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We present a two-dimensional discrete model of solids that allows us to follow the behavior of the solid
body and of the fragments well beyond the formation of simple cracks. The model, consisting of polygonal
cells connected via beams, is an extension of discrete models used to study granular flows. This modeling
is particularly suited for the simulation of fracture and fragmentation processes. After calculating the
macroscopic elastic moduli from the cell and beam parameters, we present a detailed study of an uniaxial
compression test of a rectangular block, and of the dynamic fragmentation processes of solids in various
experimental situations. The model proved to be successful in reproducing the experimentally observed
subtleties of fragmenting solids.

1. INTRODUCTION

Fracture and fragmentation of solids are difficult problems to handle numerically due to the creation
and continuous motion of new surfaces. Commonly used numerical methods solve partial differential
equations of continuum mechanics. With classical numerical methods such as Finite Elements (FE),
Finite Differences (FD) or Boundary Elements (BE) a small number of discontinuities may be
considered but these methods cannot encompass the entire fracturing process.

The alternative approach is the Discrete Element Method (DEM) in which the elastic medium
is considered to be fully discontinuous, i.e. the elastic solid is assembled of discrete elements. The
microscopic interaction of the elements is defined such that the model accounts for the macroscopic
elastic behavior of materials. The time evolution of the model is followed by solving numerically the
equation of motion of the individual elements (Molecular Dynamics (MD)). This model construction
results in a “simulated solid” and the modeling of a specific process of a material is referred to as
simulation. The inter-element contacts can be considered as grain boundaries which define the
possible paths for crack propagation. Hence, in these models it is easy to take into account spatial
inhomogeneities. Historically this method of treatment of solids was initiated by the discrete model
of Cundall [3, 4] which was proposed to study the behavior of granular materials. Following his
ideas several discrete models of solids have been introduced recently by “gluing” together discrete
elements symbolizing grains of the material [14, 15, 17].

In this paper we present a two-dimensional model for a deformable, breakable, granular solid by
connecting unbreakable, undeformable elements by elastic beams. The contacts between the particles
can be broken according to a physical breaking rule, which takes into account the stretching and
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bending of the connections. The breaking rule contains two parameters to describe the relative
importance of the two breaking modes. The main goal of the paper is to demonstrate the abilities of
our model in the study of material’s destruction. After measuring the macroscopic elastic behavior
of the material, widespread applications of the model will be presented, i.e. the model will be applied
to study the fracture of a rectangular solid block in compression, and the catastrophic fragmentation
of solids due to impact and explosion.

2. THE MODEL

Our model of a deformable, breakable granular solid is an extension of those models which are
used to study the behavior of granular materials applying randomly shaped convex polygons to
symbolize grains [18]. The construction of the model is composed of three major steps. Namely, the
implementation of the granular structure of the solid, the determination of the interaction of grains,
and finally capturing the breaking of the solid. This section gives a detailed overview of the three
steps of the model construction.

2.1. Granularity

In order to take into account the complex structure of the granular solid we use arbitrarily shaped
convex polygons, i.e. we divide the solid into grains by a Voronoi cellular structure. The Voronoi
construction is a random tessellation of the plane into convex polygons. In general, this is obtained
by putting a random set of points onto the plane and then assigning each point that part of the
plane which is nearer to it than to any other point. In our case, to get an initial configuration of
the polygons we construct a so-called vectorizable random lattice, which is a Voronoi construction
with slightly reduced disorder (see [10]). It is performed by first putting a regular grid onto the
plane and throwing points randomly and independently in each square of the grid with a maximal
distance a from the center of the squares. Using these points for the Voronoi construction, the
randomness of the tessellation can be controlled by tuning the value of the parameter a between 0
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Fig. 1. Construction of the vectorizable random lattice. The dots indicate the points used for the
tessellation. These points were thrown independently and randomly onto the squares of the regular grid
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and the lattice spacing of the grid. Figure 1 presents an example of the vectorizable random lattice
including the underlying grid, the random points used for the tessellation and the final polygonal
structure. The advantage of the vectorizable random lattice compared to the ordinary Poissonian
Voronoi tessellation is that the number of neighbors of each polygon is limited which makes the
computer code faster and allows us to simulate larger systems.

The convex polygons of this Voronoi construction are supposed to model the grains of the mate-
rial, see also [18]. This way the structure of the solid is built on a mesoscopic scale. Each element is
thought of as a large collection of atoms, however, in the simulation these polygons are the small-
est particles interacting elastically with each other. The polygons have three continuous degrees of
freedom in two dimensions: the two coordinates of the center of mass and the rotation angle.

2.2. Elastic behavior of the solid

In the framework of the discrete element approach the elastic behavior of the solid is captured by
defining proper interactions on the mesoscopic level, between the polygons. In the case of spherical
particles the Hertz contact law provides the force between two particles as a function of the overlap
distance. For randomly shaped particles it is impossible to derive such a simple interaction law,
hence, we introduce an approximate method.

The polygons are considered to be rigid bodies. They are not breakable and not deformable but
they can overlap when they are pressed against each other. The overlap represents up to some extent
the local deformation of the grains. Usually the overlapping polygons have two intersection points
which define the contact line (see Fig. 2). The total force F;; acting between polygons i and j can
be decomposed into normal szjv and tangential Fl:]r components with respect to the contact line, i.e.

Fy=F} -A+F} 4 (1)

where 7 denotes the unit vector pointing in the direction perpendicular to the contact line, and #'is
the tangential unit vector.

In order to simulate the elastic contact force between touching grains we introduce a repulsive
force between the overlapping polygons. This force is proportional to the overlapping area A divided
by a characteristic length L. of the interacting polygon pair. Our choice of L, is given by

e o
L.: 2%r; T .«

where r;, r; are the diameters of circles of the same area as the polygons. This normalization is
necessary in order to reflect the fact that the spring constant is proportional to the elastic modulus
divided by a characteristic length. (In the case of a linear spring this characteristic length is simply

\

Fig. 2. To calculate the elastic contact force F' between two particles one has to obtain the overlap area. The
intersection points Pi, P> define the contact line P; P>. The force is applied at the center of the contact line R
and the direction of the force is perpendicular to P, P,
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the equilibrium length of the spring.) The direction of the force is chosen to be perpendicular to
the contact line of the polygons. The contact force F;; between two particles is given by

s YA
where Y is the grain bulk Young modulus, see also Fig. 2. Damping and the friction of the touching
polygons according to Coulomb’s friction law can also be implemented. The complete form of the
normal force Fl]JV contains the contribution of the elastic force and the damping, while the tangential
component Fg is responsible for the friction:

YA
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where m; denotes the mass of polygon %, yy is the damping coefficient, v and u are the friction
coefficients.

In order to keep the solid together it is necessary to introduce a cohesion force between neighbor-
ing polygons. For this purpose we introduce beams, which were extensively used recently in crack
growth models [7, 6]. The centers of mass of neighboring polygons are connected by elastic beams,
which exert an attractive, restoring force between the grains, and can break in order to model the
fragmentation of the solid. Because of the randomness contained in the Voronoi-tessellation the
lattice of beams is also random. An example of a random lattice of beams coupled to the Voronoi
polygons can be seen in Fig. 3.

A beam between sites i and j is thought of as having a certain cross section S¥ giving to it
not only longitudinal but also shear elasticity. This cross section is the length of the common side
of the neighboring polygons in the initial configuration. The length of the beam [% is defined by
the distance of the centers of mass. The elastic behavior of the beams is governed by two material
dependent constants. For the beam between sites ¢ and j:

14

i
o= = ()
i = )
Vo= - 8
GSi’
ij 1
Cr = EI’ (9)

where E and G are the Young and shear moduli of the beam, S¥ is the area of the beam section,
and IV is the moment of inertia of the beam for flexion. A fixed value of E was used for all the
beams and b¥ was chosen to be b¥ = 2a". The length, the cross section and the moment of inertia
of each beam are determined by the random initial configuration of the polygons as explained above.
The beam Young modulus F and the grain bulk Young modulus Y are, in principal, independent.

In the local frame of the beam three continuous degrees of freedom are assigned to both lattice
sites (centers of mass) connected by the beam, which are for site 4, the two components of the
displacement vector (u, uZ) and a bending angle ©%.

For the beam between sites ¢ and j one has the longitudinal force acting at site :

Fy = o (u] — up), (10)

xT

the shear force

s iy 43, i oI g gty
Fj = B9(u] - ul) - (0" + ©), (11)
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Fig. 3. Elastic beams connecting the Voronoi polygons in a disc-shaped sample. Due to the randomness in
the Voronoi tessellation the lattice of beams is also random
and the flexural torque at site 4
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It can be shown that this beam model is a discretisation of the simplified Cosserat — equations of
continuum elasticity which should be used to describe the elastic behavior of the granular solids,

instead of the Lamé equations [16].

2.3. Breaking of the solid

To model fracture and fragmentation it is necessary to complete the model with a breaking rule,

according to which the over-stressed beams break. *

For not too fast deformations the breaking of a beam is only caused by stretching and bending.
We impose a breaking rule which takes into account these two breaking modes, and which can reflect
the fact that the longer and thinner beams are easier to break. We used a breaking rule of the form

of the von Mises plasticity criterion [7]:

€\", max('},16%)

=1,
te to

(13)

where € = Al/l is the longitudinal strain of the beam, ©! and ©? are the rotation angles at the two
ends of the beam and ¢, and tg are threshold values for the two breaking modes. In the simulations

we used the same threshold values ¢, and tg for all the beams.
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The first term of Eq. (13) takes into account the role of stretching and the second term the
role of bending. Varying the threshold values the relative importance of the two modes in the
beam breaking can be controlled. The breaking of beams in the simulations is allowed solely under
stretching.

The time evolution of the system is followed by solving numerically the equation of motion of the
individual polygons (molecular dynamics) for the translational and rotational degrees of freedom:

N N
mits =Y Fy, F8=) MJ, i=1...N, (14)
j=1 g=1

where N is the total number of polygons in the sample, and If denotes the moment of inertia
of polygon 7 with respect to its center of mass. The force F’ij and the torque M}’ contains the
contribution of the polygon-polygon contacts and that of the beams. In the simulation code a
Predictor-Corrector scheme of fifth order is used for the solution of the Newton equations Eq. (14).

During the simulation the left hand side of Eq. (13) is evaluated at each iteration time step for
all the existing stretched beams. The breaking of beams means that those beams for which the
condition of Eq. (13) holds are removed from the calculation, i.e. their elastic constants are set to
sero. Removed beams are never restored during the simulation. The surface of the grains, on which
beams are broken, represents cracks. The energy of the broken beams is released in creating these
new crack surfaces inside the solid. The simulation is stopped when the entire system gets relaxed,
i.e. there is no breaking of beams during some hundreds of consecutive time steps.

3. APPLICATIONS

To demonstrate the capabilities and to test the limitations of our model we have performed a variety
of simulations, which fall into three categories: (1) measuring the macroscopic elastic moduli of the
model solid, (2) strain controlled compressive strength test, and (3) catastrophic fragmentation of
solids due to explosion and impact. Since fracture in compression, and fragmentation in impact and
in explosion occurs very rapidly most of the available experimental results were obtained from the
analysis of the debris in the final, relaxed state of the processes. Hence, in several cases there is
no possibility for direct quantitative comparison of the simulation results to the experimental ones.
In these cases only qualitative comparison could be performed. The parameter values used in the
simulations are summarized in Table 1.

Table 1. The parameter values used in the simulations

Parameter Symbol Unit Value
Density p g/cm? 5
Grain bulk Young modulus 5 dyn/cm? | 10%
Beam Young modulus E dyn/cm? | 5-10°
Time step dt s 10°
Diameter of the disc d cm 40
Average # of polygons n 1100
Energy of the explosion E, erg 5-10°
Average initial speed Vo m/s 200
Estimated sound speed € m/s 900
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3.1. Elastic properties

In [14, 15] it was shown that the macroscopic elastic behavior of two dimensional materials composed
of particles with linear contacts can be characterized by two elastic constants, the Young modulus
K and the Poisson ratio v, similar to the case of homogeneous isotropic solids. It seems clear from
the definition of the model that these elastic constants depend on the properties of the constituent
particles, i.e. on the shape of the grains, on the stiffness of the grain—grain contacts (in our context
the grain bulk Young modulus Y and the beam Young modulus E) and on the typical grain size.

For real materials the Young modulus K and the Poisson ratio v are usually determined by
uniaxial loading of the body. In order to measure numerically the elastic properties of our simulated
material we apply uniaxial loading on a two dimensional rectangular sample, which has linear
extensions L in the direction of the loading and S in the perpendicular direction. The corresponding
changes of the extensions due to loading are denoted by AL and AS. During the simulations plane-
stress conditions are used, i.e. it is assumed that there is no stress in the direction out of the plane
of the material. The boundaries parallel to the loading are free in the simulation.

In the case of uniaxial loading of a rectangular sample under plane - stress conditions, the Young
modulus K is the ratio between the external force F' per unit length acting on the solid and the
strain in the direction of the loading, F'/S = K AL/L. The Poisson ratio v is the ratio between the
strain in the direction perpendicular to the loading and the strain in the direction of the loading,
AS/S = —-vAL/L.

To avoid the disturbing effect of the elastic waves induced by the loading, the numerical experi-
ment is performed in the following way (see also [14, 15]): The two opposite horizontal boundaries
of the solid start to move with zero initial velocity and a constant, non-zero acceleration. When a
certain velocity is reached the acceleration is set to zero and the velocity of the boundaries is kept
fixed. With this slow loading the vibrations of the solid can be reduced drastically compared to the
case when the boundaries start to move with non-zero initial velocity. A further way to suppress
artificial vibrations is to introduce a small dissipation (friction or damping) between the grains.
This dissipation has to be small enough not to affect the quasi-static results. To obtain the values
of K and v, the force acting on the boundary layer, and the horizontal and vertical extensions of
the sample were monitored during the loading.

Figure 4 shows an example of the results of the measurement of the Young modulus, the horizontal
stress 0 = F'/S as a function of the vertical strain e = AL/L. The values of K were extracted from
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Fig. 4. Typical result of a measurement of the effective Young modulus K, the horizontal stress o = F'/S as

a function of the vertical strain e = AL/L. Positive and negative strain means elongation and compression of

the solid, respectively. The values of K were extracted from the slopes of the straight lines. One can observe
the asymmetry of elongation and compression
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the slope of the straight lines. It can be seen that elongation and compression of the system are not
symmetric. The solid is more stiff under compression. The reason of the asymmetry is that in the
case of elongation practically only the beams act but under compression one measures the common
effect of the beams and the overlap force giving rise to a larger effective Young modulus.

Calculations were performed for elongation and compression of the sample fixing the value of the
grain bulk Young modulus Y and varying the beam Young modulus E. The results for K are shown
in Fig. 5. In the case of elongation K is a linear function of E as expected. For large E the elongation
and compression curves are parallel. The difference between them is determined by the grain bulk
Young modulus Y and by the geometry of the Voronoi tessellation. Small values of E compared to
Y means that the cohesive force in the solid is small with respect to the repulsive overlap force.
Under compression the polygons can move perpendicular to the loading in the direction of the free
boundaries in the limiting case of small cohesion. Because of the dense packing (the initial packing
fraction is one) the deformation tends to increase the overall volume resulting in dilatancy [2]. This
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Fig. 5. The effective (macroscopic) Young modulus K of the granular solid measured under compression and
elongation varying the beam Young modulus E between 10°dyn/cm?® and 4 - 10'°dyn/cm®. The grain bulk
Young modulus was fixed to be ¥ = 10'°dyn/cm?
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Fig. 6. The Poisson ratio of the granular solid measured under compression and elongation. The values of E
and Y are the same as in Fig. 5. The curve of the pure beam lattice was obtained by switching off the overlap
force between the polygons
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effect gives rise to a small effective Young modulus, such that K is even smaller than the grain bulk
Young modulus Y.

For the Poisson ratio v a similar asymmetry of elongation and compression is observed as shown
in Fig. 6. The values of v for elongation are smaller than for compression but for large E both values
approach the Poisson ratio of the pure beam lattice. In the limiting case of small cohesion v can
even exceed unity, due to the dilatancy mentioned above.

3.2. Compressive strength test

The simplest application of the model to study fracture of solids was the simulation of the compres-
sive failure of a material. The simulations were performed on a rectangular sample of 25x40 elements
with confined horizontal boundaries, as illustrated in Fig. 7. The strain controlled quasi-static load-
ing was imposed similar to the measurement of the macroscopic elastic moduli. The confinement of
the horizontal boundaries was ensured by fixing the horizontal coordinates and the rotation angle of
the polygons in the horizontal boundary layers, while the vertical boundaries were allowed to move
freely.

Fig. 7. The configuration of the strain controlled compressive strength test. During the simulations the two
horizontal boundaries were moved vertically, while the horizontal coordinates and the rotation angle of the
polygons of these boundary layers were fixed

In the early stages of the test, for small deformations the material behaves elastically. Further
compression results in cracking, i.e. breaking of beams. Due to the confinement of the horizontal
boundaries the compressed sample tends to bulge, which leads to the creation of tensile stresses
on vertical planes. When the stretched beams fulfill the breaking condition Eq. (13) the beams
break and microcracks appear in the sample. In Fig. 8 the time evolution of the crack pattern
is presented by showing the position of broken beams at three different times during the loading
process. It can be observed on the three snapshots that the broken beams form vertical cracks
which divide the sample into columns. These vertical cracks mainly occur along the diagonals of the
sample. It is important to note that no cracks appear in a triangular region along the confined walls.
Under further compression the system of vertical cracks becomes unstable and the solid undergoes
catastrophic failure, which releases the elastic energy stored in deformation. This breakage picture
obtained by the simulations is consistent with the experimental observation.

Figure 9 shows the stress-strain relation for the compressive strength test. As it is expected
for brittle materials the response of the solid is linear until it fails abruptly. The failure strain is
identified with the position of the maximum of the o(€) curve.
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Fig. 8. The position of broken beams in the compression test. It can be observed that the cracks tend to form
vertical columns parallel to the direction of the load, while two cones (i.e. two triangles in two dimensions) at
the confined boundaries are practically intact
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Fig. 9. The stress-strain relation during the compressive strength test

3.3. Fragmentation of solids

Recently, the fracture and fragmentation of granular solids has attracted considerable scientific and
industrial interest. The length scales involved in this process range from the collisional evolution
of asteroids to the degradation of materials comprising small agglomerates employed in industrial
processes. On the intermediate scale there are several industrial and geophysical examples concerning
the usage of explosives in mining and oil shale industry, fragments from weathering, coal heaps, rock
fragments from chemical and nuclear explosions. Most of the measured fragment size distributions
exhibit power law behavior with exponents between 1.9 and 2.6 concentrating around 2.4. Power
law behavior of small fragment masses seems to be a common characteristic of brittle fracture [1,
5,7, 11, 12, 13, 19]. Beside the size distribution of the debris, there is also particular interest in the
energy required to achieve a certain size reduction. Collision experiments revealed that the mass of
the largest fragment normalized by the total mass shows power law behavior as a function of the
specific energy, i.e. imparted energy normalized by the total mass {5, 11].



2-D simulation of fracture and fragmentation of solids 395

The catastrophic fragmentation of solids will be studied in two different experimental situations:
through an explosion which takes place inside the solid and through the impact with a projectile
(stroke with a hammer). We present a detailed analysis of the wave propagation, crack nucleation
and crack growth, the time evolution of the fragmenting system, and of the size distribution of
fragments. The application of our model to study the collision of macroscopic bodies was published
in [8, 9].

3.3.1. Ezxplosion of a disc shaped solid

In the explosion experiment the detonation takes place in the center of a solid disc. The granular
solid with disc-like shape was obtained starting from the Voronoi tessellation of a square and cutting
out a circular disc in the center, see Fig. 3.

In the center of the solid we choose one polygon, which plays the role of the explosive. Initial
velocities are given to the neighboring polygons perpendicular to their common sides with the central
one. The sum of the initial linear momenta has to be zero, reflecting the spherical symmetry of the
explosion. From these two constraints it follows that for a polygon having mass m and a common
boundary of length S with the explosive center, the initial velocity is proportional to S/m. The sum
of the initial kinetic energies defines the energy E, of the explosion. (For the parameter values and
the initial conditions of the simulation see Table 1.)

As a result of these initial conditions a circularly symmetric outgoing compression wave is gen-
erated in the solid. In our context this means that there is a well-defined shell where the average
longitudinal strain of the beams (¢) = (Al/I) is negative. This compression wave is not homogeneous
in the sense that not all the beams in this region are compressed. If the angle of a beam with respect
to the radial direction is close to 7/2 a beam can be slightly elongated within the compression wave.

Since the overall shape of the solid has the same symmetry as the compression wave it is possible
to avoid geometrical asymmetries, which would arise for example in the explosion of a rectangular
sample due to the corners. In the disordered solid the initial compression wave gives rise to a
complicated stress distribution, in which the over-stressed beams break according to the breaking
rule Eq. (13). The simulation is stopped if there is no beam breaking during 300 successive time
steps. Free boundary conditions were used in all simulations.

Due to the beam breaking the solid eventually breaks apart, i.e. at the end of the process it
consists of well separated groups of polygons. These groups of polygons, connected by the remaining
beams, define the fragments. In the simulation of the explosion we are mainly interested in the time
evolution of the fragmentation process and the mass distribution of fragments at the end of the
process.

In the time evolution of the explosion two regimes can be distinguished. The initial regime is
controlled by the compression wave and the disorder of the solid. The amplitude of the shock wave
is proportional to the ratio of the average initial velocity of the polygons to the longitudinal sound
speed of the solid. The width and the speed of the wave are mainly determined by the grain size
and the Young moduli.

Since the beams are not allowed to break under compression the compression wave can go outward
almost unperturbed and an elongation wave is formed behind it. Due to the elongation wave a highly
damaged region is created in the vicinity of the explosive center where practically all the beams
are broken and all the fragments are single grains. This highly damaged region is called the mirror
spot. Since the breaking of the beams, i.e. the formation of cracks in the solid, dissipates energy
after some time the growth of the damage stops. The size of this mirror spot is determined by the
initial energy of the explosion, by the dissipation rate and by the breaking thresholds (see Fig. I).

During and after the formation of the mirror spot when the outgoing compression and elongation
waves go through the solid, the weakest (i.e. the longest and thinnest) beams break in an uncorre-
lated fashion creating isolated cracks in the system. The uncorrelated beam breaking is dominated
by the quenched disorder of the solid structure. This first uncorrelated regime of the explosion
process lasts till the compression wave reaches the free boundary of the solid.
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From the free boundary the compression wave is reflected back with opposite phase generating
an incoming elongation wave. The constructive interference of the incoming and outgoing elongation
waves gives rise to a highly stretched zone close to the boundary. The beams having small angle with
respect to the radial direction have the largest elongation. In this zone a large number of beams
break causing usually the complete break-off of a boundary layer along the surface of the solid.
The thickness of this detached layer is roughly half the width of the incoming elongation wave (see
Fig. I). The fragments of this boundary layer fly away in the radial direction with a high velocity
carrying with them a large portion of the total energy in the form of their kinetic energy. After that
the system starts to expand. This overall expansion initiates cracks going from inside to outside
and from outside to inside. The branching of single cracks and the interaction of different cracks
give rise to the final fragmentation of the solid (Fig. I). This second part of the evolution of the
explosion process is dominated by the correlation of the cracks.

The propagation of the elastic waves, when the beam breaking is switched off, is presented in
Fig. 10. One can observe the peak of the initially imposed shock, the propagation of the compression
and elongation waves and the formation of the highly stretched zones at the boundary.

We performed simulations alternatively fixing the two breaking parameters ¢, and tg and chang-
ing the value of the other one, keeping all the other parameters of the simulations fixed. In both
cases the mass distribution of fragments was obtained. The fragment mass histograms are presented
in Fig. 11. The lower cutoff of the histograms is determined by the size of the unbreakable poly-
gons (smallest fragments), while the upper cutoff is given by the finite size of the system (largest
fragment).

It can be observed that increasing the value of the varied parameter the distributions tend to a
“limiting curve”, but the histograms follow a power law for practically all the parameter pairs for at
least one order of magnitude in mass:

F(m) ~am™". (15)

The effective exponents 3 were obtained from the estimated slopes of the curves. Apart from the
case of extremely small breaking parameters the exponent 3 only slightly varies around 8 = 2.0,
indicating a more or less universal behavior within the accuracy, with which 3 was determined
(£0.05). These values of the exponent (3 obtained numerically are in reasonable agreement with
most of the experimental results.

2
2 5 10 2 5

m (g)

Fig. 11. (a) The fragment mass histograms varying the stretching threshold ¢t. = 1%—6%. The bending

threshold is fixed te = 4°. The contribution of the single polygons are ignored. For increasing t. the curves

tend to a limit, which is determined by the fixed bending mode. (b) The fragment mass histograms varying

the bending threshold te = 1°—7°. The stretching threshold is fixed t. = 3%. For increasing te the curves
tend to a limit, which is determined by the fixed stretching mode
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3.3.2. Impact of a projectile with a solid block

Besides the explosion a catastrophic fragmentation of solids can also be generated by an impact
with a projectile. In nature one of the most spectacular examples is that the size distribution of
meteorites and asteroids shows power law behavior. These objects are believed to have originated
from the fracture of primitive planets due to collisions [19, 5].

We applied our model to study the fragmentation of a rectangular solid block (e.g. a block of
concrete) due to an impact. One polygon at the lower middle part of the block is given a high
velocity directed inside the block simulating an elastic collision with a projectile. The boundary
conditions and the stopping condition were the same as in the explosion experiment. The breaking
thresholds were chosen t. = 3% and tg = 4°.

The evolution of the fragmenting solid block is presented in Fig. II. As in the case of the explosion,
the initially generated compression wave plays a significant role. Since the energy of the collision
is concentrated around the impact site of the projectile the damage is the largest in that region.
The completely destroyed zone, where all the beams are broken stretches inside the solid in the
forward direction resulting in the break-up of the solid. When the shock wave reaches the boundary
at the side of the solid opposite to the collision point it gives rise to the break-off of a boundary
layer. The fragments of this layer fly away in the forward direction with a high velocity. Some
small fragments from the vicinity of the collision point are scattered backward. The damage in the
direction perpendicular to the projectile is not strong, the broken boundary layer is thicker and the
speed of the fragments is smaller.

Results of laboratory experiments on high velocity impacts can be found in [19. 5. 1, 11, 12, 13§
In [11] a picture series obtained by a high speed camera is presented showing the time evolution
of an impact experiment. Our results are qualitatively in good agreement with the experimental
observations.

The resulting fragment mass histogram F(m) is presented in Fig. 12. Similarly to the explosion
experiment, F'(m) shows power law behavior for approximately one order of magnitude in mass. The
value of the effective exponent is § = 1.98 4 0.05, which agrees well with most of the experimental
results.

Fig. 12. Fragment mass histogram of the collision experiment.

4. CONCLUSIONS

We presented a two-dimensional discrete model of solids connecting unbreakable, undeformable
elements by breakable, elastic beams. To demonstrate the capabilities of the model in the study of
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Fig. I. Explosion of a disc-shaped solid. Snapshots of the evolving system are presented when the initial

compression wave reaches the boundary of the solid (t = 0.0001s), the constructive interference of the incoming

and outgoing elongation waves breaks the boundary layer (¢ = 0.001s) and the final breaking scenario (¢ =

0.004s). The color scale shows the color code for the beams. Black indicates that the strain is close to the
stretching threshold ¢,
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Fig. II. Fragmentation of a concrete block composed of elastic grains. One grain at the lower middle part of

the block is given a high velocity directed inside the block. Here the velocity was 400 m/s. The size of the block

was chosen to be 40cm x 20cm. Snapshots of the evolving system are presented at ¢ = 0.0004s, t = 0.0015s
and t = 0.003s
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fracture and fragmentation processes we performed simulations of a compressive strength test of a
rectangular block and catastrophic fragmentation of solids due to impact and explosion. The results
of the simulations were found to be in reasonable agreement with the experimental observations.

Still our study makes a certain number of technical simplifications which might be important for
a full quantitative grasp of fragmentation phenomena. Most important seems to us the restriction
to two dimensions, which should be overcome in future investigations. The existence of elementary,
non-breakable polygons restricts fragmentation on lower scales and hinders us from observing the
formation of powder of a shattering transition [7].

An advantage of our model with respect to most other fragmentation models is that we can
follow the trajectory of each fragment, which is often of big practical importance and that we know
how much energy each fragment carries away. The polygonal structure of our solid allows us to
realistically model granular or polycrystalline matter, and considering as well cell repulsion as beam
connectivity gives us a rich spectrum of possibilities ranging from breaking through bending to
the effect of dilatancy. If one or the other mechanism is turned off we have the extreme cases of
an elastic homogeneous solid and a compact dry granular packing. It was also demonstrated that
during the molecular dynamic simulation of this discrete model of solids it is possible to monitor
such quantities which are hard to measure or not measurable. Hence, this way of treatment can
provide a deeper understanding of the process studied.
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