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An efficient solution method is presented to solve the eigenvalue problem arising in the dynamic analysis
of nonproportionally damped structural systems with close or multiple eigenvalues. The proposed method
is obtained by applying the modified Newton-Raphson technique and the orthonormal condition of the
eigenvectors to the linear eigenproblem format through matrix augmentation of the quadratic eigenvalue
problem. In the iteration methods such as the inverse iteration method and the subspace iteration method,
singularity may be occurred during the factorizing process when the shift value is close to an eigenvalue of
the system. However, even if the shift value is an eigenvalue of the system, the proposed method guarantees
nonsingularity, which is analytically proved. The initial values of the proposed method can be taken as
the intermediate results of iteration methods or results of approximate methods. Two numerical examples
are also presented to demonstrate the effectiveness of the proposed method and the results are compared
with those of the well-known subspace iteration method and the Lanczos method.
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1. INTRODUCTION

In the analysis of dynamic response of structural systems, the equation of motion of damped systems
can be written as

Mii(t) + Cu(t) + Ku(t) = f(t) (1)

where M, K and C are the (n by n) mass, stiffness and nonproportional damping matrices, re-
spectively, and (t), @(t) and u(t) are the (n by 1) acceleration, velocity and displacement vectors,
respectively. To find the solution of free vibration of the system, we consider the following quadratic
eigenproblem

MNMp+ACohp+Kp=0 (2)

in which A and ¢ are the eigenvalue and eigenvector of the system. There are 2n eigenvalues for the
system with n degrees of freedom and these occur either in real pairs or in complex conjugate pairs,
depending upon whether they correspond to overdamped or underdamped modes.

The common practice is to reformulate the quadratic system of equation to a linear one by
doubling the order of the system such as

Atp = ABy 3)

where
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The classical inverse iteration method [3] is commonly used to solve for only a small number of
desired modes. The subspace iteration method [5] is a more efficient alternative than the inverse
iteration method. However, in the iteration methods such as the inverse iteration method and the
subspace iteration method, a large number of complex arithmetic operations are required. Fur-
thermore, when the shift value becomes close to an eigenvalue of the system, singularity may be
encountered during triangularization process.

The Lanczos algorithm for the computation of eigenvalues and eigenvectors of a real symmetric
matrix was proposed by Lanczos in 1950 and improved by numerous researchers [6]. The Lanczos
algorithm to solve the eigenvalue problem of nonproportionally damped system is developed in
References [7] (two sided-Lanczos algorithm) and [2] (symmetric Lanczos algorithm). Although
only real arithmetic is solved during the solution process, in contrast to the case of real symmetric
eigenproblems, there will be a possibility of serious breakdown and the accuracy of the solutions
obtained is low [8].

In this paper, the method to solve an eigenproblem with guaranteed nonsingularity for a non-
proportionally damped structural system with multiple eigenvalues is developed.

2. METHOD OF ANALYSIS
2.1. Problem definition

We consider an eigenproblem of which the m eigenvalues, A;, are close or multiple. For simplicity
let us assume that the first m eigenvalues are close or multiple.

A=A ZE X =X (5)
Then Eq. (3) can be presented in a matrix form for the m eigenvalues as follows
AU = BUA (6)

where A = diag(A1,...,Ap) and ¥ = [¢h ... 9] is a (n by m) matrix satisfying the orthonormal
condition with respect to matrix B such as

By = I, (7)

where I, is an unitary matrix of order m.
Let X = [z1,...,Zm] be the vectors in the subspace ¥, and X be the orthonormal with respect
to matrix B. Then

=X (8)
XTBX =I,, (9)

where Z is the unknown rotation matrix of order m. Introducing Eq. (8) into Eq. (6), we get

AXZ =BXZA. (10)
Let
DZ =ZA, (11)

where D = [dy,da,...,dn] = XTAX and symmetric. Then,
AXZ = BXDZ (12)
and

AX = BXD (13)



Free vibration analysis of large structures, Part II 417

or
Az; = BXd;, (8 =% .00 (14)

We obtain the m close or multiple eigenvalues and associated eigenvectors from Egs. (8), (11)
and (14).
Note when A\; & ... = )\, , from Eq. (13)

D=A (15)
X=1. (16)

The objective is to develop an efficient solution method with guaranteed non-singularity for an
eigenproblem described by Eq. (14).

2.2. Proposed method
(0)

Let us assume that initial approximate solutions of Eq. (14), dgo) and z; ’ , are known. Denoting

(k) (k)

the approximate eigenvalues and the associated eigenvectors after k iterations by d;"’ and z;”’, we
can get

) = Az®) — Bx®)g¥) (17)
and

(xNTpx® = I, (18)

(k)

where the residual vector, r;"’ , denotes the error for each eigenpair, and is not generally zero
because of substitution of approximate values into Eq. (14).

In order to get the solutions converged to the close or multiple eigenvalues and the associated
eigenvectors of the system, the residual vectors should be removed. For the purpose of that, the
Newton-Raphson technique is applied such as

and
(XG+)Tpx D) = 1, o
where
D = g® | Ag®), (21)
ng—H) iz $§k) + Axgk), (22)
K (kt1) [$§k+1)’$gk+1)’_”’m(mk+1)]. (23)

Adgk) and A:L‘l(-k) are unknown incremental values of dz(-k) and mgk).

Substituting Eqgs. (17), (18), (21) and (22) into Egs. (19) and (20) and neglecting the nonlinear
(k)

terms, we can get the linear simultaneous equations for unknown incremental values, Ad;”’ and
Azgk), as follows;
AN — BAX®E) — BXRIAGR) = 7 k) (24)

and

(XENTBAX®) = 0, (25)
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Since the eigenvalue is close or multiple, the off-diagonal elements of D are zero or very small
compared with its diagonal at kth iteration step, and the diagonal elements very close. Thus, the

second term in left side of Eq. (23) may be approximated by dgc )BAacz(-k) , which yields
ANz — dPBAZ®) — BXPI AL = ), (26)

Writing Egs. (24) and (25) in matrix form, we can get

Axgk) 'r(k)
Lo =170 o

Because the new coefficient matrix should be reformed and refactorized in each iteration step, the
above method adopting the Newton-Raphson technique and a side condition, despite of its rapid
convergence, is not efficient.

These blemishes may be overcome by applying the modified Newton-Raphson technique to

Eq. (26) such as
Az 2
(o b= ) @

The symmetric coefficient matrix of Eq. (27) is of order (2n + m). While singularity occurs in
factorization process of the iteration methods such as the inverse iteration method and the subspace
iteration method when the shift is close to an eigenvalue of the system, nonsingularity of the proposed
method is always guaranteed [4] This is the main difference compared with the iteration method
with shift.

Initial values of the proposed method can be obtained as the intermediate results of the iteration
methods or results of approximate methods. In this paper, the starting values are taken as the
results of the symmetric Lanczos method [2] with selectively reorthogonalization process because
the method does not need complex arithmetic in the Lanczos recursive process, and because the
multiplicity of the desired eigenvalues can be checked by the results of the 4p Lanczos vectors (p:
the number of desired eigenvalues).

(A-dPB) —-Bx®
(“BX8NT 0

(A-d9B) —Bx®
(-BX(NT 0

3. NUMERICAL EXAMPLES

In this section two test problems with close or multiple eigenvalues are used to assess the performance
of the proposed method for generalized eigenproblems. The CPU time spent for the first twelve
eigenvalues and the associated eigenvectors (p = 12) and the variation of the error norm to each
iteration step of the proposed method are compared with those of the subspace iteration method [5].
The least subspace dimension to effectively calculate required eigenpairs is 2p (24 eigenpairs). Each
method is stopped when the error norms are reduced by the factor of 1076, which yields a stable
eigensolution and sufficient accuracy in the calculated eigenvalues and eigenvectors for practical
analysis [1]. The physical error norm [1] is defined as

o _ 4" ~mx®0ab]

€

2, (29)

|47,

3.1. Plane frame structure with lumped dampers (multiple case)

The finite element model of a plane frame is used as the first example. The dimensionless values of
the geometric configuration and material properties are shown in Fig. 1. The model is discretized
in 200 beam elements resulting in the system of dynamic equations with a total of 590 degrees
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Fig. 1. Plane frame structure with lumped dampers

of freedom. Thus, the order of the associated eigenproblem is 1,180. The consistent mass matrix
is used for M. Its damping matrix is derived from the proportional damping expression given by
C = aM + K and concentrated dampers.

The eigenvalues of the model are shown in Table 1. All the eigenvalues of the model are multiple.
The variations of the error norms to the iteration step are shown in Figs. 2 to 4. The error norms of
the initial values obtained by using the 4p (= 48) Lanczos vectors are about 0.7 to 10~7. Using the
results of Lanczos method, the multiplicity of the desired eigenvalues can be checked. The number
of iterations for the proposed method applied to the initial values that do not satisfy the error norm
1079 is only one. The results in Figs. 2 to 3 indicate that the convergence of the proposed method is
much better than that of the subspace iteration method. The CPU time for the proposed method is
compared with that of the subspace iteration method in Table 2. If we let the solution time for the
proposed method be 1, it takes 3.55 times for the subspace iteration method. In Table 3, the CPU
time for the Lanczos method is summarized. Because the method does not need complex operations,
the less solution time is required. However, the some results of the Lanczos method as shown in
Fig. 4 are not improved in spite of the increase of the number of the Lanczos vectors.

Table 1. Eigenvalues of the plane frame structure with lumped dampers

Mode Number Eigenvalues

—0.09590 + j8.66792
—0.09590 + j8.66792
—0.09590 — ;8.66792
—0.09590 — j8.66792
—0.60556 4 j15.5371
—0.60556 + 715.5371
—0.60556 — j15.5371
—0.60556 — j15.5371
—0.57725 + j20.7299
—0.57725 + j20.7299
—0.57725 — j20.7299
—0.57725 — j20.7299
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Fig. 2. Variation of the error norm of the plane frame structure by the proposed method
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Fig. 3. Variation of the error norm of the plane frame structure by the subspace iteration method
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Fig. 4. Variation of the error norm of the plane frame structure by the Lanczos method

Table 2. CPU time spent for the first twelve eigenvalues of the plane frame structure with lumped dampers

Method

CPU time in seconds(Ratio)

Subspace iteration method

Prop

osed method

872.69(1.00)
3,096.62(3.55)
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Table 3. CPU time for the Lanczos method vs. the number of generated Lanczos vectors of the plane frame
structure

Mode Number Eigenvalues

24 116.20
36 185.54
48 260.37
60 332.90
72 408.63
84 492.83
96 664.27

3.2. Three-dimensional building structure with concentrated dampers (close case)

In this example a three-dimensional building structure with concentrated dampers is presented.
The geometric configuration and material properties are shown in Fig. 5. The model is divided into
436 beam elements and has 1128 degrees of freedom. The order of the associated eigenproblem is
2256. The consistent mass matrix is used to define M. The damping matrix consists of the Rayleigh
damping and concentrated dampers.

The results of the proposed method are summarized in Table 4. The first and third eigenvalue
are clustered, and also the ninth and eleventh eigenvalues and their conjugate eigenvalues clustered.
The variations of the error norms to the iteration step are shown in Figs. 6 to 8. The first step of the
proposed method denotes the results of the Lanczos algorithm. The error norms of the initial values
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Fig. 5. (a) Three-dimensional building structure, (b) Damping from two-layer foundation
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Table 4. Eigenvalues of the three-dimensional building structure with concentrated dampers

Mode Number Eigenvalues
1 —0.13763 + 53.08907
2 —0.13763 + 73.08907
3 —0.13763 — 53.08907
4 —0.13763 — 73.08907
5 —3.52574 + j2.20649
6 —3.52574 — j2.20649
rd —0.24236 + j4.16556
8 —0.24236 — j4.16556
9 —1.64294 4 57.02958
10 —1.64294 — j7.02958
11 —1.65070 + 57.03590
12 —1.65070 — 57.03590
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Fig. 6. Variation of the error norm of the three-dimensional building by the proposed method
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Fig. 8. Variation of the error norm of the three-dimensional building by the Lanczos method

Table 5. CPU time spent for the first twelve eigenvalues of the three-dimensional building structure with
concentrated dampers

Method CPU time in seconds(Ratio)
Proposed method 8,335.19(1.00)
Subspace iteration method 9,644.75(1.16)

Table 6. CPU time for the Lanczos method vs. the number of generated Lanczos vectors of
three-dimensional building structure

Mode Number Eigenvalues

24 574.54
36 896.23
48 1209.19
60 1529.75
72 1969.55
84 2194.85
96 2551.14

obtained by using the 48 Lanczos vectors are about 0.9 to 107%. The number of iterations for the
proposed method applied to initial values that do not satisfy the error norm 1076 is three or eleven.
The results in Figs. 6 to 8 indicate that the convergence of the proposed method is much better than
that of the subspace iteration method. The CPU time for the proposed method is compared with
the subspace iteration method in Table 5. If we let the solution time for the proposed method be
1, it takes 1.16 times for the subspace iteration method. In Table 6, the CPU time for the Lanczos
method summarized is summarized. Because the method does not need the complex operations, the
less solution time is required. However, the some results of the Lanczos method as shown in Fig. 8
are not improved in spite of the increase of the number of the Lanczos vectors.

4. CONCLUSIONS

An efficient method for solving damped structural dynamic eigenproblems with close or multiple
eigenvalues is presented. Characteristics of the proposed method identified by the numerical results
from a test problem are identified as follows:
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1. Since the convergence rate of the proposed method is high, the proposed method is very effective
for solving damped dynamic systems with a large number of degrees of freedom.

2. Nonsingularity of the proposed method is always guaranteed, which is proved analytically.

3. The algorithm of the proposed method is very simple.
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