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The thermal processes proceeding within a perfused tissue in the presence of a vessel are considered. The
Pennes bio-heat transfer equation determines the steady state temperature field in tissue sub-domain,
while the ordinary differential equation resulting from the energy balance describes the change of blood
temperature along the vessel. The coupling of above equations results from the boundary condition given
on the blood vessel wall. The problem is solved using the combined numerical algorithm, in particular the
boundary element method (for the tissue sub-domain) and the finite differences method (for blood vessel
sub-domain).

1. INTRODUCTION

The heat transfer processes proceeding in a domain of biological tissue are described by the Pennes
equation. If one considers the steady state problem then this equation takes a form

div [MT') grad T'(X)] + Qmet + ¢ Go [Tp(X) — T(X)] =0 (1)

where A is the tissue thermal conductivity, c; is the specific heat of blood (per unit of volume), G}
[m3 blood /s/m? tissue| is the tissue perfusion, Qmet is the metabolic heat source, T, X denote the
temperature and spatial co-ordinates. The last term in Eq. (1) is called the perfusion heat source
( Qperf )

The Pennes bio-heat transfer equation has the essential limitation that it cannot to simulate the
effects of large, widely spaced thermally significant blood vessel [6]. So, in literature [5, 6, 7] one can
find the models being the composition of the bio-heat transfer equation and the another equation
describing the behavior of blood vessel. In this paper the energy equation concerning the blood
vessel results from the energy balance for the fragment distinguished in sub-domain considered (see
Section 2). The similar equations are presented among others in [5, 6, 9]. The problem is treated as
the 2D axially symmetrical one. The coupling of the Pennes and the blood vessel energy equations
results from the continuity of heat flux on the vessel wall. In order to solve the problem the numerical
methods are used, in particular the boundary element method for the tissue sub-domain and the
finite differences method for the blood sub-domain. In the final part of the paper the results of
numerical simulations are presented.
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2. GOVERNING EQUATIONS

A single large blood vessel embedded in a perfused tissue is considered. The non-homogeneous
vessel-tissue domain is oriented in cylindrical co-ordinate system as in Fig. 1, and the steady state
problem is considered.

blood vessel tissue

Fig. 1. Non-homogeneous domain blood vessel-tissue

Additionally, it is assumed that the temperature of blood corresponding to co-ordinate z is
uniform, this means Ty(r, z) = Tp(2). The energy balance for the volume FAz can be written in the
form

H(z) = H(z+ Az) + Qo (2)

where H(z) is the blood enthalpy at point z, H(z + Az) is the blood enthalpy at point z + Az,
Qo is the heat flowing between blood and tissue. So

Hie)=wF g1 3)
il

Hip ey i ol T % [w F ¢, Ty(2)] Az @)
e

Qv P s P (B (s, 5 (5)

In above formulas w is the blood velocity, F' is the vessel lateral section, P is the vessel periphery,
« is the heat transfer coefficient between blood and tissue, T'(r1, z) is the vessel wall temperature.

The energy balance (2) for constant values of w, ¢, , F and P leads to the following differential
equation

wF—d,l(;b% +aP [Ty(z) —T(r1,2)] =0 (6)

at the same time for z = 0: T,(0) = Tpo .
The Pennes bio-heat transfer equation describing the steady temperature field in the tissue sub-
domain is of the form

10 [MaT(r,z)] 0 [A oT(r, 2)

0z

In this paper, the terms Qme; and Qperf according to [6] are assumed as the constant values.
Considering the more complex model, the change of T(z) in the formula determining Qperf should
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be taken into account. The algorithm presented in this paper allows to find the solution in which
the change of Qperr is considered, for instance the simple iterative procedure can be introduced.
Equation (7) is supplemented by the following boundary conditions — c.f. Fig. 2

r=ri:  q(r2) =a[T(r2) - Ty(2)]
r=r: Tirzlea18

£=10: gl{r,z) =0

=7 : q(r,z) =0

(8)

where 7 is the vessel radius, r; is the arbitrary assumed external radius of biological tissue, q(r, z)
is the normal heat flux (¢ = —A9T'/dn), T* is the boundary tissue temperature.

rd T=T"

; o qQ=a(T-T,) zZ z

Fig. 2. Domain considered

3. THE BOUNDARY ELEMENT METHOD FOR CYLINDRICAL SHELL

Let us assume, that Q(r,2) = Qmet + Qperr and the tissue thermal conductivity is a constant value.
So the following Pennes equation is considered

A§;P§%$Q]+Aa Paﬁsd}+rng):u 9)

0z

Application of the weighted residual formulation (3, 4, 8] leads to the following formula,
o [ dT(r,z2) @ | @T(r:2) > £
//{/\E[TT]+A$[T_EZ_ +rQ(r,2) p T*(&,n,7,2)dQ =0 (10)
9

where ) is the domain of tissue, T*({,n,r, 2) is the fundamental solution, while (¢,1) € Q is the
observation point. The fundamental solution for the problem considered is of the form [2, 3, 4]
1 4
K(m), m= ré (11)
My/(r + )2 + (2 = n)?

r+ g+
where K (-) is the elliptic integral of the first type [1].
The function T*(¢,n,, z) fulfills the following equation

2 BB 5 B T i)

or or X 5 0z ] S5 _6(6’ T, Z) (12)

T* (57 n’ 7" z) =

where 6(§,7,r,2) is the Dirac function and it has the following property

_ 10, (&n)#(n2)
Lk B st (13
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The weighted residual criterion (10) can be written in the form
o [ 9T(r,z) a.!. 0T (r.2) ”
//{AE[TT]—FAg[T—————az T*(E,m, v, 2YdQ
Q
+ [[raea T nnaan=o (14)
Q

Using the second Green formula [8] to the first component of above equation one obtains

0 | UL Badtid btk i TN B T2
Q

oT *
+ [ Prrennn 0D xrrn e or
r
+ rQir,2) T, n,r.2)d =0 (15)
If

Finally, on the basis of property (12) we have

T(,m) + / rT*(€,n,7,2) g(r, 2) dT" = / rg" (€, 7, 2) Tr, 2) T + / / rQ(r,2) T*(€,m,7, 2) dQ.
T Q

r
(16)
One can notice, that in the above equation g(r,z) = —\dT(r,z)/0n, while ¢*(&,n,7,2) =
—A9T*(&,n,r,z)/0On. The heat flux ¢*(&,n,r, 2) is equal to
5 1 1 §0 1 sl = )
& mnrz) = {— [K(m)—- Em]cosar
) TR T o e Gmr
2= 10
* E(m) cos az} (17)
et laf

where FE(-) is the elliptic integral of the second type [1], cos a;, cos a, are the directional cosines of
normal versor n at the boundary point (r, 2).

It should be pointed out that in numerical realization the values of functions K(-) and E(-)
are calculated on the basis of approximate formulas presented among others in [1]. For ({,n) € T
Eq. (16) takes a form

B(E,m)T(€n) + / F PET R R / rg*(€m 7, 2) T2y dP

r

r

+//rQ(r,z)T*(§,n,r,z)dQ. (18)
Q

The coefficient B(£,n) is a number from the scope (0, 1) [3, 4].

4. NUMERICAL MODEL

At first, the problem of temperature field computations in tissue sub-domain will be discussed.
So, we divide the boundary I' into N linear boundary elements, while the interior € into L linear
internal cells — Fig. 3.
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rh linear boundary elements
4

PSRRI SIS . .
collocation points in blood sub-domain

Fig. 3. Discretization

The discrete form of the boundary integral equation (18) is the following

N N
B(fu’rh) T(fzﬂh) + Z /TT*(fi,ni,T, 2:) Q(T', Z) dF] 55 z /7" q*(fiani,T,Z) T(’I",Z) dF]

=1 j=1
J Ly J T;

L
+Z //rQ(T?z)T*(§i7niaT,Z) dQl ¢

=1 O
For the case of linear boundary elements we assume that
ol P { Tir 2} = N}(u)]}!+NJ-II(u)1"]-II
ryZ) €142
33 i vk LI II
q(r,z) = Nj (“)q]' +Nj (u) q;
where

NJI(u) =(1-u)/2, NjH(u) =(1+u)/2, u € [-1,1]

(19)

are the shape functions, TjI = Flrri2), Tj” = T(rrr,211), €tc., are the temperatures and heat

fluxes corresponding to the limits of the element considered. So

/Tq*(gianian Z) T(r,z) dF] = hZI]T]I i hlI]I TJII

Lj
and
/TT*(&,m,r, z) q(r,z)dT; = gl q + gl ¢’
¥
where
s
= EJ /N]'I(N]'I"'[+N]‘IITII)q*(£i,77i’N]‘ITI+N]'II7'II,NJ'IZI+NJ'IIZII)dU,

l.
hij = 51 /N‘”(N]‘ITI + Nrir) ¢* (&, mi, Njrr + N{Trr, N zp + N[ zp1) du,

lA
g9 = _23_ /N]'I(N]'ITI + N/rpr) T*(&,mi, Njrr + N ror, Nj zr + N zpp) du,
=3
; 1
ginI = EJ /N]-H(N]-I'I‘[ + NjHTu) T*(fi,ni,NjIr[ + Nj”ru,NjIzI + N]-Hzn)du.
~1

In formulas (23)-(26) [; is the length of element T'; .

(21)
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Equation (19) for boundary node (&;,7;) can be written in the form
M M L

BT, + Y gikak = Y hatTk + Y _pu (27)
k=1 k=1 1

where M is the number of boundary nodes ( M = N + 4 — at the corners of domain considered
the double nodes must be introduced, c.f. Fig. 3). So, for the single boundary node k we have

9ik =01 + 91,  hix=hi] +hl, (28)
while for the double boundary node &,k + 1

Gik = 9{]-], Gik+1 = 9z‘1,j+1 )

7 I 7 I (29)
hik = hz’j ) hi,k+1 = hi,j+1 )

The values p;; in Eq. (27) are equal to

pit = //TQ(T, z) T* (&, i,y 2) A (30)

7]

Assuming the linear approximation of source function Q(r, z):

(r,z) € Q- Q(r,z) = N Q(rr,z1) + N/'Q(rir, z11) + NI Q(r111, z111), (31)

where NlI ; NlI . NlI T are the 2D linear shape functions [8], one can find the values of p;; using the
typical methods of numerical integration [4]. The problem is not complex because the integrand in
Eq. (30) is known.

One can write Eq. (27) for each ‘’ node, obtaining M equations

M M L
> gikak =Y hixTk + > pu (32)
k=1 k=1 =1

where [3]

h%a i¢kh
hip=% Bo-Ph. iag (33)
ki

For the needs of further considerations the equations concerning the nodes on the boundary I';
(Fig. 4) are considered seperately. So

S M M b
Zgik qr + Z ik Gk = Zhik T + Zpil (34)
k=1 k=1 1=1

k=S+1

where S is the number of nodes corresponding to I'; .

rh

Fig. 4. The coupling of sub-domains
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Let us assume that M +1,M +2,..., M + S are the collocation points in domain of blood. The
FDM algorithm leads to the following formula determining the values of temperatures at collocation
points from the blood domain (Eq. (6))

Ty41 = Two

(35)
Trrsr = Tariiii+ A (D1 — Taerbt)
where k = 2,3,...,S and A = 2aAz/cywr; . So, one obtains the following system of equations
S M M L
Y oona(Ti— Tl ¥ D, ona=2 haTu . ma, ¥=1,..1,M,
Trm+1 =T,

ATy 1+ (11— A) Trpyk—1 — Tk =0, k=208 59n

Taking into account the boundary conditions given on the boundaries I'y , I's and I'g (Fig. 2) we
have the well-ordered form of the system (36)

R S1 S1+S
Y loaga=ha)Tk— 2 AuTi+ 3 gan
k=1 k=541 k=S1+1
M M4+S 5148 L '
) - 2 haTe— 3 ogip-mTe= 3 haT®+Ypa, i=1....M, (g
k=S14.5+1 k=M-+1 E=S2+1 =1

Ty = Tyo,
| AT,y +(1-A)Ti1-T;=0, i=M+2,M+3,..., M+8§,

where index S, is shown in Fig. 4.

After solution of the above system of equations, all boundary temperatures and heat fluxes
for tissue sub-domain are known and next one can find the internal temperatures at the points
(&i,mi) € Q using the equation

M M L
T;= hieTe— Y Gikqk+ Y _Pir- (38)
k=1 k=1 =1

5. THE RESULTS OF COMPUTATIONS

The blood vessel of radius r; = 0.0005 [m] is considered. The external radius of domain is assumed
as ro = 10r; while Z = 0.021 [m] (Fig. 2). The following input data are take into account [5, 6]:
A= 0.5[W/mK], Qmet = 245 [W/m®], Qpert = 104 [W/m?], ¢, = 4.134-10° [J/m® K], w = 0.08 [m/s],
P/F = 2/r; = 4000 [1/m], the Nusselt number Nu = a2r; /X = 4 (a = 2000 [W/m?K]). It should

tissue region
— 33 33 D 33 33
— 34 34 34 34 34
135 35 35 35 g to)
— 36 36 36 36 36

vessel region

Fig. 5. Temperature field in the domain considered
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Fig. 6. Blood temperature along the vessel; 1: w = 0.1 [m/s], Nu =4, 2: w =0.08 [m/s], Nu = 4,
3: w=0.06 [m/s], Nu = 4
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Fig. 7. Temperature profiles in the radial direction; 1: z = 0.005 [m], 2: 2 =0.1 [m], 3: z = 0.21 [m]
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be pointed out that the algorithm presented allows to consider the problem for which Qperr =
Qperf('r, Z) )

The boundary of tissue has been divided into N = 60 linear boundary elements (M = 64), while
the interior has been divided into L = 370 linear triangular internal cells. The number of collocation
points along the blood vessel: S = 22.

In Fig. 5 the temperature field in domain analyzed is shown. The successive isotherms are nearly
parallel but the effect of thermal interactions between blood vessel and tissue is visible.

Figure 6 presents the change of blood temperature along the vessel for different rates of blood,
while in Fig. 7 the temperature profiles in the tissue sub-domain for z = 0.005, 0.1 and 0.21 [m] are
marked. A certain way of the verification of results can be the comparison of profiles obtained with
the 1D analytical solution for cylindrical shell (the Dirichlet conditions for r = r; and r = 7y are
assumed). The solution corresponding to z = 0.1 [m] is also shown in Fig. 7.

It should be pointed out, that taking into account the simple geometry of non-homogeneous
domain considered, the others methods of numerical computations of temperature field in domain
of tissue can be also applied. The main advantage of the BEM application results from the fact,
that the final system of equations concerns only the boundary nodes and the number of unknown
parameters is essentially smaller than in the case of the finite differences method or the finite element
method. Additionally, the BEM assures the good approximation of boundary conditions.

ACKNOWLEDGEMENT

This paper is a part of project No 8 T11F 016 13 sponsored by KBN.

REFERENCES

[1] M. Abramowitz, I.A. Stegun. Handbook of mathematical functions. Dover Publications, Inc., New York, 1985.

[2] R. Biatecki, A. Nowak, R. Nahlik. Application of axially symmetrical fundamental solution and Green’s function
in the BEM (in Polish). In: Proceedings of the Conference Modelling in Mechanics. PTMTiS, Gliwice, 29-36,
1982.

[3] C.A. Brebbia, J. Dominiguez. Boundary Elements — An Introductory Course. Comp. Mech. Publications and
Mec Graw—Hill Book Co., Southampton and Boston, 1992.

[4] C.A. Brebbia, J.C.F. Telles, L.C. Wrobel. Boundary Element Techniques. Springer-Verlag, Berlin—Heidelberg—
New York, Tokyo, 1984.

[5] H. Brinck, J. Werner. Estimation of the thermal effect of blood flow in a branching countercurrent network
using a three-dimensional vascular model. Journal of Biomechanical Engineering, Transactions of the ASME,
116: 324-330, 1994.

[6] H-W. Huang, C.L. Chan, R.B. Roemer. Analytical solutions of Pennes bio-heat transfer equation with a blood
vessel. Journal of Biomechanical Engineering, Transactions of the ASME, 116: 208-212, 1994.

[7] H.W. Huang, Z.P. Chen, R.B. Roemer. A counter current vascular network model of heat transfer in tissues.
Journal of Biomechanical Engineering, Transactions of the ASME, 118: 120-129, 1996.

[8] E. Majchrzak. Application of the BEM 1in the thermal theory of foundry (in Polish). Publ. of the Silesian
Technical University, Mechanics, 102, Gliwice, 1991.

[9] L. Zhu, S. Weinbaum. A model for heat transfer from embedded blood vessels in two-dimensional tissue prepa-
rations. Journal of Biomechanical Engineering, Transactions of the ASME, 117: 64-73, 1995.



