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In order to avoid a fully nonlinear prebuckling analysis by the finite element method for the mere pur-
pose of obtaining the stability limit in the form of a bifurcation or a snap-through point, this limit may
be estimated by means of the solution of a suitable linear eigenvalue problem. What seems to be most
suitable in this context, is a consistent linearization of the mathematical formulation of the static stability
condition. It can be interpreted as the stability criterion for the tangent to the load—displacement dia-
gram at a known equilibrium state in the prebuckling domain. Based on this linearization, higher-order
estimates of the stability limit can be obtained from scalar postcalculations. Unfortunately, the order of
such an estimate is only defined in an asymptotic sense. Nevertheless, for many engineering structures the
geometric nonlinearity in the prebuckling domain is moderate. In this case, the general information from
asymptotic analysis is frequently relevant for the entire prebuckling domain. This allows good ab initio
estimates of stability limits based on nonlinear load—displacement paths.

The nucleus of this article is the discussion of the potential and the limitations of determination of
stability limits based on ab initio estimates of nonlinear load-displacement paths. The theoretical findings
are corroborated by the results from a comprehensive numerical study.

1. INTRODUCTION

Determination of stability limits (bifurcation or limit points) on nonlinear load—displacement paths
of elastic structures requires use of a geometrically nonlinear theory. With the help of the principle
of virtual displacements and the Finite Element Method (FEM), the respective system of nonlinear
differential equations is converted to a system of nonlinear algebraic equations. The incremental-
iterative solution of this system of equations must include checks for stability limits.

In order to avoid a fully nonlinear prebuckling analysis for the mere purpose of obtaining the
stability limit, estimates of this limit based on the solution of linear eigenvalue problems have fre-
quently been used [2, 3, 4, 5, 11]. Mang and Helnwein, e.g., have suggested a consistent linearization
of the mathematical formulation of the static stability condition [7, 12, 13, 14]. It can be interpreted
as the stability criterion for the tangent to the load-displacement diagram at a known equilibrium
state in the stable prebuckling domain. Based on this linearization, higher-order estimates of the
stability limit can be obtained from a scalar postcalculation.

Unfortunately, the order of such an estimate is only defined in an asymptotic sense. Neverthe-
less, for many engineering structures the geometric nonlinearity in the prebuckling domain is mod-
erate [6]. In this case, the general information from asymptotic analysis is frequently relevant for
the entire prebuckling domain. This allows good ab initio estimates of stability limits on nonlinear
load—displacement paths.

However, the optimum estimate for a snap-through point differs from the optimum estimate for
a bifurcation point [8]. Hence, an ab initio assessment of the kind of stability limit is necessary. A
respective ab initio condition will be presented in the paper. Moreover, a condition for the reliability
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of estimates on nonlinear load-displacement paths will be proposed. They were tested numerically
by Pichler [15].

The theoretical findings are corroborated by the results from a comprehensive numerical study
based on an example problem analyzed by Sabir and Lock [16]. This example serves as a benchmark
for shell theories and finite element formulations, see, e.g., Simo et al. [19].

2. THEORETICAL BACKGROUND FOR THE ESTIMATION OF STABILITY LIMITS

The problem investigated in this paper is estimation of stability limits on nonlinear load—displace-
ment paths of elastic structures. The applied load is assumed to be static and conservative (Hence,
follower loads are admitted so long as they have a potential). The analyses will be carried out
by means of the finite element method (FEM). The loading of the structure is assumed to be
proportional to a reference load:

P=)\P, (1)

where P is the vector of the total nodal forces, P is the vector of reference nodal forces and ) is a
dimensionless load parameter.
The mathematical condition for a static stability limit can be written as [8, 20]

G(Xs,0q) = Kr(a(As)) dq =0, (2)

where Kr is the standard tangent stiffness matrix, q is the vector of nodal displacements, Ag is
the value of the load parameter X at the stability limit and dq is a vector describing the buckling
mode. The notion stability limit is solely used for the solution of (2) corresponding to the smallest
load level, Ag. (2) is a nonlinear eigenvalue problem with A\g and dq representing the eigenvalue
and eigenvector, respectively. The dimension of the problem is defined by the total number N of
degrees of freedom of the FE-model of the structure to be investigated.

2.1. Estimation for the stability limit

In order to avoid the solution of the nonlinear eigenvalue problem (2), several linear eigenvalue

problems serving as substitute problems of the actual problem were reported in the literature. For

a review see Helnwein [6]. In the vicinity of the stability limit they provide estimates of this limit.
In what follows, the so-called consistently linearized eigenvalue problem [8]

K7 +wK7]dq* =0 (3)

will be used as the basis for the development of estimation functions for Ag. K/} = dKr/d\ is
the derivative of K7 with respect to the load parameter A, w is the eigenvalue and dq* is the
corresponding eigenvector. The notation dq* instead of dq in (2) should indicate that, because of
linearization of (2), dq*(\) is an approximation of dq. The function

A = A+ w (4)

is the expected estimate of A\g at a given load level A < Ag. Since it is based on the eigenvalue w,
it may be referred to as eigenvalue-function.
Derivation of (3) with respect to A, using a prime (') as an abbrevation for d/d), yields

N'Kr +wKp| 6q" + [Kr + wK7] 6" =0. (5)
Premultiplying (5) by the eigenvector 6q*7 and making use of (3) yields
5 *TK”5 *
X = (6)

6q*TK’T<5q* :
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Thus, not only the value of the estimation function A* can be obtained by means of solving the
eigenvalue problem (3) but also the slope of this function is available from a scalar postcalculation
according to (6). However, computation of \*' requires knowledge of K’ which depends on q and
q”. In order to be able to compute q", the rate form of the equilibrium equations for the discretized
continuum must be differentiated with respect to A:

Krdg=d\P — Krqd=P — Krq'=-K;q (7)

2.2. Error evaluation

The asymptotic quality of a wide range of estimation functions can be evaluated by means of an
asymptotic approach presented by Helnwein and Mang [8]. This can be achieved by means of the
estimation error £, = A*(A) — Ag. This error can be expressed as a Taylor series at the critical point:

il W

Ex =2 % T
k=1

(X =Ag)k = X
As

1 * /1 2
/\s(/\ As) + 2)\ )\s()\ As) 4+ ... . (8)

Based on the coefficients in (8), the order of the error £, was defined as 8]

O(€\) = min {k e Nt

ky*
L ;ﬁo}. (9)

Aoas AR

The higher the order of the error, the larger the interval [A < Ag, As] wherein A\* is a suitable
estimate of Ag.

2.3. Higher order estimation of stability limits

Making use of the eigenvalue w obtained from (3) and the slope A\*' of the estimation function
according to (6), other estimation functions can be determined.
Extrapolation along the tangent of the estimation function A\* according to (4) yields [14]

~ w
A=A+ ——.
+1—)\*'

(10)
Making use of results from the evaluation of the order of the error of A*()) for bifurcation points
permits a quadratic extrapolation for A*. The respective estimation function is obtained as [6]

w
= A —— . 11
1— 2 (1D

An assessment of the quality of the estimation functions A*, X und A** by means of the asymptotic
approach and the definition (9) was carried out by Helnwein and Mang [8]. As apposed to bifurcation
points, snap-through points are singular points of the curves A*(X). Thus, the investigation of the
order of the estimation error needs to be performed independently for bifurcation points and snap-
through points.

Table 1 contains the obtained order of the estimation error for the mentioned estimation functions
as derived by Helnwein and Mang [8]. The boxes in Table 1 mark the best choices (in an asymptotic
sense) out of the considered estimation functions. The order of the estimation error of these functions
is higher than the one of the original eigenvalue function A*. Thus, they will be referred to as higher-
order estimations.

Since the asymptotic properties of A** are optimal for bifurcation points, whereas the asymptotic
properties of ) are optimal for snap-through points, an a priori indicator of the type of stability
limit is required.
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Table 1. Order of the estimation error for the consistently linearized eigenproblem and two modes of
higher-order estimation, both for bifurcation and snap-through points

see | bifurcation point | snap-through point
A*(A) | (4) 2 1
A | (10) 2
A | (1) 1

It is given as follows:

6q* - P|y—o = 0 ... for a bifurcation point
6q* - P|y=g # 0 ... for a snap-through point

These indicators are based on the fact that dq*P|y—¢ is a necessary a priori condition for loss of
stability by bifurcation buckling. (However, it is not a sufficient condition, because there may be
modes satisfying this condition although loss of stability occurs by snap-through or does not occur
at all. The respective modes are obviously irrelevant for these situations.) It is worth mention that,
provided the aforementioned condition holds at A = 0, it will hold in the entire prebuckling domain
and, obviously, at the bifurcation point. This follows from decomposition of the derivatives of the
orthogonality conditions (Jq;‘TKT (5q’;-) =0 and (5q’;TKi[ (5q’;) = 0, 1 # 7, with respect to \ for
such modes.
On the basis of this condition the following angle is defined:

|0q* - P|

W, CY*E[O,”‘]CR. (12)

o = arcsin
At the stability limit, o* = 0 indicates a bifurcation point and o > 0 indicates a snap-through
point. Hence, the angle o* represents the deviation of the eigenvector q* from orthogonality to P.

Because of the aforementioned orthogonality of “bifurcation modes” in the entire prebuckling
domain, o = 0 should theoretically also hold at A < 0 for such modes. A series of test examples
concerning trusses, plane frames, and shells has resulted in the following numerical criterion [6]:

a* < 0.2° : bifurcation point
o* > 1.0° : snap-through point

For values of o* in the range a* € [0.2°, 1.0°] it is necessary to consider the values of a* for
3 to 5 of the lowest eigenvalues in order to classify “small” values of a* (— bifurcation point)
relative to “large” values (— snap-through point). The test examples have shown that always
@ ap-through/ Xbisurcation > 10. The mentioned problem only occurs for large values of N and for the
case of iterative computation of eigenvectors at a low level of accuracy. It is re-emphasized that
the a prior: identification of “bifurcation modes” only indicates the possibility of loss of stability by

means of bifurcation.

3. DEVELOPMENT OF AN INDICATOR FOR THE RELIABILITY OF ESTIMATES OF THE
STABILITY LIMIT

The main purpose of the dissertation by Helnwein [6] was the development of ab initio estimations
of the stability limit by means of a suitable linear eigenvalue problem. The analytical and numerical
investigations have shown that the usefulness of the estimation functions A\*; A and A\** may be
restricted to a more or less narrow subdomain of the prebuckling domain before the stability limit.
Nevertheless, tests on a relatively wide range of engineering structures have shown that ab initio
estimations of the stability limit can be of a remarkably high quality. Hence, what is needed is an
indicator for the reliability of an ab initio estimation for a certain structure.
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In order to obtain such an indicator, further information on the structural behavior is needed.
The basis of this information is the first derivative of the estimated eigenvector dq* with respect
to A. This vector, denoted by dq*', is the only quantity in (5) which was not computed so far because
it was not needed for the evaluation of (4), (10) and (11).

3.1. Derivative of the eigenvector with respect to the load parameter

In this section, two modes of normalization of the eigenvector are taken into account. The first mode
is based on the Euclidean norm of the eigenvector dq*. It is defined as

The second mode of normalization is based on the quadratic form involving K., i.e., the second
matrix in the equation of definition of the consistently linearized eigenvalue problem (3). This
quadratic form is defined as

Sq*TK g = F1 . (14)

In the prebuckling domain, the negative sign in (14) is relevant for positive eigenvalues w while the
positive sign holds for negative values of w.

In the following, both modes of normalization will be used. The symbols §¢ and §§’ are introduced
to denote the eigenvector and its derivative, respectively, satisfying (13) and the derivative of (13)
with respect to .

Assuming that the slope A*' has been computed according to (6), dq*’ is the only unknown in (5).
Because of (3), the matrix

Kj = [Kr +wK))] (15)

is singular. If w is a single eigenvalue of (3), the rank of the matrix K. is N — 1. Thus, an addi-
tional equation is needed for the evaluation of dq*'. This equation is obtained by differentiating the
normalization condition (13) for 6g and (14) for éq*, respectively. Use of the (13) yields

5§74’ =0, (16)
whereas use of (14) gives

20q* T K 0q* + 6q* TKISq* =0 . (17)
Because of (3), the vectors dq* and dq are related as follows:

6q" = p4éq, (18)

i.e., they only differ by their length. Considering (13), the scalar factor 3 can be obtained from the
scalar product dq* - dq* as follows:

6q* - 6q* = B%6q-0q=p>. (19)

The corresponding relation between the derivatives dq*' and 6§’ is computed with the help of the
first derivative of (18) with respect to A. It is obtained as follows:

iq*’ = 46+ 4 = B (64 + (Inp)' 6G) = 46§ + (InB)’ 6q" . (20)
Substitution of (18) and (20) into (5) and division of the result by 3 yields
{[M Ky +wKY%] 64+ [Kr +wKy] 64’} + (n ) {[Kr + wKy] 64} =0 . (21)

Because of (3), the last term in (21) is equal to 0. Thus, Eq. (21) remains formally identical to (5),
although (20) is not trivial.
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Rewriting (6) as
X
6q" K7dq" = — " 5q" Kyéq" (22)
and substituting this relation into (17) yields

(2wdq* — Noq*) K dq* =0 . (23)

Because of (3) and of the symmetry of K7 and K/ , the following relations between the first eigen-
vector 6q7 = 6q* and the eigenvectors dqy, k > 2, hold:

0" Krdq* =0 and dqiT Kyoqt =0 V> 2 (wi # w) . (24)

Because of (14) and (24), it follows from (23) that the vector (2w dq*’ — A*'6q*) is an element of
the (N — 1)-dimensional subspace 7T given as

T =span{éq3,...,dq;,...,0q%} C RV . (25)
Substitution of q*' into (23) by means of (20) yields
2w (I p) — X*'] 6q*"KYéq* + 2w Boq* TKY6q =0 . (26)

Solving (26) for (In3)’ and making use of (14) and (18) leads to the following alternatives for the
description of (In3)":

)\*l 5 »:TK/ 5'~/ )\*I
(IHIB)’ = ‘IB qT rd =
2w 5q* KC’F(Sq* 2w
A 6§ K68

2w 6q"KL6q

+ Boq* K0

Substitution of (27) into (20) permits transforming ¢’ to dq*'.

3.1.1. Notes on the computational implementation

Because of the singularity of K% = [Kyp +wK7] in (5), 6q*' cannot be computed directly by
inversion of K7.. dq*' could, however, be determined by replacing a suitable row in the system of
Egs. (5) by either (16) or (17). This strategy has the disadvantage that the symmetry as well as the
bandedness of K7, is lost. Thus, the data structure for matrix storage would have to be changed.
Furthermore, a solver for non-symmetric systems of equations would be needed.

In order to obtain a symmetric coefficient matrix, the rank deficiency of K7 may be removed by
replacing K7 in (5) by the matrix

A =K} +ciqoq”. (28)

In (28), c € Rt is an arbitrary constant.
Defining the vector

b=—-[A\K+ wK7]dq = —K4'6q , (29)
the modified Eq. (5) and its solution, respectively, can formally be written as

Ax=b"" =" g ArYy: (30)
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Premultiplication of (5) by 64 and use of (3) and (29) yields

867 [\ Ky +wKp]dg=—04"b=0 = 6§Llb. (31)
Premultiplying the first of the two relations (30) by 6§ gives

5§q"Ax = 6" . (32)
Substitution of (28) into (32) yields

§q K + ¢040qT1x = 64" b . (33)

Because of K% 6g = 0 and 6q_Lb, the solution vector x is orthogonal to §§. According (13) and (16),
8q’ is also orthogonal to dq. Thus,

e (34)

Hence, 6§ can be obtained by means of relation (30).

Although A is symmetric, it is generally fully populated because of the term d¢g 647 in (28). In
order to preserve the bandedness of the structure of K7, an iterative procedure is derived. It starts
with an approximation for A as

A=K} +cecef (35)
where e, is a unit vector, the k-th component of which is 1, i.e.,
er =0,.. 18, 170,.::.,0)F. (36)

This is equivalent to setting the k-th diagonal element of D in an LDL”-decomposition [1] of the
singular matrix K7 equal to ¢ which should be chosen as a small positive number, instead of ¢ € R*
as required by (28). Practically, k£ is the number of the first diagonal element which becomes zero
(or smaller than a prespecified tolerance) during the decomposition process. For a single eigenvalue,
i.e., for a rank deficiency of 1, this occurs just once.

Substitution of A in (30) by A according to (35) enables computation of an approximation for

dq’ as described by the following two steps. In the first step a vector
x=A""b (37)

is obtained from inversion of A. The second step consists of satisfaction of (16). For this purpose
a projection of the vector x onto the hyperplane perpendicular to the eigenvector §q is performed.
The obtained projection is used as the first approximation for 6/, i.e.,

5§ 1) = (1[ — 6§64 ) %. (38)

The quality of this approximation can be checked by means of Eq. (5). This relation is used for
computation of a residual vector:

R(64') = b - K568 = — [\ Kp + wK’] 6§ — [Kr +wKF] 6§’ (39)

Then, the Euclidean norm is checked against a small positive value €. For the k-th iterative step
this norm is obtained as

IR(6d" ()
l|odl|

€ is a tolerance value defined by the user. For computations based on double precision floating point
numerics, a value of € = 1072 has led to reliable and efficient results for 6§’ and éq*’, respectively.

= |R(6&' )l <€ - (40)
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If (40) is not satisfied, a better approximation is obtained from

66 (1) = 0y + (T - 64087 ) A7 R(56 ) (41)

This formula combines both steps described by (37) and (38). Finally, the quality of the result is
checked. This procedure was tested for several structural problems. In general, it converged within
one to two cycles. The maximum number of cycles was 3.

The computational effort for the described procedure consists of a single triangular decomposition
of A and a maximum of three iteration steps consisting of computations of the residual vector R
and back-substitution with R as the right-hand-side vector.

The transformation from dq to dq* and 6q’ to q*' is done by means of (18) and (20), respectively.
The scalar factor 8 in (18) can be obtained by substitution of (18) into (14) as

) 1
" TKyoq* = 264" Kpdg=F1 = f=—— . (42)
V166" K 64|
Substituting (42) into (27) yields the coefficent (In3)":
A 2 soTye! sal
(ng) = 5o TA°0a Kréq (43)

The vector dq*' is then obtained from (20). The sign in (43) is the opposite of the sign of the
quadratic form defining the normalization, i.e., the sign of 6§’ K/ 70q.

3.2. Indicator functions for the reliability of estimates

The basic idea for the definition of such an indicator function is consideration of the derivative of
the eigenvector with respect to the load parameter. It is motivated by the fact that, on the one
hand, this vector contains information about the development of the structural behavior but, on
the other hand, it does not appear in the previously proposed estimation functions. A detailed
investigation concerning the suitability of such indicator functions is the main topic of the diploma
thesis of Pichler [15]. In the following, the basic ideas of this work will be given.

A reliability indicator can be obtained, e.g., by premultiplying (5) by 6q*'T and writing the result
as

woq* TKM6q = -2 st TKL 6 — dq*'T [Kr +wK7] 6q*' . (44)

Dividing (44) by w and making use of (17), the bilinear form 6q*TKlf5q*’ can be expressed by
means of the already computed quadratic form 6q*TKf_,’q5q*. Thus, 6q*TK’7’16q*' may be written as

1
sq*TK6q* = A—dq*TK éq* — - = oq*'" K7+ wK7] 6g*' . (45)

Using (22) and (14), the ratio \*' /w can be expressed by means of iq*T K/.6q*. Consequently, (45)
may be rewritten as

1
sq* K" = + (6q*TK 5q")> —aaq*’T (K7 +wKf] 6q™ . (46)

In the prebuckling domain the positive sign in (46) holds for w > 0, whereas the negative sign holds
for w < 0. For the smallest positive eigenvalue w, the matrix [Kz + wK/] is positive semi-definite.

Thus, 6q*'” [Kr + wK! plog* > 0.
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Considering only the smallest positive eigenvalue, which is the basis for the estimation of the
stability limit, both terms in (46) are > 0 in the prebuckling domain. Since the value of dq*7 K/%.dq*'
is computed as the difference of two nonnegative values, both signs are possible. At the stability
limit and in a subregion of the prebuckling domain before this limit, the bilinear form according
to (46) must be positive. This property was the rationale for introducing this bilinear form as the
basis for a reliability indicator of ab initio estimates of stability limits [15].

An alternative reliability indicator may be obtained by means of the scalar product éq* - 6q*’
or by the ratio (6q*’ - 6q*')/(6q* - q*). The former may be expressed by means of (18) and (20),
respectively:

0q" - 6q* = % [6G' + (lnB)' 6q] - 6§ = 5 (In B)’ (47)
In order to reduce the influence of the normalization condition, the ratio
1 x! */ 6ATK/ 5A/
L (Ing) = 0oz ___qT L q (48)
dq* - 0q* 2w g Kidq

is computed. It may be used as an indicator for the reliability of ab initio estimates of the stability
limit. In (48), (In3)" was expressed by means of (27).

Following the discussion of (46), the bilinear form 5q*TKi_,«(5q*' may take on arbitrary real values.
Moreover, it depends on the chosen normalization condition. Based on the explanation of the terms
in (46), the following function may be defined:

i
%(M*TK%M*)Q gl 5q*"" Ky + wK]oq"
\I](/\) = 1 *T g1 *\2 1 T ! */ ’ (49)
509" K7dq")” + — 09" [Kr +wK7liq

In the prebuckling domain, this function maps all possible states (w,dq*,dq*') onto the intervall
[-1,1] C R. ¥ = —1 is related to points characterized by A\* = 0. The value ¥ = +1 is restricted
to the stability limit. In chapter 4, it will be demonstrated numerically that, in the aforementioned
subregion preceding the stability limit where ¥ > 0, the asymptotic properties of the higher-order
estimates are characterized by a high degree of high accuracy. It has turned out that this subregion
is too small for being of practical use. In other words, defining an estimate of the stability limit as
reliable only if ¥ > 0 holds, would be too conservative.

An alternative of (48) is obtained in the form of the angle v enclosed by dq* and its derivative
dq*'. This cosine is defined as

6q*T6q*l
) = <087 = oo e
In order to comment on the behavior of 2(\), dq*' is expressed as
N
6q* = Zaljéq}‘ : (51)
j=1

This is possible since the eigenvectors éq = dq; and 0Q;, j € {2,...,N}, form a complete basis
in RV . The coefficients of this expansion are obtained as [6]

1 )\*I 5 *TK"(S *
Q] = — — and ayj = = q*T ,T q* 3 V_] Z 2 ((4)1 =l # (.L)J) . (52)
2 w wj; —w 6q] Kqu]

It can be shown, that the coefficients ay;, j > 2, are zero at bifurcation points whereas a;| s 0
at that point [6]. Hence, at the stability limit q*’ and éq* are collinear vectors. Hence, (50) yields

lim Q= +1 . (53)
A= As
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The sign in (53) is identical to the sign of ay1. Using results from [8], one obtains

. 1 n . . .

1 =—=\* for bifurcation points,

/\ig\ls o1 5 |ng for bifurcation p T
lim aj; = —o0 for snap-through points.

A= As

Substituting these results into (52) and (50), yields

)\lirg\l Q = +1 for bifurcation points characterized by a local minimum of \*,

—AS

/\lirg\l Q) = —1 for bifurcation points characterized by a local maximum of A* and (55)
—AS

lim © = —1 for snap-through points.

A—))\s

For snap-through problems, the negative sign of (2 refers to a subregion of the prebuckling domain
before the stability limit, wherein reliable estimates of the stability limit are obtained. This subregion
will be found to be larger than the one with ¥ > 0. Hence, (50) will be seen to be less conservative
than (49).

4. NUMERICAL INVESTIGATION

The behavior of the estimation functions (eigenvalue functions) A*, A** and X will be investigated by
means of a standard problem of shell analysis. It is a shallow cylindrical panel analyzed by Sabir and
Lock [16]. Two different thicknesses will be considered. The shell formulation used for the numerical
investigation is the one presented by Simo and Fox [17]. The finite element implementation follows
the strategy by Simo, Fox and Rifai [19, 18]. Slight modifications of this strategy are described in
Helnwein [6]. The mode of computation of the derivatives of K is also explained in that work.

4.1. Shallow cylindrical shell

The shallow cylindrical panel, shown in Fig. 1, was first investigated by Sabir and Lock [16] in 1972.
Because of the pronounced nonlinear behavior and the sensitivity of the load-displacement curves
with regards to changes of the thickness, this example is a good benchmark for the analysis of shells
by means of the FEM.

In this paper, the behavior of the shell as well as the estimation functions for the stability limit
will be investigated for a thickness of ¢ = 12.7 cm (example 1) and 6.35 cm (example 2), respectively.
Figure 2 shows the load—displacement curves of the points A and B (see Fig. 1) for both examples.

AP

¢ =508 cm
R = 2540 cm
© = 0.1rad
P = 500 kN

E = 3102.75kN/cm?
v =10.30

Fig. 1. Geometric and material properties of the shallow cylindrical panel. Definition of the reference load.
Location of two characteristic points A and B
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Fig. 2. Load-displacement curves for two characteristic points A and B of the panel. (a) example 1,
(b) example 2

Example 1 is characterized by a limit point at Ag = 4.437. The primary path is stable in the
whole domain A < Ag. Example 2 also has a limit point. However, because of the small thickness,
a bifurcation point is preceding the limit point. The stability limit is determined by the bifurcation
point at Ag = 1.053.

4.1.1. Accompanying linear eigenvalue analysis for example 1

The results of an accompanying linear eigenvalue analysis are the eigenvalue function A* and the
higher-order estimation functions A** and A for bifurcation and limit points, respectively. The mode
of stability limit, estimated by A}, is identified by means of o] according to (12).

Figure 3 shows the estimation function A* and the corresponding higher-order estimates for
example 1. The function values at A = 0 are marked by circles (A\*), triangles (A\**) and by a square
(X). These values are the results of so-called initial eigenvalue analyses. For these analyses, the
eigenshapes (buckling-mode, described by dq*) corresponding to the three lowest positive values

of A* are plotted in Fig. 3.

s 6.
4.
L3

r - A

oq} 0 e B

Fig. 3. Eigenvalue functions for the three lowest positive values of A\* and higher-order estimation
functions; the plotted buckling modes are estimates obtained from initial eigenvalue analysis
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Table 2 contains the numerical results from initial eigenvalue analyses for example 1. These
results are solely based on the consistently linearized eigenvalue problem. The basic estimates for
the stability limit are obtained as values of the eigenvalue function A*. The relevant higher-order
estimates are marked by boldface typesetting. The type of the stability limit is identified according
to the criterion presented at the end of Section 2. It is based on the value of a* listed in the last
column of Table 2.

Table 2. Results of initial eigenvalue analyses for example 1: three lowest positive estimates A",
higher-order estimates A** or A and angle a” permitting identification of the mode type

A=0 A A A* i a*
1 6.449 | 4.961 | 5.608 | —0.300 | 5.63
2 8.337 | 6.317 | 7.188 | —0.320 | 0.00
3 9.702 | 5.696 | 7.178 | —0.703 | 0.00

The lowest value of the load assessed by means of the higher-order estimation functions is assumed
to be associated with the critical buckling mode. For the current problem, this is the first mode, i.e.,
dq} in Fig. 3. Moreover, this mode indicates that loss of stability will occur at a snap-through point.
This agrees with the result obtained from a fully non-linear analysis using an arc-length technique.

In order to prove the suitability of the eigenvalue estimation and the relevant higher-order esti-
mates, the indicator functions ¥ and § are evaluated for the initial state. Moreover, for the purpose
of investigating the behavior of the estimation functions as well as that of ¥ and 2 for an accom-
panying eigenvalue analysis, the indicator functions are computed and plotted in Fig. 4. According
to the criterion given in the course of the explanation of (49), estimates of high accuracy should be
obtained for A > \|y=o = 2.45.

Since the critical buckling-mode for example 1 is associated with a snap-through point, the third
relation in (55) may serve as a suitable criterion for estimates of high accuracy. Thus, according
to the condition for high accuracy estimates, i.e., if Q < 0, such estimates should be obtained for
A > Aa=o = 0.75.

Table 3 lists the relative error of different types of estimates for the stability limit, i.e., of the load
level related to the snap-through point. It contains results from initial eigenvalue analysis (A=19),
and from computations at A|g—o = 2.45 and Aa=0 = 0.75. The relative error listed in the last
column demonstrates that a linear buckling analysis is of no use for snap-through problems. This
was previously pointed out and discussed by the authors in [9] and [10].

1.00 4“
0.75
0.50
0.25

0
-0.25
-0.50
-0.75
-1.00 -

Fig. 4. Indicator functions ¥ and Q as functions of the load parameter ). Evaluated for example 1
{t:=12:7-cm)
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Table 3. Comparison between the true solution of the nonlinear stability problem and solutions obtained from
linear buckling analysis and from the consistently linearized eigenproblem including higher-order estimates for
example 1

critical

Used approach load niiadter rel. error
True solution 4.432 —
Linear buckling analysis 13.16 +197 %
Consistently linearized eigenvalue problem 6.449 +45 %
Higher-order estimation 4.961 +12%
Alw=o = 2.45

Consistently linearized eigenvalue problem 5.541 +25.0%
Higher-order estimation 4.587 +3.5%
M=o = 0.75

Consistently linearized eigenvalue problem 6.201 +39.9%
Higher-order estimation 4.830 +9.0%

The results obtained by means of solving the consistently linearized eigenvalue problem are
remarkably better than those obtained from a linear buckling analysis. Nevertheless, only the higher-
order estimates yield results with acceptable accuracy.

As regards ¥ > 0 as a criterion for high accuracy, ¥ only becomes positive at approximately
55 % of X,s. The respective relative error of only +3.5 % shows that this indicator is somewhat too
conservative for engineering purposes.

Asregards 2 < 0 as an indicator for high accuracy of estimates of snap-through points, £ becomes
negative of approximately 0.167 As. The corresponding relative error of +9.0 % is acceptable for
many engineering applications.

4.1.2. Accompanying linear eigenvalue analysis for example 2

This example refers to the thinner shell (¢ = 6.35 cm). Hence, the influence of geometric nonlinearity
is stronger than for example 1. Moreover, the type of the stability limit changes from snap-through
to bifurcation. Figure 2(b) shows load-displacement curves for two characteristic degrees of freedom,
Le., the vertical deflections of the points A and B (see in Fig. 1).

Figure 5 shows the estimation function A* and the corresponding higher-order-estimates for
the stability limit based on an accompanying eigenvalue analysis with the help of the consistently
linearized eigenvalue problem. Results from initial eigenvalue analysis are marked by circles (A*),
triangles (A\**) and by a square ()). As a consequence of the more pronounced geometric nonlinearity
than for example 1, the eigenvalue curves as well and the related higher-order estimation functions
are (with the exception of A%()\)) no longer monotonic.

Table 4 contains the numerical results from initial eigenvalue analysis for example 2. Based on the
angle a*, the second eigenmode is identified as a snap-through mode. The first and third eigenmode,
respectively, are associated with bifurcation buckling. The correct choice of the related higher-order
estimates is marked by boldface typesetting. Using the lowest value of the obtained higher-order
estimates to indicate the critical mode, the first bifurcation mode is recognized to be the mode
leading to the stability limit.

The indicator functions ¥ and © for the prebuckling domain are plotted in Fig. 6. On the basis
of the condition ¥ > 0 for high accuracy of estimates of the stability limit, accurate estimates
are obtained only in a small domain before the stability limit. It is remarkable that the indicator
function ¥ reaches the limiting value of ¥, i.e., limy,y, ¥ = +1, with a steep slope. For snap-
through problems, dW¥/d) is zero at the stability limit (see Fig. 4).
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Fig. 5. Eigenvalue functions for the three lowest positive values of A* and higher-order estimation
functions; the plotted buckling modes as estimates obtained from initial eigenvalue analysis

Table 4. Results of initial eigenvalue analyses for example 2: three lowest positive estimates AT

higher-order estimates A™* or X and angle o permitting idenification of the mode type

A =10.00 A* A A** L a*
1 0.927 | 0.903 | 0.915 | —0.027 | 0.00
0.959 | 1.029 | 0.993 0.068 | 9.05

3 1.615 | 1.230 | 1.396 | —0.313 | 0.00

%
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"~ possible _
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Fig. 6. Indicator functions ¥ and 2 as functions of the load parameter \. Evaluated for example 2 of the
shell geometry (t = 6.35 cm)



Ab initio estimates of stability limits 359

According to (55), the sign of Q is not an indicator of the proximity of the stability limit, if this
limit is a bifurcation point as in the case for example 2. Nevertheless, it may be of interest to trace
the sign of Q while tracing the nonlinear load-displacement path. The point at which {2 changes its
sign may yield a less conservative indicator.

Table 5 contains a summary of relative errors obtained from initial eigenvalue analysis and from
computation at A\|g—g = 0.96 and A|o=o = 0.67. The relative error of the linear buckling analysis is
significantly smaller than the one observed for snap-through problems. This is in perfect agreement
to observations concerning beam structures as discussed in [10]. Nevertheless, none of the estimates
based on the consistently linearized eigenvalue problem show a relative error as large as the one
from a linear buckling analysis.

Table 5. Comparison of the true solution of a nonlinear stability problem with results from linear buckling
analysis and from the consistently linearized eigenproblem including higher-order estimates for example 2

critical
Used approach Rttt rel. error
True solution 1.050 —
Linear buckling analysis 1.351 +29%
Consistently linearized
eigenvalue problem 0.924 -13%
Higher-order estimation 0.900 -14%
Aw=0 = 0.96
Consistently linearized eigenvalue problem 1.041 -0.9%
Higher-order estimation 1.049 -0.1%
Alo=0 = 0.67
Consistently linearized eigenvalue problem 0.975 -7.1%
Higher-order estimation 1.012 -3.6%

A critical investigation of the estimates obtained at A|lg—p = 0.96 ~ 0.91 Ag shows that the
criterion ¥ > 0 is too conservative for bifurcation problems. Using the analysis at A|n=¢ = 0.67 =~
0.64 \g, i.e., at the point of the sign change of , the obtained relative error of —3.6 % seems to be
a good choice for engineering purposes. The usefulness of this choice is verified by means of Fig. 5:
In the domain defined by M=o < A < Ag, the eigenvalue curve A\* as well as the higher-order
estimate A uniformly tend to the stability limit Ag = 1.050.

Thus, with regards to bifurcation buckling, the domain between the point at which Q2 changes
its sign and the stability limit appears to be reliable as far as estimates of this limit are con-
cerned.

5. CONCLUSIONS

In this paper an overview on estimation functions for stability limits on non-linear load displacement
paths of elastic structures under static loads was given. The estimation functions used in this paper
are based on the so-called consistently linearized eigenvalue problem.

Since such estimation functions are suitable only in an asymptotic sense, indicator functions for
the assessability of the stability limit by means of the previously mentioned estimation functions
were presented. The suitability of such indicator functions was demonstrated numerically. It was
shown that the presented indicator functions provide additional information on the sensitivity of
numerical estimations for the stability limit.
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For snap-through problem, reliable estimates of the stability limit are obtained within a subdo-
main preceding the stability limit, which is characterized by € > 0. As regards bifurcation buckling,
reliable estimates of the stability limit are obtained at and after the point at which Q changes its
sign. ¥ > 0 was shown to be too conservative a criterion for reliable estimates of bifurcation points.
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