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We have considered a linearly elastic body loaded by tractions inward normal to the instantaneous surface. 
Due to the increment of the surface element vector there is a contribution to the tangent stiffness matrix 
referred to as load correction stiffness matrix. The goal of the numerical experiments is to determine the 
bifurcation point on the fundamental equilibrium path. Linear eigenvalue problems with follower loads 
are also analysed. 
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1. INTRODUCTION 

A typical problem of continuum mechanics is the determination of critical loads of conservative 
and non-conservative mechanical systems. For non-conservative systems this is performed usually 
by dynamical methods. 

A number of excellent monographs are devoted to the investigation of the stability behavior of 
conservative systems, e.g., Thompson and Hunt [20, 21], Huseyin [11], Thompson [19], Guz [9] and 
Crisfield [7]. Relatively few monographs are concerned with the stability of non-conservative systems, 
e.g., Bolotin [5]. For a normal pressure field with potential Koiter [12] derived the so-called "pressure 
stiffness matrix" referred to as load correction stiffness matrix in the present paper. Conservativeness 
of a normal pressure field has been studied by Cohen [6] and Hibbitt [10]. Loganathan, Chang, 
Gallagher and Abel [14] have reviewed analytical as well as numerical works on the effects of 
follower forces in stability analysis. Mang [15] raised the issue of making the originally non-symmetric 
pressure stiffness matrix to be symmetric. Then Floegel and Mang [8] performed finite element 
computations by the use of symmetrized pressure stiffness matrices. The above citations should be 
supplemented by the excellent dissertation of Schweizerhof [16]. Further contributions with various 
approaches are published in the papers by Argyiris and Symeonidis [3, 4], Argyiris, Straub and 
Symeonidis [1, 2]. The references listed in them provide a further insight to the background of the 
problem. 

The present paper is concerned with the investigation of elastic systems with follower loads using 
static methods for some three-dimensional and geometrically nonlinear models. 

In Section 2 we formulate the change of the vectorial surface element as a function of the defor­
mations. The principle of virtual displacement in incremental formulation and its linearized form are 
also given with a special attention to the increment of the surface element vector. Our approach to 
finding the nonlinear response of the body is an incremental iterative method. It is advantageous to 
take into consideration the increment of the surface element vector in the incremental formula too, 
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~E(i) ~ [V (~Ul)] . [(~Ul) V] (A.3a) 

(~E~»)kl = ~ (~Ul)m;k (~Ul)~l (A.3b) 

= o( ~E(2) = ~ {V (ou) + (ou) V + (VU1) . [(ou) V+] + [V (ou)]· (ul V)} (A.4a) 

(A.4b) 

(A.5a) 

(A.5b) 

and for example 

(A.6) 
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