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The ability to model the different regimes of a physical event using different numerical techniques has a
number of advantages. Instead of applying the same general solver to all domains of a problem, a solver
optimized for a particular regime of material behavior may be used. Thus, in a single analysis, one type of
solver may be used for fluid behavior while another type is used for solid/structural response. The various
domains in the problem are then coupled together in space and time to provide an efficient and accurate
solution.

Examples in the use of Eulerian, Lagrangian, Arbitrary Lagrange Eulerian (ALE), Structural, and
Smooth Particle Hydrodynamic (SPH) techniques, in various combinations, will be applied to general
problems in fluid-structure interaction and impact problems. The relative advantages and limitations of
such coupled approaches will be discussed. Examples include the following:

e fluid dynamics, blast, impact/penetration (Euler)
e hypervelocity impact onto spacecraft shields (Lagrange-Lagrange)
e buckling of a thin walled structure (Structural)

e impact and penetration of a projectile onto concrete (SPH-Lagrange, Lagrange-Lagrange, Euler-
Lagrange).

Numerical results are presented with comparison against experiment where available.

1. INTRODUCTION

For problems of dynamic fluid—structure interaction and impact, there typically is no single “best”
numerical method which is applicable to all parts of a problem. Techniques to “couple” different
types of numerical solvers in a single simulation can allow the use of the most appropriate solver
for each domain of the problem.

The basic solvers for explicit integration numerical wavecodes (sometimes termed “hydrocodes”)
are outlined with their associated strengths and weaknesses. Techniques for coupling these solvers
are further discussed. Several applications of the coupled methodologies are then presented with
comparison of calculations with experimental results.

2. NUMERICAL SOLVERS

The numerical solvers utilized in hydrocodes generally fall into the following general classes: La-
grange, Euler, ALE, Structural, and Meshless methods. The general applicability and limitations
of each type of solver is outlined. By judicious selection of the appropriate solver for the various
regimes of a simulation, an optimal solution in terms of accuracy and efficiency can be achieved.
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2.1. Lagrange

In a Lagrange solver processor, the numerical mesh moves and distorts with the physical material
as shown in Fig. 1.
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Fig. 1. Lagrange solver

A Lagrange solver is generally well suited for the description of solid materials. Free surfaces
and material interfaces are located at cell boundaries and as such are well maintained throughout
the calculation. History dependent material properties are also well described in Lagrange since the
material and its history are contained in its original cell.

In the Lagrangian framework, coordinates (z), velocities (u), forces (F'), and masses (m) are
typically defined at corner nodes. Stresses (o), strains (¢), pressures (p), energies (e), and densities
(p) are cell centered.

While Lagrange is particularly well suited for the description of solid behavior, its main drawback
is that for severe deformations the numerical mesh may become overly distorted with a resulting
small timestep and possible loss of accuracy. A simple example shown in Fig. 2 illustrates this
situation.

1NN

Fig. 2. Lagrange impact problem with mesh distortion

In the problem above the numerical solution can only be carried to a certain point before the
Lagrangian mesh distortions cause the analysis to be stopped due to a very small timestep or mesh
tangling. However, programs may include additional features that may be applied to a Lagrange
solution to extend an analysis. These features include rezoning and erosion.
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Rezoning involves the re-establishment of a “regular” mesh through the mapping of the distorted
mesh quantities onto a newly defined mesh. An erosion technique also can overcome many of the
problems associated with using a Lagrange technique for high deformation situations. Typically, if
and when a limiting strain is reached within an element, the element is then “eroded”, i.e. either
discarded, or alternatively, transformed from a solid element to a free mass node disconnected from
the original mesh. This technique thereby avoids the mesh distortion problem. Many programs
simply discard the eroded node while others provide an option to retain the inertia of the eroded
element as an interacting free mass node.

The attributes of the Lagrange solvers are summarized in Table 1.

Table 1. Lagrange solver summary

Advantages Limitations Enhancements to
overcome limitations

Efficiency, fewer Element distortion can lead Rezoning and erosion
computations per timestep to small timestep
relative to other solvers
Clear definition of material Cell distortion can lead to Rezoning and erosion
interfaces and boundaries grid tangling and

inaccuracies
Good time history Thin sections need small Use structural solvers
information timesteps
Good for strength modeling | Complex logic for sliding

interfaces
Simpler code

2.2. Euler

In an Euler solver, the numerical mesh is fixed in space and the physical material flows through the
mesh as shown in Fig. 3.
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e Grid fixed in space, material flows through cell faces
e Normally used for modelling of fluids, gases and large deformations

Multiple materials and strength included

Cell centered varibles used facilitate coupling to Lagrange

Fig. 3. Euler solver

An Euler solver is typically well suited for the description of fluid and gas behavior. Free surfaces
and material interfaces can move through the fixed Euler mesh. Sophisticated numerical techniques
must be used to track the material motions. Because the mesh is fixed, large deformations or flow
situations, by definition, do not result in mesh distortions. The tradeoff is the extra computational
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work required to maintain interfaces and to limit numerical diffusion. Also, to describe solid behavior,
the solid stress tensor and the history of the material must also be transported from cell to cell.

A number of different approaches for the centering of variables have historically been used. To
facilitate coupling with other types of solvers, a scheme wherein all variables (stress, strain, pressure,
energy, density, and velocities) are cell centered, as shown in the figure, is sometimes used [5].

The examples described below show the use of an Euler solver for gas dynamic and blast problems.

Figure I shows a two-dimensional explosion in a shock tube. This illustrates the use of a multiple
material Euler solver applied to fluid (no strength) dynamics.

Figure 4 above shows the use of Euler for multiple materials including strength. The liquid metal
jet is made of copper while the target is steel. The Eulerian multiple material formulation allows
materials to separate and create free surfaces (void creation) automatically.

Figure II shows the blast loading on a set of three dimensional buildings. This example illustrates
three-dimensional fluid dynamics with rigid structures.

Fig. 4. Euler: high speed metal jet penetration

Table 2. Eulerian solver summary

Advantages Limitations Enhancements to reduce
limitations

No grid distortions More computations per cycle | Simplified Euler formulations
than Lagrange without strength

Large deformations handled | Diffusion of material Sophisticated interface
boundaries tracking implementations

Allows mixing of different Need finer zoning for similar | Use of higher order

materials within cells accuracy compared to techniques

Lagrange. Need iterative
equation of state solvers for
multiple material cells

Rezoning not required Need void cells defined in Use of dynamic memory
space where material may allocation to store
flow can lead to very large information only where
meshes needed
Shock diffusion Higher order
implementations

Less flexible for strength
modeling than Lagrange
solvers

Thin sections need many Couple to alternative solvers
cells
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Fig. I. Euler: explosion in air filled shock tube

Fig. II. Euler: 3D blast on rigid buildings

Fig. I Arbitrary Lagrange Euler fluid-structure interaction (fluid regions not depicted except on single
horizontal plane)
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Fig. IV. Impact slide (Lagrange-Lagrange) surface (2D)

Fig. V. Lagrange-Lagrange interaction with erosion

Euler Subgrid

Lagrange Subgrid

Fig. VI. Euler-Lagrange coupling
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2.3. Structural solvers

Structural solvers may be used to model thin structures, beams, rods and other structural elements
in situations where the use of a standard Lagrange or Euler solver would impose a very small
timestep on the calculation. In the case of a shell solver, it is presupposed that the structure being
modeled is “thin” such that a biaxial state of stress may be assumed. No wave propagation occurs
across the shell thickness but only along its length. Thus, the timestep (¢) is constrained only by
the zonal dimension along the length.

An example of a 3D Shell calculation is shown in the crushing of a thin hexagonal girder as
shown in Fig. 5. Modeling such phenomena in Lagrange or Euler would be virtually impossible.

A summary of a structural shell solver is provided in Table 3. Other types of structural solvers
would include beams, rods, springs, etc. wherein a continuum approach is also not applicable.

Fig. 5. Time sequence of the buckling of an hexagonal girder

Table 3. Shell solver summary

Advantages Limitations

Time step controlled by the Not accurate for thick structures
segment length, not thickness

Biaxial stress state

2.4. ALE (Arbitrary Lagrange Euler)

An ALE (Arbitrary Lagrange Euler) solver allows for a type of “automatic rezoning” which can
be quite useful for certain problems. Depending on the specified motions, the ALE domain can be
completely Lagrangian (the nodes move with the material motion), completely Eulerian (the nodes
are fixed and the material moves through the fixed mesh), or something in between, as shown in
Fig. 6.

ALE may be used for the modeling of solids, fluids, and gases. It is particularly well suited
for a variety of fluid—structure interaction problems. An example of ALE is shown in Fig. III. An
explosion inside a building is modeled in 3D. The explosion and fluid dynamics regions of the
model are simulated using Euler constraints while the solid structures are modeled with Lagrange
constraints [3].
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e Material interfaces are Lagrange and interior calls may be Lagrange,
Euler or any other motion constraint

e Modelling of solid continua, fluids and gases including fluid-
structure interaction

Fig. 6. ALE solver (single material elements)

In a single material ALE solver the primary assumption is that all nodes at free boundaries or at
material interfaces are strictly Lagrangian. Thus, no material may flow in or out of an ALE domain
nor may individual cells contain more than one material. Multiple material ALE formulations do
not have such restrictions and can operate in the same fashion as multiple material Euler schemes
wherein material may flow from cell to cell.

Table 4. ALE solver summary

Advantages Limitations Enhancements to
overcome limitations

Wide range of applicability Need to specify mesh motion
with arbitrary mesh motions | constraints
(automatic rezoning)

Clear definition of material Cell distortion can lead to Rezoning and erosion
interfaces and boundaries grid tangling and

inaccuracies
Good time history Thin sections need small Use shell solver
information timesteps

Good for strength modeling | Complex logic for sliding
interfaces

2.5. Meshless techniques

There are a number of meshless techniques such as Smooth Particle Hydrodynamics and Element
Free Galerkin. In this discussion we will address only one generic meshless technique, SPH, but the
comments are generally applicable to most meshless techniques.

SPH is a Lagrangian technique having the potential to be both efficient and accurate at mod-
eling material deformation as well as flexible in terms of the inclusion of specific material models.
In addition, SPH is a meshless or gridless technique such that it does not suffer from the normal
problems of grid tangling in large deformation problems. Presently many large deformation prob-
lems are calculated using Eulerian techniques that do not suffer from grid tangling but have some
limitations in terms of modeling material interfaces, the inclusion of specific material models, and
associated high computational expense.

The main potential advantages of the SPH technique are that in not requiring a numerical grid, no
grid tangling, by definition, can occur. SPH is Lagrangian in nature thus allowing efficient tracking
of material deformations and history dependent behavior. Compared with Euler, it is more efficient
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in that one only need model regions where materials exist, not all regions where material might
exist. Being meshless, phenomenon such as fracture and fragmentation may be modeled. Fracture
can occur arbitrarily without the a priori strictures of a numerical mesh.

With all of its promise, however, SPH technology is relatively immature compared with stan-
dard grid based Lagrangian and Eulerian techniques. Several problems need to be solved before
the technique becomes a fully developed computational continuum dynamics technique. There are
remaining known problem in the areas of stability, consistency, and conservation. Despite these
problems very encouraging results have been obtained for a variety of applications using the SPH
technique [6, 7, 8, 9]

The name SPH includes the term “particle”. Although this is appropriate for describing the
Lagrangian motion of mass points in SPH, it is misleading because the “Particles” are really inter-
polation points. This is best demonstrated through a simple example. Consider a rod of steel which
is represented by a series of SPH particles, as illustrated in Fig. 7.

W

Fig. 7. Kernel density example

The density at a particle I can be calculated using an expression such as

N
p= ZmJWIJ(:L‘I e CCJ,h)
J=1

where m” is the mass of particle J, W/’ is a weighting function (Kernel B-spline), z is the position
of the center of a particle and h is known as the smoothing length or particle size.

Therefore, to calculate the value of a function at particle I, in this case density, the value of the
function is summed at all neighboring particles (interpolation points J1, J2, I, J3, J4) multiplied
by a weighting function (the Kernel function).

Hence, the SPH particles are not simply interacting mass points but rather they are interpolation
points from which values of functions, and their derivatives, can be estimated at discrete points in
the continuum. In SPH, the discrete points at which all quantities are evaluated are placed at the
center of the SPH particles.
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3. INTERACTION OF SOLVERS, COUPLING ALGORITHMS

In order to optimize the solution of “coupled” problems (e.g. impacts, explosions, fluid-structure
interactions, etc.) techniques have been devised to allow interaction between solvers. Thus different
numerical solvers can be applied selectively according to the phenomena being modeled and then
linked together automatically in space and time.

3.1. Types of interaction
The typical types of interaction available depend on the solver types that are to be coupled:

e Lagrange-Lagrange: Two Lagrange type domains (including Shell and ALE) may interact
through either a joined (“glued”) or an impact-slide surface. Impact-slide surfaces allow the sur-
faces of Lagrange bodies to interact in a very general fashion including the closing and opening
of gaps. Such Lagrange-Lagrange interactions are used to simulate a wide variety of phenomena
including impact and penetration. SPH-Lagrange interactions can also use impact-slide surfaces.

e BEuler-Lagrange: An Euler domain and a Lagrange domain may interact across an Euler—
Lagrange interface. In an Euler-Lagrange interface the Lagrange domain acts a geometric con-
straint to the Euler region while the Euler region provides a pressure boundary to the Lagrange
domain. Such an interaction is highly advantageous for problems such as fluid-structure or gas
dynamic-structure interactions.

The next sections provide an overview of the various types of interaction falling under the above
classifications:

3.2. Lagrange—Lagrange join

Nodes from each Lagrange subgrid are joined (“fused”) together and are regarded as a single node in
the calculation. The nodes will remain exactly together throughout the calculation unless the Join
condition is removed by the analyst or erosion occurs.

All “Lagrange” types of domains typically may be joined together. This includes Lagrange, Shell,
and the surface nodes of an ALE (Arbitrary Lagrange Euler) domain.

FRERF

Fig. 8. Joined Lagrange grids (including shells)
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3.3. Lagrange-Lagrange interaction (dynamic impact/slide surface)

A surface on one Lagrange domain can interact with another surface of a different domain allowing
for impact and sliding, gap opening and closing, between the bodies. The impact/slide surface
typically may include friction or not. Gaps may open and close along a slide surface. Figure IV
illustrates a generic Lagrange-Lagrange interface.

In many programs that include Lagrange-Lagrange interactions, each time step an array is
constructed containing all the current surface faces of the first body termed the “master”. All surface
nodes of the second body, the “slave”, are then tested to see if penetration of the master faces occurs
during the current time step. If any of the slave nodes penetrate, momentum conserving interactions
are computed to prohibit penetration. When this is completed the master and slave bodies are
reversed and the procedure repeated, providing symmetry to the process.

A number of different interaction algorithms have been devised by various developers. One that
is particularly robust is based upon the use of a small “gap” to determine if bodies are interacting [3].
In this scheme, the gap defines an interaction detection zone to exist around each interacting face.
Whenever a node enters this detection zone it is repelled and “pushed back” to the surface.

The gap may be “visible”, with the bodies physically separated the gap distance, or “internal”
with the bodies allowed to physically be in contact. Each method, visible or internal, has certain
advantages. Typically, the visible gap provides a more computationally efficient calculation while
the internal gap provides a more “visually realistic” perception of the impact process. The use of
the gap scheme avoids many of the problems associated with other impact—slide algorithms such as
treatment of corners, interpenetration of bodies, and multiple thin shell interactions. The previously
cited example of a buckling cylinder utilizes this formulation to easily follow the complex folding of
a thin shell on itself.

As schematically shown in Fig. 9, with the visible gap, the subgrids are separated by a small
gap. With the internal gap, the subgrids exactly touch.

a)m b) &

Fig. 9. a) Visible gap: interacting surfaces must be separated by the gap size; b) Internal gap:: interacting
surfaces may be in contact

As a Lagrangian body moves and distorts, and potentially erodes, the interacting Lagrange
surface must be automatically redefined. When a Lagrangian element cell is eroded, the mass of
the cell can either be discarded or retained at the four corner nodes of the element. If the mass is
retained, conservation of inertia and spatial continuity of inertia are maintained during the erosion
process.

If the four cells surrounding a particular node are eroded, the node becomes a free node. Free
nodes can be automatically added to the arrays of slave nodes used in the impact-slide logic and
thus continue to interact with all defined impact-slide boundaries. Figure 10 illustrates the creation
of free nodes and the automatic redefinition of the impact/slide surface whenever erosion occurs

Erosion does not necessarily simulate a physical phenomenon. It is fundamentally a numerical
technique introduced to overcome the problems associated with the mesh distortions caused by gross
motions of a Lagrange grid. When a node is eroded the compressive strength of the material within
the zone is lost and the mass of the eroded node may be retained or discarded. Erosion strains
should therefore be chosen such that zones are not eroded until they are quite severely deformed
and their compressive strength and/or mass are not likely to effect results. Typical erosion strains
are usually taken to be in excess of 150%. This feature extends the capabilities of Lagrange type
calculations for extreme deformation problems.
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Fig. 10. Eroded nodes: dynamic redefinition of impact/slide surface

Figure V shows the three dimensional Lagrange-Lagrange interaction of two tungsten rods im-
pacting steel at 4 km/sec. Erosion has been specified with retained inertia. The eroded free nodes
are depicted as small spheres

A second example (Figs. 11 and 12) demonstrates the excellent agreement with experiment
that can be obtained using an erosion technique. The oblique impact of an aluminum sphere at
6.56 km/sec on an aluminum plate is simulated using Lagrange-Lagrange interaction with erosion
(retained inertia option). The problem is of interest in protecting spacecraft against orbital debris.

Fig. 12. Debris cloud: calcultion vs. experiment
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3.4. Euler-Lagrange interaction

An Euler region and a Lagrange body may interact across an Euler-Lagrange interface. In an
Euler-Lagrange interface the Lagrange body acts a geometric constraint to the Euler region while
the Euler region provides a pressure boundary to the Lagrange body. This is depicted schematically
in Fig. VL.

As the Lagrange subgrid moves and distorts, it “covers” and “uncovers” the fixed Eulerian cells.
Logic must be implemented to avoid overly small Eulerian cells that may arise during this processS-
mall Eulerian cells that could severely limit the calculation timestep typically are automatically
blended with larger neighbors. The Euler-Lagrange interface allows complex fluid-structure inter-
action problems to be solved as well as large deformation structural problems.

Usual Euler-Lagrange implementations use a polygon concept to define the physical surfaces of
the various Lagrange bodies that are used in Euler-Lagrange interaction. This approach presupposes
that there is a regular, bounded surface along with the interaction occurs. The interacting polygons
will move according to the internal stresses in the Lagrange body coupled with the boundary
pressures from the adjacent Euler subgrid. Figure 13 shows the polygon interacting with Euler.

The example in Figs. 14 and 15 simulates a steel projectile impacting and penetrating an alu-
minum target. The steel projectile is modeled in Lagrange while the target is modeled in Euler.
The initial setup showing the Lagrange and Euler domains and the interacting polygon are shown
as well as the results of the calculation after penetration.

Lagrange

Euler

Fig. 13. Lagrange polygon interacting with Euler region
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Fig. 14. Euler-Lagrange initial setup
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=00 t = 23.2 usecs

Fig. 15. Euler-Lagrange penetration simulation

The Euler-Lagrange coupling can be very powerful for fluid-structure interaction problems. But
it does have a number of limitations that restrict its use.

The Euler-Lagrange schemes have only proved themselves efficient and useful in 2D. In 3D, the
computational requirements are excessive even on supercomputers. This stems from the substantial
and complex intersection calculations that must be performed each timestep. Increasingly powerful
computers and new algorithms may alleviate this problem in the future.

The Euler Lagrange scheme is predicated on a continuous and closed interacting surface as
defined by the Lagrange structure. If a structure fails and the surface is no longer continuous, the
Euler Lagrange scheme cannot handle the situation. A simple example illustrates this limitation.

A double hulled vessel undergoes loading from a nearby mine detonation. The initial loading
deforms the outer hull. The outer hull eventually ruptures allowing fluid and loadings onto the
secondary hull. Even though the initial portion of this problem (prior to rupture) can be solved with
Euler/Lagrange, such an analysis fails as soon as the interacting polygon is no longer continuous.
Even the use of very ad hoc assumptions (“porous” polygons) does not alleviate such issues.

An additional limitation, depending on the Euler mesh resolution, is that a Lagrange body can
get “lost” within the Euler mesh, with no pressure gradient acting upon it. The Lagrange body will
artificially be “trapped” in a given location, as shown in Fig. 16.
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Fig. 16. Euler-Lagrange coupling failure

The projectile starts out with a defined pressure gradient from Euler but after tumbling is
later contained within single Euler cells. The only solution to the above problem would be a very
finely zoned Euler mesh, which in 3D usually makes the calculation impractical even on the fastest
supercomputers.
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Thin shell structures with ends or structural details cannot readily be used in Euler-Lagrange
coupling because of the inability of creating a continuous and closed polygon [12]. The example
shown in Fig. 17 cannot be solved with current Euler Lagrange coupling methodologies.

Lagrangian Plate Elements
and Coincident Interface "Elements"

Split Eulerian Cell

Fig. 17. Difficult problem for Euler-Lagrange coupling

3.5. SPH-Lagrange coupling

Because of the limitations of Lagrange/Lagrange and Euler/Lagrange coupling current work using
SPH/Lagrange coupling is underway by a number of researchers. In SPH/Lagrange coupling, regions
where large flow and distortions are expected may be modeled with SPH while solid and structural
response may be modeled with traditional Lagrange/structural approaches. The interaction between
SPH nodes and Lagrange or structural elements may be treated with algorithms similar to those
used for continuum Lagrange/Lagrange interactions. In such schemes, the SPH nodes are treated
as “slave” nodes to the Lagrange body.

3.6. Coupled calculation comparisons

A final set of examples, illustrated in Fig. 18, shows three different types of coupled analyses
compared between themselves and with experiment. The generic problem is a Lagrange projectile
impacting a concrete target. In each analysis the target is described in either SPH, Lagrange, or
Euler. The calculated deformations of the concrete target, for each coupled simulation is shown
3.5 msecs after the impact of the kinetic energy penetrator (KEP). Regions which are failed in
tension are shown in dark, thus giving an indication of the extent of cracking in the concrete.

A qualitative comparison of the target damage predicted in the three numerical simulations
indicates that the SPH/Lagrange simulation gives rise to a much more discrete representation of
the failed regions. Further, the size and shape of the front face spall and back face scab are visualized
particularly well in SPH. In SPH the separation of material on a fracture plane, and the creation
of new internal material interfaces, is dealt with in a natural way with no prior knowledge required
with respect to the crack location. Further, the opening of cracks can be seen as the SPH particles
separate. In grid based techniques the opening of cracks only manifests itself through the growth of
failed zones of material that can be much more difficult to observe.

In Table 5 an approximate quantitative comparison of the dimensions of the failed concrete
regions indicates good correlation for the SPH/Lagrange simulation with the experiment. Similar
damage characteristics can be marginally discerned from the results of the Euler/Lagrange sim-
ulation however the correlation with the experimental results is more difficult to define. In the
Lagrange/Lagrange simulation, although failed regions are concentrated near the KEP entry and
exit points, no discrete crack patterns can be observed or correlated with the experiment.
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Fig. 18. Final deformation, SPH-Euler-Lagrange simulations

Table 5. Comparison of experimental/calculated target damage

Damage: mm
Diameters Euler/Lag | Euler/Lag | SPH/Lag
Bore Hole 90 (+10) 90 (+10) 90 (+10)
Primary Front Face Spall | 1500 (£150) | 2000 (+1000) | 1200 (+£100)
Back Face Spall 2200 (£200) | 2380 (+620) | 1900 (£200)

100000 r¢————————— CONCRETE ———»

50000

Penetration (m)
Accln B
(m/s/s) 8

-100000 +

i | SPH/Lagrange
Lagrange/Lagrange

-200000 1 :
: @ Euler/Lagrange

ST 1
250000 1 Experiment

Fig. 19. Projectile deceleration histories
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In the experiment, the deceleration of the kinetic energy penetrator was measured via an onboard
accelerometer. For comparison, the average deceleration of the penetrator was recorded in each of
the numerical simulations. These are compared in Fig. 19.

The general characteristic features of the KEP deceleration for the three coupled techniques
show good correlation with those observed in the trial. The average peak deceleration is however
under-predicted by 20% to 30%. Further, the under prediction of the peak deceleration is greater
for the SPH target compared with the Lagrange and Euler targets. (It should be noted that the
spike in the trial KEP deceleration time history at approximately 0.25 m penetration is thought
due to be a characteristic of the accelerometer rather than physical phenomena.)

4. CONCLUSION

Different numerical solvers have certain advantages and limitations. It is critical that analysts un-
derstand which solver, or combination of solvers, is best suited to modeling their problems of in-
terest. Utilization of software that allows general coupling of different solvers provides a framework
within which to apply solvers optimal for the various domains of a problem. Nevertheless, coupling
techniques, while extremely powerful, also have inherent limitations that must be recognized. The
choice of using Lagrange-Lagrange, Euler-Lagrange, or SPH-Lagrange coupled techniques still,
many times, is only resolved by numerical experimentation and validation against experiment.
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