used.

Computations were carried out for the flow around a fixed circular cylinder for different Reynolds
numbers. The results obtained are contained in Table 1. Here Re is the Reynolds number, S is the
Strouhal number which is a dimensionless frequency of vortex shedding, Cpmean is the time mean

Table 1.
1.5+
Re S C’Dmean
1010 2.905
1F 2010 2.087
401 0 1.552

60 | 0.137 | 1.407
80 | 0.151 1.357
100 | 0.167 | 1.332
120 | 0.176 | 1.317
140 | 0.179 | 1.311
160 | 0.186 | 1.311
180 | 0.189 | 1.310
200 | 0.195 | 1.311
220 | 0.196 | 1.318
400 | 0.220 | 1.355
600 | 0.228 | 1.378
800 | 0.236 | 1.392
1000 | 0.236 | 1.398

050"

1t

Fig. 2. Near grid points
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drag coefficient. Figure 3 shows a comparison between the calculated Strouhal numbers shown in
Table 1 and the results of Roshko’s [14] experiments. Measured (see [15]) and calculated mean drag
coefficients (see Table 1) can be seen in Fig. 4.

Having a glance at Figs. 3 and 4, it can be stated that the agreement between experimental and
calculated results is very good up to about Re = 200. It is proved in [6] that the flow around a
circular cylinder becomes unstable at about Re = 190. This instability leads to three-dimensionality.
S and Cp values are overestimated beyond this Re number by using two-dimensional methods.

Figures 5-10 are related to computations for fixed cylinders for which Re=180. Figures 5 and 6
show the variation of lift coefficient Cf,, skin friction lift coefficient Cr s, drag coefficients Cp and
Cpy with dimensionless time ¢, respectively. Having a glance at these figures we can see that only
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Fig. 3. Strouhal number vs. Reynolds number
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Fig. 4. Time mean drag coefficient vs. Reynolds number
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Fixed cylinder; CL & CLF; Re=180
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Fig. 6. Drag coefficients vs. time
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-lower/...upper separation angles; fixed cylinder; Re=180

272

x . ; _ :
oobs LTI
:....-.HV
me s e o o s 0 0
.............
......
X Py
- o b o g ]
b Sy s
WIS ses doe ...lllli.HV
O s P e - COAMISIAte UL L J— il
....r....u......”t‘lwv
o e o o 008 05m 00 SR 7
—
‘Illln.ll.t.l.l.l.x-l
b P
P R s 44 204
e -
L meeem see s @ oo B
v
|t\ll‘ll!.t.|.l.l-|.l
NSetu e n ot b o e o =
-l L
I ...-.........z.\i\\v J
s
e et e
f!n.n.o.:. 0 e bee be ey
T e e tee e amsiame
R
e : L - ]
& ~ e < N o 0 <O
I b & — - = S =
- -~ - e 1 1 1 1

Bap ul

155 160 165 170 175 180 185 190 195 200

150

dimensionless time

Fig. 7. Separation angles vs. time

Stagnation angle; fixed cylinder; Re=180
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Fig. 8. Stagnation angle vs. time
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Spectrum of CL; fixed cylinder; Re=180
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Fig. 9. Spectrum of lift coefficient
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Oscillating cylinder; CL & CLF; A=0.06; SC=0.1697; Re=180
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Fig. 11. Lift coefficient vs. time
Oscillating cylinder; CD & CDF; A=0.06; SC=0.1697;, Re=180
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Fig. 12. Drag coefficient vs. time
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Fig. 13. Bounds for locked-in vortex shedding due to crossflow cylinder oscillation

small parts of the lift and drag coefficient are due to friction; larger parts are due to pressure. It
can be seen that after some transitional period the vortex shedding becomes regular. As it is known
the frequency of oscillation for the lift coeflicient is equal to that of the vortex shedding, and the
oscillation frequency for the drag coefficient is double of it.

Figure 7 shows the locations of the lower and upper separation points changing with time. These
points are determined by using the condition of zero shear stress on the wall. These angles are
measured from the point on the cylinder facing upstream. It can be seen that these angles are
oscillating with the frequency of vortex shedding, and, as it is expected, there is approximately
half wavelength shift between these two signals. A kind of stagnation point can be defined even
in viscous flow where the velocity is zero on the wall. The stagnation angle corresponds to points
of zero wall vorticity, wy, = (Ou/dy — dv/dz), [2]. The variation of stagnation angle can be seen
in Fig. 8. The agreement between the present results and those of in [2] is good considering both
separation and stagnation angles.

By applying the Fast Fourier Transform (FFT) for the regular parts of these oscillating signals
their spectra can be obtained. Figures 9 and 10 show the spectra of the lift and drag coefficients,
respectively. The frequency of vortex shedding can be determined from the location of the spectrum
peaks. The value of Strouhal number belonging to the lift spectrum peak means the nondimensional
frequency of vortex shedding. The location of the corresponding peak in the spectrum of drag gives
double of the vortex shedding frequency.

Computations were also carried out for flows about cylinders which are vibrated mechanically
either in crossflow or in-line directions. It is well known that if the amplitude of cylinder oscillation is
large enough, the frequency of vortex shedding is synchronizing with that of the cylinder vibration.
This phenomenon is called lock-in. In this case the oscillating signals and their spectra will become
similar to the ones for fixed cylinders.

Results will be shown for cases where the amplitude of crossflow oscillation is smaller than the
bound value for lock-in. Reynolds number is Re = 180, the dimensionless amplitude of oscillation
A = 0.06, the dimensionless frequency of cylinder oscillation S¢ = 0.1697. Figures 11 and 12 show
the variation of lift coefficients C, and C, ¢, further drag coefficients Cp and Cpy with dimensionless
time t. Having a glance at these figures we can see the frequency modulations.

The amplitude bounds of locked-in vortex shedding due to forced crossflow oscillation of a circular
cylinder for Re = 180 were also investigated by the authors. Bounds for dimensionless amplitude
A are shown in Fig. 13 as a function of the dimensionless frequency of cylinder oscillation S¢/S.
Here S is the Strouhal number for Re = 180, S¢ is the Strouhal number based on the frequency of
cylinder oscillation. Since this investigation requires the running of code many times the necessary
CPU time is very long.
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6. CONCLUDING REMARKS

The finite difference method has been applied for the direct numerical simulation of unsteady,
laminar incompressible fluid flow about fixed and oscillating circular cylinders placed in otherwise
uniform flows. Primitive variable formulation has been chosen, and a separate equation is used
for pressure p [13]. Equations are derived in a non-inertial system fixed to the cylinder. By using
boundary fitted coordinates, interpolation of the boundary conditions becomes unnecessary. The
choice of a grid fixed to the moving cylinder assures that the grid has to be generated only once
during the computation, and it also eliminates the need for interpolation of the initial values at
every time step. An orthogonal transformation is used to map the physical plane to the computa-
tional one, and the grid density can be controlled. Since the transformation is given by elementary
functions, coordinate derivatives and metric parameters can be obtained without using numerical
differentiations, leading to more accurate solution. Time derivatives are approximated by forward
differences, space derivatives by fourth order central differences except for the convective terms for
which a third order modified scheme was used [9]. Velocity values are obtained by integrating the
Navier-Stokes equations explicitly, and SOR method is used for the determination of the pressure
distribution at every time step. By using the velocity and pressure distributions several other flow
properties are derived. The vortex shedding frequency is obtained by applying the FFT for the
computed oscillating signals.

Extensive computations have been carried out for fixed cylinders to test the computational
results against experimental ones. The calculated time mean drag coefficients and dimensionless
vortex shedding frequencies agrees well with the corresponding experimental values up to about
Re = 200. Beyond this Re number the present two-dimensional method overestimates the Cp and
S values. This experience is in accord with that of authors [6], who showed that the flow around
a fixed circular cylinder becomes unstable and three-dimensional at about Re = 190. Hence two-
dimensional methods should not be used beyond this Re value. Due to lack of space only small
fraction of the computational results are included in the paper. The determination of separation
and stagnation angles was based on the conditions of vanishing shear stress and vorticity on the
cylinder wall, respectively. These values agree well with ones shown in [2].

Authors run the code for computation of flow about oscillating cylinders both in crossflow and
inline directions, many times, too. The amplitude bounds of locked-in vortex shedding due to forced
crossflow oscillation of a circular cylinder for Re = 180 are shown in Fig. 13. The determination of
this kind of curves requires large amount of CPU time. So far the authors had no opportunity to
compare this last result with those of experimental or other theoretical investigations.

The authors’ plan for the future is to

1. introduce higher order time differencing schemes;

2. compare results for oscillating cylinders with test results;

3. investigate the effect of Re number on the amplitude boundaries for lock-in;
4. investigate the effect of cylinder cross-sectional configuration on the flow;

5. extend the code to 3-D.
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