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We have considered a linearly elastic body loaded by tractions inward normal to the instantaneous surface.
Due to the increment of the surface element vector there is a contribution to the tangent stiffness matrix
referred to as load correction stiffness matrix. The goal of the numerical experiments is to determine the
bifurcation point on the fundamental equilibrium path. Linear eigenvalue problems with follower loads
are also analysed.
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1. INTRODUCTION

A typical problem of continuum mechanics is the determination of critical loads of conservative
and non-conservative mechanical systems. For non-conservative systems this is performed usually
by dynamical methods.

A number of excellent monographs are devoted to the investigation of the stability behavior of
conservative systems, e.g., Thompson and Hunt [20, 21|, Huseyin [11], Thompson [19], Guz [9] and
Crisfield |7]. Relatively few monographs are concerned with the stability of non-conservative systems,
e.g., Bolotin [5]. For a normal pressure field with potential Koiter [12] derived the so-called “pressure
stiffness matrix” referred to as load correction stiffness matrix in the present paper. Conservativeness
of a normal pressure field has been studied by Cohen [6] and Hibbitt [10]. Loganathan, Chang,
Gallagher and Abel [14] have reviewed analytical as well as numerical works on the effects of
follower forces in stability analysis. Mang [15] raised the issue of making the originally non-symmetric
pressure stiffness matrix to be symmetric. Then Floegel and Mang [8] performed finite element
computations by the use of symmetrized pressure stiffness matrices. The above citations should be
supplemented by the excellent dissertation of Schweizerhof [16]. Further contributions with various
approaches are published in the papers by Argyiris and Symeonidis [3, 4], Argyiris, Straub and
Symeonidis [1, 2]. The references listed in them provide a further insight to the background of the
problem.

The present paper is concerned with the investigation of elastic systems with follower loads using
static methods for some three-dimensional and geometrically nonlinear models.

In Section 2 we formulate the change of the vectorial surface element as a function of the defor-
mations. The principle of virtual displacement in incremental formulation and its linearized form are
also given with a special attention to the increment of the surface element vector. Our approach to
finding the nonlinear response of the body is an incremental iterative method. It is advantageous to
take into consideration the increment of the surface element vector in the incremental formula too,
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as our numerical experiments confirmed that the number of equilibrium iterations was decreased
significantly in this way.

In Section 3 the critical load is determined with a path following method for a circular ring
loaded by a uniform normal load p. The critical value of p is understood to be the smallest value
of p at which bifurcation occurs on the fundamental equilibrium path. Equilibrium paths are also
determined for rings with geometrical imperfections, that is, the circular ring is replaced by an
elliptical ring. In the first case the minor axis of the centre line is smaller by 0.5% than the major
axis. In the second case the value is 0.05%. However, the major axis is equal to the mean radius of
the circular ring for both cases.

Section 4 is devoted to linear eigenvalue problems with an emphasis on the role of the increment
of the surface element vector in three-dimensional problems.

2. FORMULATION OF THE PROBLEM
2.1. Configurations and change of the vectorial surface element

According to Fig. 1, we distinguish the stress and deformation free reference configuration, which
is denoted by (B), from the following two types of configurations. The first type is the present
or instantaneous configuration denoted by (B), which is in equilibrium under the given loads. By
the second type we mean the intermediate configurations denoted by (B;) , where the underlined
subscripts s = 1, 2,...,n indicates the iteration number. When the subscript s is equal to 1 , the
configuration (B]) is called initial configuration.

Applying the total Lagrangian description the following notations are used in the reference
configuration (B): dA is the surface element vector, u, E, S are the displacement vector, the Green—
Lagrange strain tensor, the 2nd Piola-Kirchhoff stress tensor and Au, AE, AS are their increments,
respectively. The virtual displacement vector is du = ¢ (Au).

The 2nd Piola—Kirchhoff stress tensor is related to the Green-Lagrange strain tensor by Hooke’s
law:

s=lc.E=E.-Uc (1)

where [4C is the forth order tensor of material properties.

Kinematically admissible configurations ‘
ﬁd}& =pﬁo dg

PdA-W=pdA

(B) reference (Bi) initial (B) present equi-
configuration configuration librium configuration

(Bl),(Bs),, (By) intermediate
nonequlibrium configurations

\ Nonlinear theory of deformation ’

Fig. 1. Configurations
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In the present configuration (B) the surface element vector is denoted by dA. The body forces
are disregarded in our investigation. By p we denote the normal traction acting on the surface (At).
Then the force vector dF acting on an surface element dA is

dF = pdA, P =PPo, (2)
where p > 0 is a load factor, p, is a normal load distribution which is positive if it points out of
(B).

The relation between the surface element vectors of the two configurations is given by

dA =dA - W (3)
where

|
WlP - 5 elmn Epgr (5qm - uq;m) (yn + ur;n) ’ (4)

in which e™mn epqr are the perturbation symbols, df,, d7 are the unit tensors and the subscripts
preceded by a semicolon denote covariant derivatives with respect to the corresponding coordinate.
With regard to (3) the increment of the surface element vector A (dA) can be expressed as

A(dA) =dA - AW. (5)

The increment AW can be decomposed into linear and quadratic terms which are denoted by
AW® and AW® respectively

AW = AWD 4 AW, )
where
l
(AWD) = e e (6, +ut,) (Au)', ")
et
(AW®)' = ™y (B, (B, ®)

Here and in the sequel the number written as a superscript in parentheses is the power of the
components of (Au) V.
Using (7) we may write

l
a4, (aw®) = [daset™ (57, + u7,,) (8u)" | = Dpr (D)’ 9)

where Dy, is a special differential operator.

2.2. Incremental form of the principle of virtual displacements

Let the vector u; be an appropriately chosen otherwise arbitrary kinematically admissible displace-
ment field associated with the initial configuration (Bj). The configuration (Bj) is not an equilibrium

configuration of the load p. This assumption does not precludes the possibilit}—r that (Bj) is an initial
equilibrium configuration under a load p; # p. -

In the present equilibrium configuration (B), which is due to the load 5, we write (§ denotes a
virtual quantity)

u=u;+Au, fu=4(An), (10)
E=E, +AE, = E; + AE) + AE{, (11)
6F = § (AEy) = 6(AEY) + 6(AEP) = 6B + 6B, (12)

S=5,+A8 =8, +A8Y + AP (13)
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where

s,=e-WE, AsP=agl.Mc, asP =agEP. VE. (14)
According to the equations (3)—(8) the surface element vector is of the form

dA = dA; + A (dA;) =dA- W, +dA- AW +dA - AW, (15)

Formulas (11), (12) and (14) are detailed in the Appendix.
The present configuration (B) with the load p = pp, is regarded as an equilibrium configuration
if the principle of virtual displacements holds for arbitrary du:

/ S--5EdV:p/_ Po dA - du, (16a)
(B) (4¢)
from which using (10)-(15) we have
/ (s1+ a5 +a80) - (5B +0E{") av (16b)
(B) & & ™ 2
=p/(_ )ﬁodA- (wl+AW§” +Aw§2>) . bu, (16c)
Ay i =

Rewriting (16¢) we obtain the incremental form of the principle of virtual displacement

/ (AS&” . 6B +Sl--6E§1)) dV—p/_ PodA - AW . 5u
G : - (4¢) E

—p/(_ )ﬁo dA - Aw) -6u+/ (Asgl) - 6EWM + ASP? .. 6B + As?? --5E§1)) dv
At i (B) - 7 ge e il i

:—/ Sl--éEgo)dV+p/ PodA - Wy -bu. (17)
(B) a (At)

2.3. The load correction stiffness matrix

The finite element discretization of (17) results in a nonlinear system of algebraic equations:

(K + Kfij) Aty — pKI Aty — pLyjr Aty Aty

+ (Grigk + Cuiks + Huaj Aty) Aty Aty = —fi3 +pgui, (18)

where Aty; is the vector of the generalized nodal point displacement increments, Kfij is the linear
stiffness matrix, Kﬁ»j is the geometric stiffness matrix, Kfij + KlGij = K{ij

LC
Lig

is the tangent stiffness

matrix, p K1 is the load correction stiffness matrix, —flsi is the vector of nodal point forces equiva-

lent to the element stresses, p g1; is the vector of the externally applied nodal point loads, —flsi +pgui
is the vector of the unbalanced nodal point loads in the configuration (Bj), the subscripts_ 717k,
take the value 1,2,..., N, where N is the number of degree of freedom.

The stiffness matrices Kfij, Kfl ; are symmetric, consequently Ksz ;18 also symmetric. The matrix
ng can be either symmetric or non-symmetric depending on whether the load is conservative (that
is has a potential) or not conservative (that is has no potential). The terms

—pK[f Aty — pLygjk Aty; Aty (19)

in (18) are due to the increment of the surface element vector.
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Introducing the notations

AX_l_i = —Llijk Atletlk

(20)
AYM = (G_l_ijlc + Clikj + HliljkAtll) Atlchtlj
the equation (18) can be written as
(Kfij = Kfm) Atlj —png Atlj +pAXli + AYli = — ff; + D81 - (21)

2.4. Newton—-Raphson iteration method

The nonlinear system of equations (18) or (21) is solved numerically by the Newton-Raphson
method. In the first step of the iteration the following linear system of equations is solved

(Kf;; + K§;) Aty — pKI§ Aty = £ +pgy; . (22)

Considering equations (22) there are two cases as it is indicated by the underlining:

I. the terms underlined with continuous lines involve the increments of the surface element vectors,
i.e., the load correction stiffness matrix,

II. the terms underlined with dashed parallel lines do not involve the load correction stiffness matrix

C
K-

After the first iteration step the nodal point displacement vector of the second intermediate
configuration (Bé) is of the form

to; = t1; + Aty;. (23)
In the second step of iteration the equation system linearized in Atg; assumes the form

(Kgij + K5;) Aty —pKET Aty = —£5 + pgai = — (pAXy; + AYy) — (—p Kij Aty)  (24)

where the underlining has the same meaning as above.

Comparing (22) to (24) in case II, one can see that the load correction stiffness matrix which is
disregarded in the first step of the iteration appears in the second step on the r.h.s. of equation (24).
Therefore, the two iteration methods are similar concerning the essence of the physical contents,
but the case I has proved to be numerically more efficient than the case II. In our numerical
experiments the number of iterations is smaller at least with one magnitude for the case I if the
prescribed tolerance is the same for both cases.

We can see the correctness of (24), e.g., in the case I, if we take into consideration that the
unbalanced nodal point load vector —fi +p 82; associated with the configuration (Bj) is originated
from the formula " &

= SZ--JEg")dVer/_ fodA - Wy du
(B) L (At)

=- /( : (s1+as? + ASP) - (B + 6E) av
: i 1 g 1

+p/(_ )ﬁodA- (W1+AW§1) +AW§2>) bu .
Ay = =
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With regard to the fact that in the first step of the iteration equation (22) is of the form

—/ (S; B —AS;--éE‘f’)) dV+p/_ podA - AW . su
3 . b (4r) 5

—/ Sl--éEgo)dV+p/_ PodA - Wy -b6u=0,
(B) B (Ar)

we find for the unbalanced load vector —fzsi + pgy; of the configuration (B3) — see the right hand
side of (24) — that

—/ Sg--éEgo)dV+p/_ PodA - Wy - 6u
(B) R (At)

= _/ (AS(ll) 6BV + AS? . sE® + ASP ~6E(11)> 4V
(B) . &= ® L i

+p/ FodA - AWP . 5u.
(Ar) h

2.5. The end of iteration

Let us write the formulae for the n-th iteration step and for both cases:

= (p AXp_1i+ AYE——_li) + (—p Kéij Atn_—_lj) £ 4(25)

Then
—£3 1+ PBri1i = — (PAXpi + AY ) — (—p KL Aty_yj) = 0; (26)
and

if n is large enough.

2.6. Equilibrium paths

Using the incremental form of the principle of virtual displacement, we can find the present equi-
librium configuration (B), if it exists, for any load parameter p. Thus, we can compute points of
the equilibrium paths.

There exist two equilibrium paths of special importance. The first is the fundamental path
emerging from the reference configuration, the second is the bifurcation path emerging from an
appropriately chosen otherwise arbitrary initial configuration (B}). The bifurcation point on the
fundamental equilibrium path is regarded to be the critical load parameter p.,. It is undeniable
that this approach to determine the critical load requires some intuition and cannot be used in
general. In what follows we turn our attention to bifurcations on the fundamental equilibrium path.
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2.7. Critical load

On the basis of equation (27) we can formulate the following nonlinear eigenvalue problem

Kni1ij (p) Aty = [Kgfr_lij 4 W PK@U] Atpyyj =0 (28)

where the stiffness matrices are functions of the load parameter p.
Equation (28) can has a nontrivial solution for Aty1; if the matrix Ky, is singular. The
smallest value of the load parameter, p for which the matrix K, 1;; is singular, is denoted by pc, .
For the numerical determination of the smallest eigenvalue we have two mechanical approaches:

A. Using the path following method the first bifurcation point is determined by the help of equilib-
rium paths. In this way it is also possible to investigate the postcritical equilibrium configurations.

B. Following the fundamental path we determine the value of the load for which the determinant
of the total stiffness matrix Kg;; vanishes. This procedure cannot be applied for investigating
postcritical equilibrium configurations.

It should be mentioned that, due to the nonlinearity of the problem, both methods are based on
the incremental form of the principle of virtual displacement and the accuracy of the critical load
can be determined only within a prescribed tolerance independently of the methods chosen.

3. NUMERICAL EXPERIMENTS
3.1. Elastic ring with follower loads

Consider a circular ring of rectangular cross-section loaded by inward radial pressure p. Knowing
that the first buckling mode is symmetric it is enough to investigate a quarter of the ring for which
symmetric boundary conditions are imposed on the edges that lie on the axes of symmetry of the
deformation (see Fig. 2).

The ring is characterized by the mean radius R, = 10 in; thickness ¢ = 1.0 in; width b = 1.0 in;
modulus of elasticity £ = 3.0 x 107 Ibf/in?, Poisson ratio v = 0 and p, = — 1 Ibf/in?.

The goal is to determine the critical value p.. of the load factor with the method A of the
Section 2.7. (Remainder: the critical load is per = per Po; for our case o = — per 1bf/in? ).

The problem was discussed already in the XIX century by M. Levy [13] and later by S.P. Timo-
shenko and J.M. Gere [22]. The assumptions used in the classical theory of elastic beams were applied

‘B~ U X

Fig. 2. Elastic ring
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and the equations of equilibrium were written for the deformed configuration. The predicted critical
load is
EI bt?

ﬁcrL:_3@; I:Ea (29)
where I is the moment of inertia. For our data (29) yields pe;, = — 7500 1bf/in?, and perz, = 7500.

The buckling problem of the circular ring has been discussed recently by B. Szabé and Gy.
Kiralyfalvi [17]. Their numerical results are in good agreement with those presented in this paper
for the same problem.

Assuming one-dimensional model, extensible centre line and for certain conservative loads Gy.
Szeidl [18] also investigated the buckling problem of circular arches.

In the present paper hexahedral elements with uniform p-extension (p = 5) are used for the finite
element model. The number of elements is 10. Convergence is achieved if

where tol = 107°.
Let the radial displacements at the points A and B of the centerline be denoted by v4 and up,
respectively (see Fig. 2).

3.2. Fundamental and bifurcation paths

We have determined the following equilibrium paths: the load factor p versus the displacement v 4
and the load factor p versus the displacement ug. On the fundamental path the curves p versus vy4
and p versus up coincide, however, on the bifurcation path they are different.

Two series of computations have been performed with the path following method. In the first
series, the initial configuration (Bj]) is the same as the reference configuration (B). The initial value
of the load factor p is smaller than p.,z, and it is increased in the subsequent load steps. In this way
we can locate the section of the fundamental equilibrium path which we are interested in.

In the second series, the initial value of the load factor p is greater than p.,;, and the iteration is
started from an appropriately chosen kinematically admissible initial configuration (B7). Then the
value of p is decreased in the subsequent load steps. In this way two different bifurcation equilibrium
paths are determined. The bifurcation equilibrium paths of points A and B are getting close to the
bifurcation point and at its vicinity both curves jumped to the fundamental path.

The bifurcation point is the theoretical common point of the fundamental and bifurcation paths.

The accuracy of the numerically determined bifurcation point depends on the value of the load
step Ap as the exact value falls within the interval of Ap.

It is worthy of mention that increasing p on the fundamental path and decreasing p on the
bifurcation path the iteration passes through the bifurcation point, i.e., abnormal termination does
not occur.

The results are shown in Figs. 3-5.

The equilibrium paths in Fig. 3 are computed for the interval 7510 > p > 7410 applying equidis-
tant Ap = —5 steps and the critical value of the load falls in the interval of 7425 > p., > 7420.

In this interval the computation is performed with a finer load step Ap = —0.5 as shown in
Fig. 4, where the critical load falls in the interval 7423.0 > p., > 7422.5.

Higher accuracy is achieved by choosing the load step to Ap = —0.05 (see Fig. 5). The critical
value of the load falls in the interval 7422.80 > p.. > 7422.75. The estimated value of the critical
load

Per = T422.79, (ﬁcr = —7422.79 1bf/in2) ,
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Bifurcation paths |

Fundamental path ||

Bifurcation paths

VA

+ 7422
Fundamental path + 7421
~ VA [in]
e | |7a20, ,  uglin]

-0I.25 -0.2 -6.15 -6.1 -0.05 0 0.05 0.1 0‘.15 0.2

Fig. 4. Circular ring. Equlibrium paths

7423.0 +

Bifurcation paths

Bifurcation
point

7422.7 +
Fundamental path
7422.6 1 102' v [in]
‘ : 1 , 74225 10%uy [in]
-1‘0 -é -é -AI, -é 0 2. 4‘

Fig. 5. Circular ring. Equlibrium paths
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is shown in Fig. 5. This value is computed by fitting a parabola on the known values in such a way
that it has a horizontal tangent at the bifurcation point.

The figures clearly show that the accuracy of the critical load factor p., can be increased with
the repeated application of the path following method.

3.3. The load correction stiffness matrix and the number of equilibrium iterations

The points of Fig. 3 were computed in two ways. First we included the load correction matrix png !
s=1,2,...,n into the equation system [see the formulae (2.22), (2.24)], i.e. the increment of the
surface element vector was taken into consideration in the total stiffness matrix. Then the matrix
png , s =1,2,...,n was neglected. The number of equilibrium iterations for the same tolerance
tol = 10~° are different as shown in Table 1.

Table 1. The number of equilibrium iterations

p 7510 | 7500 | 7490 | 7480 | 7470 | 7460 | 7450

With KL 13 4 4 4 4 4 5
Without KEC | 87 | 50 | 58 | 67 | 80 | 101 | 138
p 7440 | 7435 | 7430 | 7425 | 7420 | 7415 | 7410

With KLY 5 6 6 8 7 2 2

Without KLG | 214 | 297 | 486 | * * 71 953 | 51

* — greater than 990

3.4. Equilibrium paths with geometrical imperfection

Equilibrium paths for a circular ring with geometrical imperfections were also determined, i.e., the
circular ring was replaced by elliptical rings. In the first case the minor axis of the centre line of the
elliptical ring was chosen to be 0.5% smaller then the major axis, then in the second case the value
was 0.05%, while the major axis was equal to the mean radius of the circular ring in both cases.

7800

Complc:mentary7
paths: v,
7600,

Fundamental
paths: v,

3 25 2 A5+t 105 0,05 T 15 ‘2. 32
ug in

o———o———¢ Elliptical ring (a=101in; b=9.951n) : v,

O———+—0 Elliptical ring (a =10 in; b= 9.995 in): v,,

Circular ring (a=b =R =101n): v,¢ , Upe

®  Bifurcation point

Fig. 6. Equlibrium paths for the point A
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Fundamental
path: vy = up,

Vv, in
ERCH R TR Sy
up i
Elliptical ring (a= 10 in; b=9.95in) : Uge
IS /5 o Elliptical ring (a =10 in; b=9.995 in): u
Circularring (a=b=R=101in): v, ,u,

M Bifurcation point

Fig. 7. Equlibrium paths for the point B

The results computed for the points A and B in the interval 7800 > p > 7300 are shown in
Figs. 6 and 7, respectively.

For the sake of a comparison, Figs. 6 and 7 present both the fundamental and bifurcation paths
of the circular ring. As regards the elliptical ring there is no bifurcation point on the fundamental
path. On the other hand a complementary path appeared in the computations.

When the complementary equilibrium path for the point A was computed by decreasing the load
factor from the initial value p = 7800 we experienced the followings. If the geometrical imperfection
is 0.5%, i.e., b= 9.95 in, then v4, < 0 for p > 7722 and, according to our computations, there is a
snap-through from this complementary path to the fundamental path with v4, > 0 for p < 7721. If
the imperfection is 0.05%, i.e., b = 9.995 in, then v4, < 0 for p > 7485 , and v, > 0 for p < 7475
are the corresponding values.

The results for ug, are the same except its sign which is the opposite.

4. LINEAR EIGENVALUE PROBLEMS
4.1. Assumptions

In this section let us denote the load factor with A and the smallest eigenvalue with A, .

We shall assume that the linear theory of deformations is applicable if the load factor A < A, .
This means that the gradient of the displacement u;V is negligible in comparison to the unit tensor
I. In order to determine numerically the value of A, , we use the method B. of Section 2.7, i.e., we
regard the load factor to be critical if the determinant of the total stiffness matrix changes its sign.

4.2. The basic equation

In the first step a static problem is solved to determine u,, E,, S, as an equilibrium configu-
ration (B,) for the load po = —11bf/in?, then the load Ap, corresponds to the first intermediate
configuration (Bj). In this case, (Bj) is an equilibrium configuration and §; = A S, .
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According to the linear theory of deformations and using the expressions of Appendix (A.2a),
(A.4a) and (A.5a) we have in the configuration (Bj) that

AEY = % [V (Au) + (Aw) V], (31)
B = %[v (6u) + (u) V], (32)
SEQ = 2 {IV ()] [(Auy) V] + [V (Aw)] - [(6u) V]}. (33)

Further it follows from (9) that

A (AWf’)l = e [aarem™ 58, (Aw)",] (34)

Since the configuration (Bi) is in equilibrium, i.e., the unbalanced nodal force vector is zero, from

(17) and (22) we obtain the following linear eigenproblem:

/ ASY . SEQAv + / S, -dBMav — )\/ podA- AW bu=0, (35)
(B) (B) (A¢) -
KL, Aty + AKS; Aty — AK[S Aty = 0; (36)

As regards the integrals of formula (35) and the matrices Kfij ; Kgcij and ng in (36) they do not

depend on the displacement field of the configuration (B’l ) therefore the underlined index 1 can be
omitted.
Considering (36), and of course, (35) we can read an important statement:

— the formula (36) can be applied only to follower loads (both for a non-conservative load and for
a conservative one), if the load correction matrix ng is included, otherwise (36) is applicable
only to those loads which maintain their direction.

Solving the example of Section 3.1 with the determinant search method we obtain for the smallest
eigenvalue of the linear eigenproblem for non-conservative follower loads that

der = T424.9, Por = — T424.9 1bf /in®.
It is worthy of recalling the results
Aoy = T422.79  and  Per = — 7422.79 1bf /in®

obtained by solving the nonlinear problem by the path-following method - see Section 3.3 for further
details.

5. CONCLUDING REMARKS

5.1. Effect of the increment of the surface element vector in the cases of follower loads

The object of this paper is the investigation of elastic bodies loaded by nonconservative follower
loads, which are normal to the instantaneous surface of the body. The main features of the investi-
gations are: static method, three-dimensional and geometrically nonlinear model, total Lagrangian
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description, the 2nd Piola-Kirchhoff stress tensor is related to the Green-Lagrange strain tensor
by Hooke’s law, application of the incremental form of the principle of virtual displacements, finite
element discretization, and the determination of the equilibrium configuration if it exists.

In the incremental form of the principle of virtual displacement, the follower loads are present in
the two integrals which contain the increments of the surface element vector. The gradient of the
displacement increment is linear in one integral, and is quadratic in the other. Therefore, there are
also two terms in the equations formulated by the finite element discretization. Using the Newton-
Raphson iteration technique the integral, which involves the linear increment of the surface element
vector, gives a load correction stiffness matrix. The iteration is initiated from a suitable kinematically
admissible configuration.

The load correction stiffness matrix may be omitted from the Lh.s. of the iteration equations,
since the appropriate term appear on the r.h.s. of the equations in the subsequent iteration steps.
In principle this is correct and the same results can be obtained either with or without the load
correction matrix, however the convergence rates are different.

The previous statement is not valid for the linear eigenproblem if the load is a follower one, since
the increment of the surface element vector is represented only by the load correction matrix.

5.2. Numerical determination of critical loads

Critical loads for the nonlinear eigenvalue problems are computed by applying two techniques each
resting on the finite element method. The first is the path following method, the second is the
determinant search algorithm.

5.3. Numerical results of a circular ring

The examples concern a circular ring of rectangular cross-section loaded with uniform inward pres-
sure.

The number of iteration is greater by one magnitude when the load correction stiffness matrix
is omitted from the Lh.s. of the equations. The critical value of the load factor is the common point
of the fundamental equilibrium path and the bifurcation paths.

When the circular ring is replaced by elliptical ring as a model for a small geometrical im-
perfection, no bifurcation point appears on the fundamental path, however the appearance of a
complementary path is demonstrated by the computations.

APPENDIX

The quantities in (11), (12) and (14) are detailed with invariant and in index notation in the
following;:

B = [VutwV+ (Vuy) - (u,V) (A1)
(B, % [(ul)k;l + (un) 1 + (u1) (u;)"?l] (A.1b)
ABD = {9 (Auw) + (Aw) V+ (Vuy) - [(Au) V] + [V (Auw)] - (¥)}  (A2a)
(aB®) = % [(Aw) + (Bur)  + (w)y (Bur) s+ (Awy), (u w)] (A.2b)
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AED = [V(Aw)] [(Aw) V] (A.30)
(AE(f))kl = % (Auy),,, (Auy)™, (A.3b)
B =5(aED) = %{v (6u) + (Ju) V + (Vuy) - [(0u) V4] + [V (6u)] - (wV)} (Ada)
(55) = [s(aBD)] = % [(0) g + (60) g + (1) g ()} + + (50) e (w1) ;] (A4D)
B = 5(ABP) = 2 {[V (Gw) - [(Auy) V] + [V (Auy)] - [(5u) 7]} (A.52)
(68D) = [6(aED)] = % [(60) e (02) ) + (An) , (60)73] (A.5b)
and for example
as{) = AE{" .M, (as)™ = (a E{V) Hghmn, (A.6)
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