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Efficient free vibration analysis of large structures
with close or multiple natural frequencies.
Part I: Undamped structures
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An efficient numerical method which can calculate the eigenproblem for the large structural system with
multiple or close natural frequencies is presented. The method is formulated by the accelerated Newton—
Raphson method to the transformed problem. The method can calculate the natural frequencies and
mode shapes without any numerical instability which may be encountered in the well-known methods
such as the subspace iteration method or the determinant search method which has been widely used
for solving eigenvalue problem. The efficiency of the method is verified by comparing convergence and
solution time for numerical examples with those of the subspace iteration method and the determinant
search method.
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1. INTRODUCTION

The analysis of structures under dynamic loads is considerable importance in many fields of engi-
neering. If the dynamic analysis is performed by the mode superposition method, the eigenproblem
must be first solved.

If structures with multiple or close natural frequencies, such as multi-span bridges, containment
buildings of nuclear power plants, cable-stayed bridges, tires and the structures whose cross-sections
are symmetric are analyzed by the subspace iteration method [2, 3, 5, 8, 9] or the determinant search
method [2, 3, 4, 8] which has been mainly used for solving eigenproblems, the numerical instability
or the slow convergence may be often encountered. What is mentioned above shows the serious
shortcoming of the existing method.

Lee and Robinson [7] proposed an efficient solution method in the case of structures with mul-
tiple or close natural frequencies in order to improve numerical stability and increase convergence.
To further improve the method, the accelerated Newton-Raphson method is proposed here. As
examples for calculating multiple or close eigenvalues and the corresponding mode shapes, the
simply-supported plate and the cooling tower structure are analyzed to prove the efficiency of the
proposed method.

The objective of this paper is to present an efficient solution method in order to improve numerical
stability and increase convergence in the case of structures with multiple or close natural frequencies.
Numerical examples are presented to show the efficiency of the proposed method.
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2. METHOD OF ANALYSIS
2.1. Problem definition

Consider a generalized eigenvalue problem such as,
K¢j =X \M¢; (1 =1,2,3,...,n), (1)

¢; M¢; =1, (2)
where K and M are the stiffness matrix and mass matrix of order n, respectively. M is assumed to
be positive definite and K positive semidefinite. \; is the jth natural frequency squared and ¢; the
corresponding mode shape.

Let p eigenvalues, \; (i = 1,2,...,p), be equal or close and the corresponding eigenvectors
denoted by ¢; (i = 1,2,...,p). The objective is to solve for the p multiple or close eigenvalues and
associated eigenvectors.

The strategy for the eigenvalue problem of structures with multiple or close eigenpairs is to find
the vectors z; (i = 1,...,p) in the subspace of the eigenvectors ¢; (i = 1,...,p) and to rotate the
vectors in the subspace to find the eigenvectors as shown in Fig. 1.
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Fig. 1. Relation between ® and vectors X in the subspace of ®

Let X = [z1,...,2p) be the vectors in the subspace ®, and X be the orthonormal with respect
to M. Then

b=XZ7, (3)

XME =1L, (4)
where Z is the unknown rotation matrix of order p. Introducing Eq. (3) into Eq. (1), we get

KXZ=MXZA. (5)

Let

DZ=2ZK, (6)
where D = [dy,da,...,dy] = XTK X and symmetric. Then,

KX7Z=MXDZ (7)
and

KX =MXD (8)
or

Kz; = MXd; (f=1,..0:9) (9)

We obtain the p multiple or close eigenvalues and associated eigenvectors from Egs. (3), (6) and (9).
Note when A\; = ... = )\,, from Eq. (8)

D=A, X=0.



Free vibration analysis of large structures, Part I ' 405

2.2. Newton—Raphson method [7]

(0)

i

, are available. Denote
(k) (k)

Let us assume that initial approximate solutions of Eq. (9), dg()) and z

an approximate eigenvalue and the corresponding eigenvector after k iterations by d;”’ and z,
(k=0,1,2,...). Then, we have
o0 88 o) e _ g (10)
xXETMx® =1,, (11)

(k)

where the residual vector, r;"’, is not generally zero because of substitution of approximate values
into Eq. (9). In order to make the residual vector a null vectors, the Newton-Raphson method is
applied.

D) = gafH) _ xR = o, (12)

(XE+NT P x4+ = (13)
where

dF) = ¢ 4 A (14)

m§k+1) = mgk) + Axl(-k) 2 (15)
where X*+1) = [acgk-'"l),mgkﬂ),...,xj(,kﬂ)], Adz(-k) and Ascz(-k) are unknown incremental values of

d® and &)
K3 (] :
Substituting Egs. (10), (11), (14) and (15) into Egs. (12), (13) and neglecting the nonlinear
terms, we obtain the linear simultaneous equations for Adgk) and Azgk):

—Kz®) + Mx®E) = kAP - MAXB P — px® AP (16)
(XNTpx® 4 2(xEYTMAX® =1, . (17)
If the A\; (i = 1,2,...,p) are multiple or close eigenvalues, the off-diagonal elements of D are

zero or very small compared with its diagonal ones, thus the 2nd term in right hand side of Eq. (16)
may be approximated by d(-f )M A:El(.k), yielding

—Kz®) + Mx®dE) = kAP — dEMAZ® — Mx® AP (18)
(XINTmAz® = 0. (19)

Writing Egs. (18) and (19) in matrix form, we get

Aiﬂgk) Ir(k)
{ Ad® }{ o 2

The coefficient matrix for the incremental values is of order n+ p, symmetric and nonsingular [7].
If the shift is near an eigenvalue, numerical sensitivity problems in the inverse iteration method with
shift can be encountered. However, the Newton—-Raphson method resolves the above problems, which
is the main difference compared with the inverse iteration method with shift.

The above algorithm using the Newton-Raphson method, despite of its rapid convergence, is not
efficient, since a new coefficient matrix has to be formed and refactorized in each iteration step.

K—dPm —mx®
—(XNT M 0
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2.3. Modified Newton—Raphson method [7]

The complete elimination procedure in each iteration may be avoided by using the modified Newton—
Raphson method in Eq. (20) as follows :

Al‘gk) r(k)
{ Ad® }{ 0 J i

The coefficient matrix in Eq. (21) is both nonsingular and symmetric.
PICRY (k+1)
(2

1

K-—d9M —Mx®
0 A | 0

Convergence rates of and z in Eq. (21) using the modified Newton-Raphson method

can be written as

k
A e (22)
ok — o) (23)
where
(k1) _ | dis = iy s X — df
Y il e = max o
11 1,17 dy; — d”
ar(ld )\)* = A1 = Ay =--- = \,. As shown in Egs. (22) a;nd (23), the convergence rate of eigenvalue,
k+1

, is quadratic in h and that of eigenvector, 0§k+1 , linear in h.

Once the submatrix (K — dg])M ) is decomposed into the LDLT (L: lower triangular matrix, D:

diagonal matrix), a small number of operations are required for the solution of Eq. (9) in the suc-

(k)
: k+1

However, due to negligence of the small nonlinear term (dz(i g F dz(-?))M Amgk) , the convergence is

lower. Thus, the number of iterations for a solution increases. The above scheme has been presented

by Lee and Robinson [7].

Ti

ceeding iterations, since the vector Mz’ in the coefficient matrix is only changed in each iteration.

2.4. Accelerated Newton—Raphson method

To further improve the eigenvector, the accelerated scheme is proposed here, that is,

K—-dOv -Mx® ][ AP [ ® (24)
—(xtNTp 0 AdP i Bl
ai(o)a 1(0) afl)a?l)

< '

54®

<« ) o

o K-dOM -Mx®
(X" M 0

e} Ax® po
T b FYGI e !
i i i

d® Ad® 0

<
<

Fig. 2. The accelerated Newton-Raphson method
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a® is a step length to minimize the norm of the residual vector. It can be evaluated by using the
least square technique as follows:

0 k+1 k+1
R (AR Sl (27)
k N1 — N,
o 5 (28)
where

Ny = (s (K — dE M) (K — d5T ) P,

3

N2 _ (A.’L‘Ek))T (K . dgc-i-l)M) Z d(/H—l ,
J;él

D = (Az{")T (K — df*VM) (K - df VM) A

Note that d(kH) and Aa:l(-k) have been obtained by Egs. (25) and (24), respectively.

2.5. Operation count and summary of algorithm

In order to obtain an estimate of the cost to solve an eigenvalue problem, consider the number of
Central Processor operations required for solution. The actual cost includes, of course, the cost of
the Peripheral Processor time. However, this time is system and programming dependent and is
therefore not considered in this investigation.

Let one operation equal one multiplication which nearly always is followed by an addition. Assume
that the half bandwidths of K and M, i.e. mk and mys, are full. A summary of the steps in the
accelerated Newton-Raphson method together with the corresponding number of operations is given
in the Table 1.

The number of operations for evaluating a( 1 in the first iteration step is 2nmg +2nmpr+ (s +
6)n. This is large compared to (p +4)nmg + 2an + (1/2)n(p? + Tp + 4) which is required in each
iteration step in the modified Newton-Raphson method. However, the number of 7n operations is
more required all the way after the 2nd iteration, which is negligible, because we use computational
results in the previous step. Thus, solution time of the proposed method decreases.

2.6. Numerical stability [7]

The most remarkable characteristic of the accelerated Newton—-Raphson method is numerical stabil-
ity. The numerical stability can be proved by identifying the nonsingularity of the coefficient matrix
of Eq. (21).

Let the coefficient matrix of Eq. (21) be denoted by C'¥), that is

(0) k
W _ | K—diy’M —-MX -
% —(XMHTpr 0 ' (29)
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Table 1. Operation count for accelerated Newton—-Raphson method

Calculation Number of operations
K-dY n(mas + 1)
LDLT = K —dV' M Lnmg(my + 3)

Iteration k£ = 1,2,3,...

k=1

KM n(2mg + 1)
MaM(i=1,2,...,p) pn(2mar + 1)
k=23,...

ngk) = K(mz(-k_l) + agkﬂl)A;ﬂgk_l)) n

M:cgk) = M(:I:,Ek—l) + agk_l)Azz(-k_l)) n

rgk) — Kzgk) — ;’:1 dg-l;)MiL'gk) pn

LDLT = MX* m(mg + 3(p+ 1))
Solve Eq. (21) for Ad* and Aa:gk) n(2mg +p+1)
Solve Eq. (26) for agk) 2nmg + 2nmpy + (p+5)n + 1
$§k+1) e xgk) + agk)Amgk) n

d D = g® 4 A 0

Number of Operations for £ = 1

(p+ 6)nmi +2(p + )nmas + tn(p? + 7p + 18)

Number of Operations for k£ = 2,3,...

(p+ 4)nmy + 2nmp + in(p?® + 5p + 20)

The determinant of C*) is a continuous function of the approximate eigenvalue and eigenvectors.

Hence, If C*) is nonsingular when the approximate value in C*)

will be also nonsingular for close enough approximations. The resulting matrix C will be

C_[K—)\iM ~M®

= _oT M 0 ], § =12

To prove the nonsingularity of C', we introduce the following eigenproblem

CY = M~Y-D
where
M 0
M* =
KA

Y =y - Ynpl,
D = diag(p1,p2,- -, pntp) -

The eigenpairs of the eigenproblem Eq. (29) are as follows

e Eigenvector y: {fi },{ ¢i1 },{?k} i=1,...,p, k=p+1,...
1 Te )

1
e Eigenvalue pu: e, ——, (A — i)
e

1]

becomes the exact one, then it

(30)

(31)

(35)

(36)
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where
el =(0,...,0,6:;,0,...,0),
(N =) + /(i — A2 +4
5 )
Considering the determinant of Eq. (29)

i,j=1,2,...,p.

eii =

det[C] = det[M*] det[D] = (—1)” det[M] ﬁ prEmE AL, (37)
k=p+1

The determinant of C is not zero because of det[M] # 0 by definition. The nonsingularity of the
matrix C*) is shown. That is, the numerical stability of the proposed method is proved.

2.7. Missed eigenvalues

Some of the eigenvalues and corresponding eigenvectors of interest may be missed when the ini-
tial approximations are not suitable. In order to check whether this occurs, the Sturm-sequence
property [2] may be applied. A computed eigenvalue can be checked using the above property with

negligible extra computation, since the decomposition of the matrix (K — dg) )) has already been
carried out during the procedure for the solution of Eq. (21). If some of the eigenvalues of interest
are detected to be missing, the solutions can be found by the accelerated Newton-Raphson method.

3. NUMERICAL EXAMPLES

The simply-supported plate and the cooling tower are analyzed to verify the efficiency of the pro-
posed method. By using three methods separately, the subspace iteration method, the determinant
search method and the proposed method, each convergence and solution time(CPU time) used to
calculate 10 and 15 eigenpairs with error norm of 107 and 1079 (20 eigenpairs in the case of the
cooling tower) is compared, where the error norm [2] is computed by

HKx,(’“) 5 MX(k)d§||2

error norm =

(38)
<=,

Especially to get the best results we applied the accelerated scheme [5] to the subspace iteration

method. Intermediate results with relative error of 10~! in the subspace iteration method are used

as initial values of the proposed method. The relative error [2] in the subspace iteration method is

computed as follows

NGO
1

; NG :

1

relative error = (39)

al(-k) is applied to the eigenpair whose error norm is over 10~1. All runs are executed in the IRIS4D-
20-S17.

3.1. Simply-supported plate structure

The simply-supported plate structures shown in Fig. 3 consist of 36 nine-node elements, 169 nodes
and 701 degrees o freedom. The stiffness matrix and mass matrix have the mean half-bandwidths
of 89.
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(a) (b)

p - L% \ P P Ny \
M 3 . {2
¢ @)
g 3
3 3
S B
# 2 # 12
S \‘kxﬁf 2 k& < «k&
4 12.00m 12.06m 3

E=20x10"Pa p=7850kg/m’
v=03 Thickness = 0.01m

Fig. 3. Simply-supported plate structure [1]; (a) multiple natural frequency, (b) close natural frequency

3.1.1. Multiple natural frequencies

The simply-supported plate structure with multiple natural frequencies is shown in Fig. 3a. agk) is

applied to the 6th, the 8th and the 10th eigenpair with error norm exceeding 10~*.

Each solution time for three methods to have 10 and 15 eigenpairs with the error norm of 10~6
and 107% is summarized in Table 2, in which we check the solution time and the convergence rate
especially in the case of 10 eigenpairs with error norm 107%. If we let the solution time for the
proposed method be 1, it takes 1.6 times for the accelerated subspace iteration method, 6.5 times
for the determinant search method. For each solution method the convergence of the 8th eigenpair

to which al(k) is applied is represented in Fig. 4. As shown in the above figure, we can see that the
convergence of the proposed method is much superior to that of the accelerated subspace iteration

and of the determinant search method.

I1e-00
e : Subspace Iteration Method
1e-02 Determinant Search Method
4 Proposed Method
8 Te-04
g @
w, le-06 - @
= @
o 1e-08
1e-10 4 Error Limit
1e-12 T T T T T T T T T T
0 2 4 6 8 10
Iteration Number

Fig. 4. Convergence of the 8th eigenpair
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Table 2. Solution time (CPU time, sec) of plate with multiple natural frequencies

Analysis p=10 p=15
Method EN=10"% | EN=10"° | EN=10"% | EN=10""°
Proposed Method 138.1 172.4 213.5 245.9
(1.0) (1.0) (1.0) (1.0)
Acclerated Subspace 221.0 274.6 487.4 607.2
Iteration Method (1.6) (1.6) (2.3) (2.5)
Determinant, Search 1072.4 1118.6 1570.2 1618.8
Method (7.8) (6.5) (7.4) (6.6)

EN = ErrorNorm

3.1.2. Close natural frequencies

The simply-supported plate structure with close natural frequencies is shown in Fig. 3b. al(»k) is
applied to the 7th, the 8th and the 10th eigenpair with error norm exceeding 1071.

Each solution time for three methods to have 10 and 15 eigenpairs with the error norm of 1076
and 107 is summarized in Table 3, in which we check the solution time and the convergence rate
especially in the case of 10 eigenpairs with error norm 10~°. If we let the solution time for the

proposed method be 1, it takes 1.7 times for the accelerated subspace iteration method, 4.7 times

Table 3. Solution time (CPU time, sec) of plate with close natural frequencies

Analysis p=10 p=15
Method EN=10"°% | EN=10"? | EN=10"% | EN=10"*
Proposed Method 156.5 177.4 237.9 290.8
(1.0) (1.0) (1.0) (1.0)
Acclerated Subspace 167.9 291.9 350.9 742.6
Iteration Method (1.1) (1.7) (1.5) (2.6)
Determinant Search 813.2 832.1 1146.7 1194.1
Method (5.2) (4.7) (4.8) (4.1)

EN = ErrorNorm

: Subspace Iteration Method
: Determinant Search Method

Q): Proposed Method
Ie-00
le-02
Te-04
S
S
Z le-06
s
&
W Ie-08
le-10
le-12 T T T T T T T T T T T T T
0 2 6 8 10 12 14 16
Iteration Number

Fig. 5. Convergence of the 7th eigenpair
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Determinant Search Method

: Subspace Iteration Method
Proposed Method

Iteration Number

Fig. 6. Convergence of the 8th eigenpair

for the determinant search method. For each solution method the convergence of eigenpairs to which
al(.k) is applied is represented from Fig. 5 to Fig. 6. As shown in the above figures, we can see that
the convergence of the proposed method is superior to that of the accelerated subspace iteration

and of the determinant search method.

3.2. Cooling tower structure

The cooling tower structure shown in Fig. 7 consists of 408 four-node shell elements, 432 nodes and
2,448 degrees-of-freedom. The stiffness and the mass matrix have the mean half-bandwidths of 201.
al(k) is applied to the 8th and the 10th eigenpair with error norm exceeding 107!.

Each solution time for two solution methods to get 10 and 20 eigenpairs with the error norm of
1076 and 10~? is summarized in Table 4, in which we check the solution time and the convergence
rate especially in the case of 10 eigenpairs with error norm 10~%. Determinant search method is
not applied because it did not give us the good results. If we let the solution time for the proposed

method be 1, it takes 2.0 times for the accelerated subspace iteration method. For each solution
*) is applied is represented from Fig. 8 to Fig. 9.

method the convergence of eigenpairs to which a;

T T

I
1
T
|
T
|
|

Elevation Plan

E=432x10*1b/ fi* p =4.66slug/ f’
Poisson ratio =0.15 Shell thickness =0.83 ft

Fig. 7. Cooling tower structure [6]
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Table 4. Solution time (CPU time, sec) of cooling tower

Analysis p=10 p=15
Method EN=10"% | EN=10"? | EN=10"% | EN=10"9
Proposed Method 2785.8 3067.7 5104.2 5576.5
(1.0) (1.0) (1.0) (1.0)
Acclerated Subspace 4854.9 6182.5 6383.6 15829.3
Iteration Method (1.6) (2.0) (1.3) (2.8)
Determinant Search No Sol. No Sol. No Sol. No Sol.
Method
EN = ErrorNorm
1e-00
- @: Subspace Iteration Method
saddil @: Proposed Method
g Le-04 -
-~ ~
% le-06 @
5 @
R ze-08
1e-10 4| Error Limit
le-12 , BPLUS (SRR T R MU S SRR SO RO SRS (LT e e e e oy B o ) P [ T ) 7S e e o T |
0 3 6 9 12 Is 18 2 24 27 30 33 36
Iteration Number
Fig. 8. Convergence of the 8th eigenpair
Ie-00
. : Subspace Iteration Method
le-02 Proposed Method
Ie-04
E 1e-06
§ -
1e-08 -
SE T gL o ST TR RATRRT e
el +~—T+rr1r—T—TTTT"TT T T T T T T T T T T T T T T T T

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Iteration Number

Fig. 9. Convergence of the 9th eigenpair
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4. CONCLUSIONS

This paper proposes an efficient numerical method for the multiple or close eigenvalue problems
using the accelerated Newton-Raphson method. As shown in the examples, the proposed method
has the characteristics as follows.

1. The proposed method is a general technique which can compute the eigenpairs of a structure
efficiently without any numerical instability in case of multiple or close eigenvalues as well as
distinct eigenvalues.

2. The proposed method will not be affected by the eigenpairs previously calculated, because each
eigenpair is essentially obtained independently.

3. The proposed method is simple and numerically stable, and converges very fast.

4. Missed eigenpairs can be detected with negligible operations in passing and can be found by the
proposed method.
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