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Generalized exponential penalty functions are constructed for the multiplier methods in solving nonlinear
programming problems. The non-smooth extreme constraint Gext is replaced by a single smooth constraint
Gs by using the generalized exponential function (base a > 1). The well-known K.S. function is found to
be a special case of our proposed formulation. Parallel processing for Golden block line search algorithm is
then summarized, which can also be integrated into our formulation. Both small and large-scale nonlinear
programming problems (up to 2000 variables and 2000 nonlinear constraints) have been solved to validate
the proposed algorithms.

1. INTRODUCTION

Consider the following nonlinear programming (NLP) problem:
(A)  minf(z)
s.t. gi(z) <0, =12, .. ,m});
or

(A1) minf(z)
s.t. gi(z) > 0, H=12....%]

where f(z) and g;(z) are smooth, nonlinear functions of z (z € R™).

Although many methods have been developed for solving the above constrained nonlinear pro-
gramming problems, such as the barrier and penalty function sequential methods [2] and the mul-
tiplier method (3, 4], they either have computational difficulties or have to deal with a non-smooth
combined objective function. Recently, the exponential function was used to provide a smooth cu-
mulative constraint function in the combined objective function for the multiplier method [5, 6].
This exponential function, known as K S(z) function [1] has already been used in optimal struc-
tural synthesis and designs [7,8,9,10]. One disadvantage of using the K S(z) function, however, is
that the user has to choose a suitable parameter p. If p is too small then the results will not be
accurate, if p is too large then the K S(z) function will become non-smooth [11]. However, p should
be gradually increased to a large positive value in its derivation given in [5,6]. In this pa-
per, the first (major) objective is to construct a generalized exponential function gs such that p
is no longer needed as an accuracy controlling parameter, and the K S(z) function is included as
its special form. This proposed generalized exponential function g, is used to obtain a single con-
straint in the multiplier method to provide a smooth composite objective function. The second
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(minor) objective of this paper is to develop and to validate the parallel processing procedure for
golden block line search which can be incorporated into the first objective to enhance the numeri-
cal performance. Several nonlinear programming and line search problems [12] are solved by using
this generalized exponential function. The largest problem solved involves 2000 variables and 2000
nonlinear constraints.

2. DERIVATIONS OF THE GENERALIZED EXPONENTIAL FUNCTION

Problem (A) is equivalent to the following nonlinear programming problem:

(B) min f(z)
8.4 Gmmd 2) =41

Similarly, problem (A1) is equivalent to
(B1)  min f(z)
8.t. gmin(z) >0

where the single constraint gmax(z) (or gmin(z)) is defined as the “extreme” constraint which can be
expressed as

geal®) = max(z)= max{gi(z)} (for problem (B), ¢=1,2,...,m)
= minl®).= minlglz)} (for problem. [B1). 1= 1;2,....m)

When the original problem (A) or (A1) has at least one active constraint, then the problem (B)
or (B1) can be solved by means of multiplier penalty method [4]:

(C)  minimize $(z,a) = £(2) + agext(a) + 5 9(2)

where « is a Lagrange multiplier and c is a penalty factor, a should be updated during the iterations
by the formula:

Ok+1 = Ok + C Gext (Tk)

where zj, is the solution of (C) at step k, and c can be kept constant or can be increased gradually.
It should also be noted here that x; in the above formula should contain the updated values upon
exiting from a successful unconstrained minimization. ‘

However, the use of gext can cause difficulties in the solution of (C), since gext is not a smooth
function. We will try to construct a smooth function gs(z) to replace gext(z) so that to avoid those
difficulties. It is obvious that gs(z) should have the following properties:

1. gs(z) = gext(x) (=1
9s(z) = gext(x) +e(z) (if m > 1)

2. . gulx) = Gloelel.. §55bs. o 0

The first property of gs(z) assures gs(x) is a good approximation of gext(z), while the second
property suggests gs(z) is a function of g;(z) (1 = 1,2,...,m). In other words, g;(z) are the ba-
sic variables of gs(z). The smooth function gs(z) can be determined by first define a generalized
exponential function F = F(g;(z),a), such as

m
Foet e ¢70E L (a> 1, n)
=1
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It can be seen that a?%(*) (a > 1) is a monotone increasing function of g;(z) when p > 0, and
a monotone decreasing function of g;(z) when p < 0. Thus, if a is large enough then F' is a good
approximation of aP9xt. But we only need the approximation of gext(z), so we have to invert F' to
get gext (). Since F = aP9t  this suggests that gs(x) should take the form

1 1
9s(z) = gs(gi(z)) = 5 1oga I/ = ~log, (Z G ”) = gext (T log (Z aPl9i(@)= 95’“(1))) :

It is found that gs(z) has the following property:
1
gmax(l') < gs(z) < Imax(T) + ; log, m (p>0, gext = Jmax)s

1
gmin () + : log,m < g5(2) < gmin(z) (P <0, Gext = gmin)-
If we require the error term (1/|p|) log, m less than € , then the base a can be determined by

1
a > mlrele |

The KS(z) function as it is used in [1,5,6,7,8,9,10] is defined as

KS(z) = })ln (Z epgi(z)> )
i=1

It is interesting to note that the K'S(z) function is a special form of the proposed g,(z) function.
One only has to set the special base: a = e. However, the advantage of using the gs(z) function is
that we do not have to adjust the controlling parameter p as it is required in the K S(z) function.
Furthermore, we can control the smoothness of the gs(x) function by using different bases (a > 1)
during the iterations. In fact, the non-zero parameter p is only used as a sign for the extreme
constraint (gext = gmax, if p > 0; OF gext = gmin, if p < 0). However, p must be gradually increased
to a large positive value in the derivation given in [5, 6], and the K S(z) function will fail if p < 1.
Since higher accuracy in the constraint conditions is desired in later iterations, it is suggested that
the base a should be increased during the iterations.

3. A STEP-BY-STEP NONLINEAR PROGRAMMING ALGORITHM

When the extreme constraint in problem (B) or (B1) is replaced by a single constraint gy(z) as
defined above, we now can solve the following constrained nonlinear programming problem (assume
problem (B) is now under consideration)

(D) min f(z)
s.t. gs(z) <0

through the solution of the following sequential unconstrained nonlinear programming problem:
(E)  minimize ¢(z,a) = f(z) + ags(z) + ggf(m)

where any standard unconstrained NLP methods (such as BFGS, or DFP) [13,14] can be used
(BFGS method is used in this paper, see the Appendix).
A simple NLP algorithm can be written as:

1. Set initial values for base a and ¢, and zg, let ag = 0, k = 0.

2. Minimize ¢(z,c) using any standard unconstrained NLP methods.
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3. Convergence check: [[zx41 — 2kl < ¢, if satisfied go to 5.
4. Update «, a and c by:
g1 = Qg + ck9s(zk) (zk is the minimizer),

aps1 = 10°°%q,
Ck+1 — ma.x(lOOOOOO, 1.1Ck)7

go to 2.

5. stop.

4. PARALLEL GOLDEN BLOCK SEARCH TECHNIQUE

In this section, a parallel version of the golden block search technique has been developed for
determining the step size a (see Step 4 of the Appendix). Theoretical development of the golden
block search technique can be summarized in the following paragraphs:

e The golden search method is based on the Fibonacci sequence, which is defined as
Fy =1, =1 i, = m—1 + Fn—2 (n:2,3,4,...),
with the properties

Fr

Fr1lnseo

1
=7 = 5(1 + \/5) ~ 1.618 = golden ratio.

e The Fibonacci sequence is a special case of the Arriel sequence
A=1 Al=1 AR =k(AF+ A (n=234.0 (1)
Thus, when k = 1, then the Arriel sequence will become the Fibonacci sequence.

e In order to apply the Arriel sequence to modify the golden search technique, we assume:

n+2 n+1
ﬁ“———Ak =7, as n— o0 (2)
An+1 = ALL k
k

and try to derive the condition for which 7 (refer to Eq. (2)) needs to be satisfied.

n+1
e Derivation of a formula for 74 . Multiplying é}iz— to both sides of Eq. (2)

2
e (5 g ’
e\ 4

From Eq. (1), one has:
e =R ARt + AT): (4)

Substituting Eq. (4) into 3, one obtains:

1
KA +4p) e g (AZ-H )

Ag
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or
72 = k(e + 1). (5)

Solving the quadratic Eq. (5) and using only the positive root, one has:

Tkz—;—(k+\/k—2+_4k')- (6)

Note: if k =1, then 7, = %(1 +1/5) = 1.618 = the standard golden search ratio.

The above golden block search algorithm can be conveniently presented in a form of a step-by-step
algorithm.

Step 1: d% = b — a, where a and b are estimated lower and upper bounds for the step size a.
Step 2: First block search (for i = 1)

[ ] a(l):a’

1
oa}za-{—;—d% where 7, = 2(k + Vk? + 4k),
k

! L

oa':ajl-_2+ d% where j=2,3,...,2k,

J k
e Parallel computation for F(ajl-) where 7 =0,1,2,3,...,2k.
Step 3: Find the value of o which gives the minimum value of F', say ajl- =k

0
Step 4: Set r; = ozll_1 and R; = al1+1 . Thus d}; =Ri—7r = %f—.

Step 5: Subsequent i** block search (for i > 2)

° afy =ri-1,

. 158
° 0111=7"i—1+(a) d%,

. 3 O y
oa}:a;'—Z'*'?BTli_z where j=2,3,...,2k,

e compute F(a}).
Step 6: Return to step 3 if the process does not converge.

Based upon the above step-by-step procedure, the parallel golden block search algorithm has
been developed, and validated as shown in Section 5.

5. NUMERICAL APPLICATIONS

Several examples are solved using the above algorithms, the first two examples are taken from [12],
while the last two examples are constructed by the authors to test the capability of the present
algorithms. For all these examples, p = 1 and the initial values for @ and ¢ are ag = 1010, ¢y = 10000,
and € = 0.0001. The equality constraint g(z) = 0 is replaced by g(z) < 0 and —g(z) < 0.
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Ezample 1: Problem number 66 (see [12], p. 88).
min f(z) = 0.2z3 — 0.8z
s.t. el — 19 <0,
e’ —x3 <0,
0 <z < 100,
0 < 29 < 100,
0 <z3 <10.

Optimum solution as well as iterations history are presented in Table 1.

Table 1. Computational results for Example 1

OO | awer —all | 12l P N
0 - 70927.3 1.0 —0.00006
1 3.59349 6.89-10"2 | —1.0457-10~3 | 0.52028132
2 5.2368 -1072 | 3.092- 1073 | —1.0357-10* | 0.51834827
3 1.9833-10"% | 1.708-1072 | —5.3822-10~° | 0.51825999
4 1.5833-10"% | 1.019-1072 | —3.6524-10~° | 0.51822897
5 8.6909 -10~° | 2.830-10~2 | —2.7202- 1075 | 0.51821282

*2% = {0.0001, ...,0.0001} (not feasible);
Ref. [12]’s optimum: f = 0.518163274.

Ezample 2: Problem number 100 (see [12], p.111).
min f(z) = (z1 — 10)? + 5(z3 — 12)2 + 23 + 3(z4 — 11)?
+ 1028 + 722 + x7 — dzgzy — 10z — 827
st. gi(g) = 23:% + 33:3 + z3 + 412 + 5z — 127 <0,
92(z) = Tzy + 329 + 1022 + 74 — 25 — 282 < 0,
(z)
(

g3(z) = 23z + 23 + 622 — 8z7 — 196 < 0,
g4(z) = 4x% + x% — 3z139 + 233% + 5zg — 11z7 < 0.

Again, the solutions during the iterations are given in Table 2.

Table 2. Computational results for Example 2

penaal I PR BTN g F(a)
0.
— 741.26 0.0006 1183.0224
5.952827 7287.57 2.7630- 1073 741.596
1.264876 10506.29 —4.4204-1074 700.750
0.683534 5618.36 —1.2526- 1073 686.735
0.767874 2321.53 —-2.1536 - 104 682.340
0.632013 170.833 -3.0169-10* 680.663

0
1
2
3
4
5
6 7.137-10°2 128.389 —6.4009 - 10~° 680.636
7
8
9
*zo S {_

4.382-1073 165.360 2.9859 - 105 680.635
1.224 - 1072 310.711 | —4.4446-10-° 680.633
4.6328-1076 21.744 —4.642-107° 680.633
0.0001, ..., —0.0001} (not feasible); Ref. [12]’s optimum: f = 680.6300573.
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Ezample 3: Large-scale nonlinear programming test problem.

min f(z) = —OZ 3
1=

m
st gi(z) =) al+nai—(@2n—-1)<0, (i=12,...,m; j#i)
j=1

In this example, n = m = 2000, the optimum solution is: £ = {1,...,1} and the optimum value
is f = —m = —2000. Numerical results are presented in Table 3. It should be noted here that an
effective equation solver [15] (using Gaussian elimination) is used in the BFGS method (see step 2
of Section 3) in order to reduce the total solution time for this large-scale NLP problem.

Table 3. Computational results for Example 3

Hetlon 1 s —mell |l P f(an)
0 = 9.345x10'2 99 —2000000
1 402.5014 2926.69 —1.7541-107° —1998.77
2 9.1612- 1073 26093.2 5.935-10—* —1999.997

*2° = {10,...,10} ( not feasible ); optimum: f = —2000.
This problem is solved on Cray Y-MP (using one processor) with CPU time = 564.681 seconds.

Ezample /: Parallel golden block search method.

Find ¢ which minimizes the function
i I iy
F(t)=cos(t)=1_—2-!—+a_a+...+m+...

The optimum solution is t = t* = 7 and F' = F* = —1.0.
The performance of the parallel golden block search algorithm is shown in Table 4.

Table 4. Parallel golden block search example (continued in the nezt page)

n=0600, e=1.0-10"% k=1
NP | Time (seconds) S | n %)

il 0.3553 1.00 | 100.0
k=2 NP — number of processors used
FoE T TTg888T T Y] 108" | 1000 L
- — the coefficient given in Eq. (6)
1 0.3866 < 1.00 11000 n  — number of terms used in
2 0.2008 1.925 | 96.25 the above function F'(t)
3 0.13668 2.83 | 94.30 G o b B
4 0.12797 3.02 | 75.60 .
e — efficiency
1 0.48918 1.00 1 100.0 €  — convergence tolerance
2 0.25147 1.95 | 97.30
3 0.19397 2.52 | 84.10
4 0.14565 3.36 | 84.00
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Table 4. (continued) Parallel golden block search example

k=6
NP | Time (seconds) S n (%)
1 0.54002 1.00 100.
2 0.27735 1.95 97.4
3 0.18711 2.89 96.2
4 0.14365 3.76 94.0
k=1
1 0.57734 1.000 100.
2 0.29258 1.973 98.7
3 0.20595 2.8033 | 934
4 0.16478 3.504 87.6

6. DISCUSSIONS AND CONCLUSIONS

A generalized exponential penalty function gs(z) is constructed where p is no longer needed as an
accuracy controlling parameter as it is in the K .S(z) function. Rather, p is only introduced here to
facilitate the treatment of the extreme constraint gey (either maximum or minimum). Furthermore,
the K S(z) function is considered as the special case of the proposed gs(z) function. Since the non-
smooth extreme constraint gext(z) is replaced by a smooth constraint gs(z), it is expected that the
present algorithm will lead to better performance during the optimization process. In fact, in all
the examples considered in this paper, optimum solutions are essentially obtained with less than
5 iterations. The proposed gs(z) function and parallel golden block line search can be used in a wide
range of optimization problems.
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APPENDIX. BFGS ALGORITHM

Step 1: Estimate an initial design z(?). Choose a symmetric positive definite matrix H(®) as an
estimate for the Hessian of the cost function. In the absence of more information, let H(®) =
I. Choose a convergence parameter €. Set & = 0, and compute the gradient vector as
c® = Vf(z() where f is an objective function.

Step 2: Calculate the norm of the gradient vector as [|c®)||. If ||c*¥)|| < € then stop the iterative
process; otherwise continue.

Step 3: Solve the following linear system of equations to obtain the search direction:
HE)pk) = _ k),

Step 4: Compute optimum step size oy = o to minimize f (z®) 4 apk))y.

Step 5: Update the design as
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Step 6: Update the Hessian approximation for the cost function as
g+ — gk) 4 pk) L pk)

where the correction matrices D) and E®*) are given as

T T
D) — y®Fy®)" e (k) (k)
y(k) o s(k)’ c(k) o p(k)
with
s®) = qp®) (change in design),
y®) = k) _ (k) (change in gradient),

c(k+1) — Vf (x(k—i-l))‘

Step 7: Set k =k + 1 and go to step 2.
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