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We consider the optimal design of a machine frame under several stress constraints. The included shape
optimization is based on a Quasi-Newton Method and requires the solving of the plain stress state equations
in a complex domain for each evaluation of the objective therein. The complexity and robustness of the
optimization depends strongly on the solver for the pde. Therefore, solving the direct problem requires an
iterative and adaptive multilevel solver which detects automatically the regions of interest in the changed
geometry. Although we started with a perfected type frame we achieved another 10 % reduction in mass.

1. INTRODUCTION

Some 20 kilometers away from Linz the industrial company ENGEL Maschinenbau GesmbH in the
field of mechanical engineering is situated. One of their fields in constructing, fabricating and selling
industrial machine components is in injection moulding machines. The classical construction is based
on bars, but ENGEL Maschinenbau holds a patent for the barless construction. The mass of the
frame of a mid range injection moulding machine amounts to 4 tons, hence limits on transportation
facilities hamper marketing of these machine components, i.e., increase costs for transportation.

The following statements are correct for construction in lines of products, but they became more
and more important for construction in single units also:

e An industrial machine component, i.e. in our application the frame of an injection moulding
machine, has to meet certain requirements that are fixed in a contract between the enterprise
and the purchaser.

e Due to lack of time the mechanical engineer who designs the industrial machine component has
to stop his designing process after two or three drafts and take the best draft obtained so far.

e There is no more time left for more drafts that would either meet the requirements to a larger
extent or be constructed more cheaply.

Becoming aware of these facts leads ultimately to the use of mathematics, resp. optimization, in
industry, and, as a first step, to

2. THE MODELING OF THE DESIGN OF THE FRAME OF AN INJECTION MOULDING MA-
CHINE

The frame of an injection moulding machine is briefly described by its 2D-cut given in Fig. 1. Typical
dimensions are:

!This work has been partially granted by the Forschungsforderung der Allgemeinen Sparkasse Oberdsterreich.
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Fig. 1. Initial grid of the original shape (204 elements)

thickness of one plate: 180 mm

mass of one plate: 3.8 tons

clumping force (line force): 300 tons = 2943 kN= 16 N/mm?

length / height: 2.8 m /1.7 m
e 2 supporting points (areas).

Our first goal is to minimize the mass of the frame of the injection moulding machine subject to
certain requirements (not all of them are constraints in the classical nomenclature of optimization),
namely

e maximal von Mises stress: omax

e maximal tensile stress: Tmax

e shrinking angle of clumping unit (vertical edges on top, called wings): dmax
e handling of the machine, feeding mechanism

e casy manufacturing,

where the boundary of the cross section is described by parts of arcs and straight lines. Hence,
we use 2D coordinates of corner points and their radii of curvature as design variables, i.e.,

(i, YiTi) =: VD -

—pAu— A+ p)Vdiva=>b  in{2, (1)
+ B.C.
A:—_E}V——_ ) b= = )
1+v)(1-v) 2(1+v)
with

A, p Lamé’s elasticity constants
E modulus of elasticity

v . Poisson’s ratio [2,7].

This pde governs the following shape optimization problem:
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Minimize
F(u(vp),vp)

with respect to
up = (BD,1; ¢ YWD N)

taking into account the constraints
o(zx) e O i Vz € Q(vp)
(wings) < amas
7(x) £ Thax

admissible geometry Q(vp) <= box constraints on vp

Here, u is the (discrete) solution of the linear elasticity equations.

Most requirements are not really constraints, e.g., a larger angle will be acceptable if the mass de-
creases significantly. Hence, all requirements but the geometrical constraints on the design variables
themselves are put into the objective

F(vp,u(vp),o,a) = wy, - mass(vp)/mo + wy - 3 {max [o(z(v;))/omax — 1, 0]}

+ W - [max (a(wings)/amax — 1, 0]

+ Wq,s - [max ((wings)/agep, — 1, 0)]? (2)

e The term {max [o(z(v;))/0max — 1, 0]}? fulfills the requirement F € C?.

max (a(wings)/asort — 1, 0) denotes the quality of the shrinking angle with respect to a lower
bound. Values of « in the interval [asoft, @max] are accepted but increase the functional F.

® Wy, Wa,m, Wa,s , We are the weights of importance of a criteria for the engineer.

Geometrical constraints are handled by an active index set strategy. A regular geometry is
guaranteed by the choice of box constraints and by additional regularity tests.

3. NUMERICAL TREATMENT
3.1. Advanced solver for the direct problem

Replacing the displacements u by the approximate FEM-solution uy [3,7] the solving of Eq. (1)
reduces to the solving of the huge linear system of equations

Ku = b.. (3)
Due to complexity and robustness reasons in the solution process of (3) we need
e iterative Multigrid /Multilevel solvers with adaptive grid refinement, which

e find automatically (also unexpected) areas of interest due to the

e accuracy of derived values (o) at near-by singularities.
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These requirements are met by software developed at our institute in the past years, coded in
C++, see NETGEN [5], FEPP [6]. The control of the adaptive FEM-grid refinement on each level &
is done by an a posteriori error estimator for the error of the solution ug*, i.e., 'zvl’j ~ z,’i =l h —uy|
where up* denotes the f.e. interpolation of the exact solution u of system (3).

The numerical examples for the solution of the direct problem, i.e., solving the plain stress state
equations, reveal that uniform refinement of the grid immediately leads to huge requirements on
storage space and consequently to enormous CPU-consumption.

If using an iterative solver for the direct problem, then we have to pose the question how many
adaptive levels are necessary?

In the optimization code (see below) we use numerical differentiation, hence an accuracy of at
least 1% in functional F is desirable. This implies that

k
”01(1ng &l O';KnaxH < 0,01 - Ur*na.x )

(similar for o), a*) where the exact values o*, Omax are unknown. An error estimator working
on these criteria is not implemented so far. So we use an heuristic criteria in combination with
a conventional error estimator, i.e.

Stop the adaptive solver, if

IEAL <001-]2%] and
okl — oDl < 0.01-0),  and n
ool — o2 < 0.01- 0k |

Here, we omit the condition on « because the accuracy of the angle is not critical in the iteration.

If the supporting points/edges are modeled as Dirichlet B.C. with no displacement in that region
(u = (0,0)T), then we achieve high stresses in these areas. This is due to the fact that zero Dirichlet
B.C. do not reflect the flexibility of the supporting points, i.e., the frame is not strictly fixed there.
To avoid solving a contact problem we handle these Dirichlet B.C. as Robin B.C. with a function
as f.e.-penalty parameter. Assuming z and z. as starting and end point of the supporting edge the
boundary conditions are

0 = 10" (z — z,)(z — z) - (u(z) - 0) ,

f.e.—pe;lralty(z)

which ensures support in the center of the edge and increasing flexibility away from it.

3.2. Shape optimization
The variables are arranged in groups of discrete and continuous variables. Mathematically, our
optimization problem is of the form
minimize
flzr,zc)
with respect to
o= (2r.%c)
subject to
1 <z <7Iy
zc < z¢c <T¢
zrr €N for 1 <k <Dy
Trk = T+ MSg for some m € Ny, for 1<k <Dy

zck €ER for 1 <k<Dg.
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sk is a given integer step size. Dy and D¢, denotes the dimension of the vector z; and z¢, re-
spectively. At first we generate a list of all continuous box constrained optimization problems by
totally enumerating all discrete feasible points (in our case there is for the moment only one discrete
variable, the number of wholes in the frame). In the second part of the code all continuous problems
are treated as follows.

As there are no equality constraints and as the gradients of the inequality constraints are equal
to either e or —ex, where e denotes the k** unit vector, the regularity conditions and hereby the
Kuhn-Tucker-Theorem hold. All continuous variables are scaled, i.e.

y lzc k| + |ZTckl
B = By df—ne——

For sake of simplicity we will always use the notation z¢ instead of Z¢. Starting from a feasible
point for the continuous problem, which is always known — e.g. the central point of the feasible
region that is formed by the box constraints — we use a Quasi-Newton method (see e.g. [1, pp.138])
which takes advantage of the simple structure of the constraints during generating and solving the
corresponding quadratic optimization problems by the active index set strategy. For updating the
Quasi-Newton matrix we use a modified BFGS formula, following Powell [4]. The optimal solution
of one of the generated continuous problems is denoted by z¢(z).

After solving all generated continuous problems, the solution of the mixed integer problem is
easily found by

minimize
flzr,ze (1))
with respect to 2y, subject to

2 <z <7Ty
zrxk €N for 1<k <Dy

Trg = X[k + MSk for some m € Ny, forl<k< Dy

i.e., just by comparing values of the objective already calculated.

4. APPLICATION

During testing the above code we realized that there are more requirements to be met by the design
of a frame for an injection moulding machine which were not stated in the beginning. Now this
requirement on the tensile stress has already been included in the model. During the automatic
optimization process we achieved temporary frame geometries resulting in very high stresses in
single points or areas which would lead to a damage of the machine. To catch such regions without
a very fine grid in the whole domain an adaptive solver is strictly recommended — otherwise we may
run into non-admissible solutions.

Note, that part of our objective looks like applying a penalty method. In our model these weight
factors are used and interpreted as factors of importance, the “penalty parameters” are about of
the same magnitude as the coefficients of the elements in the objective. As our penalty parameters
do not tend to infinity, as in the penalty method for constrained optimization, but are fixed given
weights, we do not have to cope with the problem of ill-conditioning for larger and larger penalty
parameters.
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5. NUMERICAL EXAMPLES

We used a SUN-ULTRA 170MHz (9 SPEC fp95) for optimizing the initial geometry from Fig. 1.
The mesh generation and solving of one direct problem took us 40—60 sec.

The shape of the frame was optimized with respect to the hole in the center, i.e., we had 12 design
variables. Our automatic optimization code stopped after 9 hours with the geometry presented in
Fig. 2, here the adaptive code needed 7 levels to fulfill stopping criteria (4) in the direct problem.
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Fig. 2. 7th adaptive grid of the optimized shape (2257 linear elements)

The weighting factors in (2) have been chosen as wy, = wy = wam =1 and wq s = 0.5. Because
of the linear finite elements, the edge based residual error estimator used in the code results in a
quite dense refinement in the areas of interest. The usage of quadratic test f.e. functions results in a
sparser grid but comparable solution time. Taking into account that the original frame has already
been produced for several years a mass reduction of 10 % is not bad. Additionally, a smaller weight
Weq,s in the soft limit for the angle would result in a bigger decrease of mass. The value of that
weight is still in discussion. Actually, we choose the soft limit agof, for the angle by 95 % of the strict

limit omax -

Table 1. Mass reduction and fulfilling of constraints in per cent

orig. geom. | opt.geom.
mass 100 % 90 %
max o /0max 75 % 71 %
max T/ Tmax 81 % 100 %
af asofy 88 % 96 %
a/amax 92 % 102 %

6. CONCLUSIONS

Using advanced mathematical techniques in the solving of the direct problem opens the gate to fast
2D optimization. Due to the fact that the whole optimization code has to run automatically, one has
to guarantee that the solver for the direct problem will detect all critical stresses, displacements,
etc. without any interaction by the user. This can only be achieved by adaptive codes — maybe
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by implementing problem specific error estimators. Otherwise, the optimization process will return
some geometry leading to serious damages of the machine, i.e., hours or days of computational work
become worthless.

The handling of 3D optimization problems will be only feasible in future if these advanced
techniques, i.e., multilevel and adaptivity, are transfered to the optimization algorithms.
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