
Computer Assisted Mechanics and Engineering Sciences, 17: 137–145, 2010.
Copyright c© 2010 by Institute of Fundamental Technological Research, Polish Academy of Sciences

The efficiency of the application of the heap lists
to the algorithm of mesh generation

J. Kucwaj
Cracow University of Technology

Institute of Computer Science

Department of Physics, Mathematics and Computer Science

Warszawska 24, 31-155 Cracow, Poland

e-mail: jkucwaj@pk.edu.pl

The paper presents an analysis of the efficiency of the application of heap lists data structures to the 2D
triangular mesh generation algorithms. Such efficiency is especially important for the frontal methods for
which the size of the generated mesh is controlled by a prescribed function in the considered domain. In
the presented approach two advancing front procedures are presented: first for points insertion and the
second for the Delaunay triangulation. If the heap lists are applied to the minimal size of frontal segment
selection, a better quality mesh is obtained.

Keywords: tree and lists data structure, frontal methods, Delaunay triangulation, grid generation, mesh
adaptation.

1. INTRODUCTION

The subject of the paper is the application of heap lists [7] algorithms to the computer code of grid
generation [3]. The algorithm uses as an input a mesh size function defined in the computational
domain. The function uniquely determines the whole mesh. The idea of the frontal method of the
mesh generation is based on fixing the initial front of generated line segments on the boundary and
then successive insertion of the points over chosen frontal segments with simultaneous front update.
It turns out, that it is important how the current frontal segment is chosen [11]. The numerical
experience [8, 10] indicates that the choice of the smallest front segment results in meshes with
the best quality. For the fast choice of the smallest front element the heap lists data structures
algorithms are applied.
A topology and appropriate data structure for a plane domain triangulation are defined by spec-

ifying different types of curves which are parts of the boundary [4]. In the present implementation
the following types of curves are build in:

• a straight line segment,

• an arc of a circle,

• a B-spline curve.

A curve is represented by its ends and the type. Therefore, all the available curves having
a representation in the computer data structure are topologically equivalent to the straight line
segment. It is assumed, that the domain D ⊂ IR2 is multiconnected, that is, k-connected with finite
number of internal contours. The boundary of the domain is represented as a union of closed curves,
without multiple points. Every loop is represented as a sequence of curves, appearing in the order
such that the end of any curve is the beginning of the next one.

138 J. Kucwaj

2. HEAP LISTS DATA STRUCTURES

Heap lists are well-known in computer science binary tree data structures [7, 9]. They allow one for
a fast removal or insertion of elements from them in such a way that the smallest element is still at
the top of the list. The heap lists, in their structure, are also the binary trees. This duality of their
structure causes that appropriate algorithms of insertion and removal are very fast. In addition, by
the presence of natural order in which a son is the next to the father and the son from the left is first
to the son on the right, they can be treated as lists (see Fig. 1). If we store the segments of the front
while performing the advancing front procedure, the first step is to arrange the heap list in such
a manner so that the smallest element could be placed at the origin (location 1 in the tree in Fig. 1).
It is not necessary to arrange the whole array in an increasing order. The appropriate algorithm is
explained in the example shown in Figs. 2, 5. For example, let’s take into consideration letters of
the word “METHOD”. The letters in this word are, in a natural way, ordered in the alphabetical
order, the “smallest” is “D”. The idea of the algorithm is explained in Figs. 2–5.

1

2 3

4
5 6

7

Fig. 1. Binary tree as heap list.

2. 3.1.

4. 5.

M M

E

E

M

E

M T

E

M

H

T

Fig. 2. Binary tree as heap list – insertion.

6. 7.

E

H

M

T

E

H

M

O

T

D

Fig. 3. Binary tree as heap list – insertion continuation.

The efficiency of the application of the heap lists to the algorithm of mesh generation 139

6. 7.

E

H

M

H

M

OO

D

T

D

E

T

Fig. 4. Binary tree as heap list – deletion.

7.

H

M

O

D

E

T

H

M

O

D

E

T

T

H

M

O

H

M

O

E

T

T

E

Fig. 5. Binary tree as heap list – deletion continuation.

The main idea of the algorithm is to keep the rule that the father is preceding the son. Such
an approach needs only to exchange the elements in the branch. In the next steps of the algorithm
of the advancing front technique it is necessary to modify the heap list to insert or to remove
an element in such a way that the lowest one is still at the top of the tree. This is done by the
algorithms – “INSERTION” and “DELETION” described in [7]. Both algorithms are similar to the
approach presented above. In case when the new element is added it is inserted in the last position
on the heap list and then, if necessary, interchanged with the father and so on. It would appear
that if it is the lowest element it will come to the top of the binary tree (heap list). In case of the
removal of the father, the first son takes the place of the father, the second son the place of the first
son, unless it is the last element on the list. For the algorithm description, the following integer
variables are introduced:

SONPOS – the position of the son on the heap list,

FATHPOS – the position of the father on the heap list,

NHEAP – length of the heap list,

HEAP (1:NHEAAP) – heap list,

SON – the segment number of the son,

FATH – the segment number of the father.

140 J. Kucwaj

It is assumed that:
SON=HEAP(SONPOS).
FATH=HEAP(FATHPOS)
The algorithm of “DELETION” uses analogous variables. The following formulas for a new
locations of sons follow from the binary tree structure [13]:
SONPOS1=2*FATHPOS,
SONPOS2=2*FATHPOS+1.

The “INSERTION” algorithm of adding a new element is as follows [7]:

Algorithm 1.

1. NHEAP=NHEAP+1,

2. Place the new segment FNEW at the end of the list

HEAP(NHEAP)=FNEW,

3. SONPOS=NHEAP,

4. FATHPOS=SONPOS/2 (integer division),

5. SON=HEAP(SONPOS),

6. FATH=HEAP(FATHPOS),

7. IF (the length of the FATH < the length of the SON) THEN

(a) VAR=HEAP(SON),

(b) HEAP(SON)=HEAP(FATH),

(c) HEAP(FATH)=VAR,

(d) SONPOS=FATHPOS,

(e) IF (SONPOS>1) THEN go to 4. OTHERWISE finish the algorithm.

ENDIF

ENDIF

The algorithm “DELETION” of an element is as follows [7]:

Algorithm 2.

1. Remove the segment at the top of the list:

OUT=HEAP(1).

2. Put the segment being at the end of the list to the top:

LHEAP(1)=LHEAP(NHEAP).

3. Lower NHEAP: NHEAP=NHEAP-1.

4. Set the position of the father FATHPOS in the heap list to:

FATHPOS=1.

5. Set the positions of the two sons:

SONPOS1=2*FATHPOS,

SONPOS2=2*FATHPOS+1.

The efficiency of the application of the heap lists to the algorithm of mesh generation 141

6. Denote the segments of the father and the sons associated with these

positions:

SON1=HEAP(SONPOS1),

SON2=HEAP(SONPOS2),

FATH=HEAP(FATHPOS).

7. Determine which son needs to be interchanged:

IF (LENGTH(FATH)<LENGTH(SON1),LENGTH(SON2)) THEN VAR=0 ENDIF.

IF (LENGTH(FATH)>LENGTH(SON1)>LENGTH(SON2)) THEN VAR=SONPOS2 ENDIF.

IF (LENGTH(FATH)>LENGTH(SON2)>LENGTH(SON1)) THEN VAR=SONPOS1 ENDIF.

IF (LENGTH(SON1)>LENGTH(FATH)>LENGTH(SON2)) THEN VAR=SONPOS2 ENDIF.

IF (LENGTH(SON2)>LENGTH(FATH)>LENGTH(SON1)) THEN VAR=SONPOS1 ENDIF.

8. IF (VAR 6= 0) THEN exchange father and the son (with VAR position) positions:

(a) Interchange the segments stored in HEAP.

(b) Set FATHPOS=VAR.

(c) IF (2*FATHPOS ≤ NHEAP) go to 5.
ENDIF.

ENDIF

3. ALGORITHM OF GRID GENERATION

The main idea of grid generation is based on the algorithm of the advancing front technique and
generalization of Delaunay triangulation for [2] arbitrary 2D domains. It is assumed that the domain
is multiconnected with arbitrary number of internal loops. The boundary of the domain may be
composed of the curves mentioned in Sec. 1.
In the case of the advancing front technique combined with the Delaunay triangulation, the

point insertion and triangulation can be divided into the following steps [3]:

1. Points generations on the boundary components of the boundary of the domain.

2. Internal points generation by the advancing front technique.

3. A Delaunay triangulation of the previously obtained set of points.

4. A Laplacian smoothing of the obtained mesh.

The algorithm for boundary points generation depends upon the type of the boundary curve. The
appropriate techniques of points generation on straight-line segments, circles and B-spline segments
are presented in [5].

4. MESH QUALITY FACTORS

To find the criterion for assessing the quality of the mesh [1], the shape and size of the triangles is
taken into account. For similar triangles the quality measure should be the same. The following [6]
mesh quality measures are taken into account for a triangle △ABC:

α(△ABC) = 2
√
3

||AB×AC||
||AB||2 + ||BC||2 + ||CA||2 , (1)

β(△ABC) = 2
r

R
, (2)

142 J. Kucwaj

where R – is the radius of the circle circumscribed over triangle △ABC, r – is the radius of the
circle inscribed in triangle△ABC. The coefficient 2

√
3 in the formula (1) is the normalization factor

to obtain the quality equal to 1 for the equilateral triangle, the same situation is for β-quality in
formula (2). It can be proved that α(△ABC) achieves its maximum value for an equilateral triangle
and varies in the interval (0, 1], the same is true for the β(△ABC) quality of the triangle.
It is rather difficult to define properly a quality measure for the whole mesh. In this paper we

take into account the average of qualities of all triangles and minimal quality of all triangles in the
triangulation.

Remark 1. It can be mentioned that mesh qualities of the right-angled isosceles triangle are
equal to:

α =

√
3

2
= 0.866025,

β =
2

1 +
√
2
= 0.828427.

(3)

On the other hand, for the right-angled triangle with acute angles 30◦ and 60◦ these qualities are
equal to:

α =
6

8
= 0.75,

β =
2

1 +
√
3
= 0.73050.

(4)

5. NUMERICAL EXAMPLES

In all of the presented examples the computational domain is taken from fluid mechanics applica-
tions [13]. It is a square [−1, 2]× [−1, 2] with the hole modeled by aircraft profile NACA0012 [5].
In the first two examples the mesh generator creates two meshes with the same mesh size

function given by formula (5), first with the choice of minimal frontal element, and the second
with random choice of frontal element. Figures 6 and 7 show the meshes without and with minimal
frontal segment choice, respectively. The mesh density function was taken as follows:

ρ(x, y) =

0.2
√

(x+ 0.05)2 + y2 + 0.02, if (x < 0.5 and y < 0.15),

0.2
√

(x+ .05)2 + y2 + 0.05, if (x < 0.5 and y > 0.15),

0.2
√

(x− 1.05)2 + y2 + 0.02, if (x > 0.5 and y < 0.15),

0.2
√

(x− 1.05)2 + (y − 0.3)2 + 0.1, otherwise.

(5)

In the next two examples two meshes are generated with the mesh size function given by for-
mula (6). Figure 8 shows the mesh obtained without the heap list application algorithm, Fig. 9
presents the mesh obtained with an application of the heap data structure algorithms. Table 1
presents mesh quality parameters for meshes from Figs. 6–9. The meaning of variables in Table 1
is as follows: TRI – number of triangles, NOD – number of nodes. The mesh density function is
as follows:

ρ(x, y) =

0.2
√

(x+ 0.05)2 + y2 + 0.01, if (x < 0.5 and y < 0.15),

0.2
√

(x+ .05)2 + y2 + 0.01, if (x < 0.5 and y > 0.15),

0.2
√

(x− 1.05)2 + y2 + 0.010, if (x > 0.5 and y < 0.15),

0.2
√

(x− 1.05)2 + (y − 0.3)2 + 0.01, otherwise.

(6)

The efficiency of the application of the heap lists to the algorithm of mesh generation 143

Fig. 6. A mesh generated without heap list data structure application with mesh size function given
by formula (5).

Fig. 7. A mesh generated with heap list data structure application with mesh size function given
by formula (5).

144 J. Kucwaj

Fig. 8. A mesh generated without heap list data structure application with mesh size function given
by formula (6).

Fig. 9. A mesh generated with heap list data structure application with mesh size function given
by formula (6).

The efficiency of the application of the heap lists to the algorithm of mesh generation 145

Table 1. Parameters of meshes.

TRI NOD αmin αaver βmin βaver

mesh from Fig. 6 1197 637 0.484811 0.948219 0.404435 0.941107

mesh from Fig. 7 1283 680 0.503969 0.959738 0.459709 0.953240

mesh from Fig. 8 2310 1202 0.494314 0.958332 0.465855 0.952391

mesh from Fig. 9 2520 1307 0.492145 0.960055 0.474445 0.954270

6. CONCLUSIONS

The results presented in Table 1 suggest that quality parameters for meshes generated with the
application of the heap lists data structure are better than for the meshes generated with random
choice of frontal segment. In both cases the requirements of the mesh size function are more or less
satisfied and, visually, the meshes are similar. In comparison with other implementations [12] the
influence of these data structure applications is less meaningful, but it is always important to have
the best triangles qualities thus the heap lists application is always recommended. Moreover, in
the case of the binary tree algorithms application the meshes have about 8% less nodes, provided
that the same mesh size function is used, what suggests satisfaction for better mesh size function
requirements. Mesh qualities with heap lists application are usually 7–10% better. It seems that
this follows from the way of the insertion of a new point over the current front segment (taking
into account the mesh size function). Application of the heap lists is very inexpensive. For example
for 214 = 16384 elements, we have at most 14 (length of the branch of the tree) comparisons to
complete insertion or deletion algorithms, whereas the length of the heap list is 16385.

REFERENCES

[1] S. Chalasani, D. Thompson. Quality improvements in extruded meshes using topologically adaptive generalized
elements. International Journal for Numerical Methods in Engineering, 60: 6, 1139–1159, 2004.

[2] J. Kucwaj. Delaunay Triangulation of Surfaces. ZAMM, 76: S.3, 249–250, 1996.
[3] J. Kucwaj. The Algorithm of Adaptation by Using Graded Meshes Generator. Computer Assisted Mechanics
and Engineering Sciences, 7: 615–624, 2000.

[4] J. Kucwaj. The Application od the Adaptive Algorithm to the Potential Problems. Annales UMCS Informatica,
AI, 2: 37–45, 2004.

[5] J. Kucwaj, Numerical investigations of the convergence of a remeshing algorithm on an example of subsonic
flow. Computer Assisted Mechanics and Engineering Sciences, 2–4: 147–160, 2010.

[6] S.H. Lo. Delaunay triangulation of non-convex planar domains. Int. J. Num. Meth. Engng., 28: 2695–2707, 1989.
[7] R. Loehner. Some useful data structures for the generation of unstructured grids. Comm. Appl. Numer. Methods,
4: 123–135, 1988.

[8] R. Loehner. A parallel advancing front grid generation scheme. Int. J. Num. Meth. Engng., 51: 663–678, 2001.
[9] S.J. Owen, S. Saigal. Surface sizing control. Int. J. Num. Meth. Engng., 47: 497–511, 2000.
[10] S.J. Owen, S. Saigal. Formation of pyramid elements for hexahedra to tetrahedra transition. Comp. Meth. Appl.
Mech. Engng., 190: 4505–4518, 2001.

[11] S. Pippa, G. Caligiana. GradH-Correction: guaranteed sizing gradation in multi-patch parametric surface mesh-
ing. Int. J. Num. Meth. Engng., 62: 495–515, 2005.

[12] A. Szotko, R. Loehner. Three-dimensional parallel unstructured grid generation. Int. J. Num. Meth. Engng., 38:
905–925, 1995.

[13] J.F. Thompson, B.K. Soni, N.P. Weatherwill. Handbook of Grid Generation. CRC Press, Boca Raton, London,
New York, Washington, D.C., 1999.

