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Symbolic computation has been applied to Runge-Kutta technique in order to solve two-point boundary
value problem. The unknown initial values are considered as symbolic variables, therefore they will appear
in a system of algebraic equations, after the integration of the ordinary differential equations. Then
this algebraic equation system can be solved for the unknown initial values and substituted into the
solution. Consequently, only one integration pass is enough to solve the problem instead of using iteration
technique like shooting-method. This procedure is illustrated by solving the boundary value problem of the
mechanical analysis of a liquid storage tank. Computation was carried out by MAPLE V. Power Edition
package.

1. INTRODUCTION

There are many engineering models represented by ordinary differential equations with split bound-
ary value problems.

Shooting and finite difference methods [1-2], trial function expansions based on variational prin-
ciples or weighted-residual methods as well as different type of collocation and quasi-linearization [3]
and perturbation [4] techniques, have been widely used for a long time to solve such problems.

Computer algebra systems like MACSYMA, REDUCE, MAPLE, MATHEMATICA and in cer-
tain extend other type of systems as MATLAB and MATHCAD, give possibility to carry out not
only numerical but also symbolical computations.

Many traditional algorithms can be improved, sometimes considerably, via imbedding symbolic
parts into the numerical algorithm. These hybrid techniques involving numerical as well as symbolic
manipulations, provide arbitrary precision defeating instability problems and reduce the number of
iterations in general.

The application of hybrid techniques to boundary value problems was studied in [5] for the case
of second and third order, linear and non-linear ordinary differential equations including eigenvalue
and stiffness problems. Some partial differential equations were also tacled. To solve the illustrative
examples, the MUMATH programming system was employed.

In this paper the methods proposed by [5], the so called slope retention techniques have been
extended for non-autonom, linear system of differential equations using symbolic Runge-Kutta
method.

2. BOUNDARY VALUE PROBLEM

Let us consider a linear, non-autonom differential equation system of n variables, in matrix form:

dy(z)
dz

= A(z)y(z) + b(z)

where A is a matrix of n? dimensions, y(z) and b(z) are vectors of n dimensions, and z is a scalar
independent variable.
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In case of boundary value problem, the value of some dependent variables, y;, are not known at
the beginning of the integration interval, at £ = z1, but they are given at the end of this interval,
at z =23.

The usually employed methods need subsequent integration of the system, because their trial-
error technique or they require to solve large linear equation system, in case of discretization meth-
ods. In this paper a new technique is presented, which is based on the symbolical evaluation of
the well known Runge-Kutta method. This technique needs only one integration of the differential
equation system and a solution of the linear equation system representing the boundary conditions
at r =1y

3. SYMBOLIC RUNGE-KUTTA METHOD

The well known fourth-order Runge-Kutta method, in our case, can be represented by the following
formulas:

R1; = A(z;) y(z;) + b(:)

h Hih h
B2r=A ($i o 5) (y(xi) =+ 5 ) +b (1131 -+ E)
RS = A <a:l + g) (y(a:i) + Rg;h> +b (m + g)

R4; = A(z; + h) (y(z;) + R3; h) + b(z; + h)

and then the value of y;4+1 = y(z; + h) can be computed as:

(R1; +2(R2;+ R3;)+ R4;)h
6 :

A symbolic system, like MAPLE, is able to carry out this algorithm not only with numbers but
symbols. It means that the unknown elements of y(z1) can be considered unknown symbols. These
symbols will appear in every y;, as well as in y(z2), too.

The following MAPLE procedure can carry out this symbolic computation:

Yis1 = y{z:) +

restart;

RKSymbolic:=proc(x0,y0,A,b,M,N,h)

local R1,R2,R3,R4,¥,i,],ylist;

with(linalg);

ylist:=vector ([0$M]);

y:=evalm(y0);

for §j from 1 to M .do

ylist[j]:=[[x0,y0[j1]1] od;

for i from 1 to N do
R1:=evalm(A(x0+i*h)&*y+b(x0+i*h));
R2:=evalm(A(x0+i*h+h/2)&* (y+R1%h/2)+b(x0+i*h+h/2)) ;
R3:=evalm(A(x0+i*h+h/2)&* (y+R2*h/2)+b(x0+i*h+h/2)) ;
R4:=evalm(A(x0+ixh+h)&* (y+R3*h)+b(x0+i*h+h)) ;
y:=evalm(y+(R1+2% (R2+R3)+R4) *h/6) ;

for j from 1 to M do

ylist[j]:=[op(ylist[j]), [xO+i*h,y[j1]] od;

od;

[evalm(y) ,ylist]:

end:

B Y VLV VNV VYV



Mixed algorithm for solving boundary value problem 481

Let us consider a simple illustrative example. The differential equation is:

d?y(z) 2
- (1-5)y@ ==
The prespecified boundary values are:
y{1) =2 and y(3) = —-1.
Introducing

@) =y@ and o) = 2D

The matrix form of the differential equation is:
)=l ol R+ 2
a% y2(z) 1-1z 0 y2(x) T
> A:=x->matrix([[0,1],[(1-x/5),0]11);

0 1
A'—x_)[l—ém 0}

> b:=x->vector([0,x]);
b:=z — |0, z]

> y0:=vector([2,s]);

y0 = [2, 5]
> x0:=1;
z0 =1

The unknown initial condition for y2 is s. The order of the system M = 2. Let us consider the
number of the integration steps, N = 10, so the step size is h =1 /5.

> M:=2;N:=10;h:=2./N;
M :=2
N =10
h :=.2000000000
> ysol:=RKSymbolic(x0,y0 ,A,b,M,N,h):
The function values at the different z; are, for y1,:
> soll:=ysol[2][1];
soll := [[1, 2], [1.200000000, 2.055334186 + 2009866667 s],
[1.400000000, 2.226107320 + 4077215240 s],
[1.600000000, 2.521649911 + .6255151090 s],
[1.800000000, 2.953940376 + .8592959466 s,
[2.000000000, 3.537291287 + 1.113676121 s],
[2.200000000, 4.288011455 + 1.392978103 s,
[2.400000000, 5.224018115 + 1.701225944 s],
[2.600000000, 6.364375819 + 2.042103061 s],
[2.800000000, 7.728741088 + 2.418878236 s],
[3.000000000, 9.336694830 + 2.834301450 s]]



482 B. Palancz and G. Popper

The list contains the (z;, y1,) pairs, and every yI; values depends on the unknown initial conditions.
Consequently, we have got symbolic results using the traditional numerical Runge-Kutta method.

4. MIXED ALGORITHM FOR SOLVING BOUNDARY VALUE PROBLEM

In order to compute the proper values of the unknown initial values, the boundary conditions at
z = 72 can be applied. In our case y1(3) = —1. We can get y1(3) from the solution, therefore this
condition can be written as:

> eq:=ysol[1][1]=-1;
eq := 9.336694830 + 2.834301450 s = —1

Let us solve this equation numerically:

> sol:=fsolve(eq,s);

sol := {s = —3.646999097}

> assign(sol);

Now this s value can be substituted into the solutions for y1 and y2:
> ySol:=map(eval,ysol[2]):

Then we get the numerical solution, for example, for y1:
> ySoll[1];

[[1, 2], [1.200000000, 1.322335994], [1.400000000, .739147290],
[1.600000000, .240396873], [1.800000000, —.179911165],
(2.000000000, —.524284521], [2.200000000, —.792178429],
[2.400000000, —.980351367], [2.600000000, —1.083172200],
[2.800000000, —1.092905654], [3.000000000, —1.000000000]]

The truncation error can be decreased by using smaller step-size, h, and the round-off error can
be controlled by the Digits command of MAPLE.

5. ANALYSIS OF A LIQUID STORAGE TANK

Let us consider a cylindrical liquid storage tank, where the thickness of wall/radius ratio is small
enough to ensure membrane stress state, see Fig. 1.

The four differential equations describing the deflection, w(z), rotation, a(z), bending moment,
My(z), and transverse shear force, F(z) distributions along the length of the storage are the
followings, [6]:

dw(z) d My(z) _
da(e) _ M) d Fo(a) _
de ~  Noé(z)3’ dr Padipimipls=aies
where
Bt __ Et, )
No = TRk Do = 2 and dfz) = =~
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Fig. 1. Liquid storage tank
The boundary conditions are:
wil) =10, a(L) =0, M,(0) =0, and Fp(0)=0.
Let us suppose that the thickness of the wall is linear function of z, namely

1+ %
t(z) = 2L.

Introducing variables y;, 1 = 1,2, 3, 4:

yl(l') :W(CE), yg(l') :Mb(z),
y2(z) = a(z), ya(z) = Fo(z),
one can get
W) _ ),
dya(z) _  8ys(z)
dz ~ No(1+ %)%’
8@ _ (),
dya(e) _ Dol+ D)
dr 2 ’
and

The matrix form of the system is:

(f—xyl(w) 0 1 0 0 Y1 0
%xw(m) o 0 0 —8mnrzpr 0| |w s R
4z Y3(z) 0 0 0 1 Y3 0
& ya(z) 1Do(1+2) 0 0 0] Lya ~gpz

Let us consider the following data:
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> R:=5;L:=1.5; t0:=0.1;E:=4%10"10; rho:=10"3; nu:=1/6;g:=9.81;

R =5
L =15
10 =1
E = 40000000000
p = 1000
1
Y76
g = 9.81

Now,

> No:=Ext0~3/12/(1-nu~2);
No := .3428571428 107
> Do:=E*t0/R"2;

Do := .1600000000 10°

Then:
0 1 0 0
o 1
A=z—> ’ g 8N°(1+%) i
0 0 0 1
sDo(1+%) 0 0

> b:=x->vector([0,0,0,-g*rho*x]);
b:=2—10,0,0, —gpz]
> y0:=vector([s1,s2,0,0]);
y0 := [s1, 52, 0, 0]
> x0:=0;
20 :=0
where sl and s2 are the unknown initial conditions.
> M:=4;N:=100;
M :=4, N =100

> ysol:=RKSymbolic(x0,y0,A,b,M,N,L/N):
> eql:=ysol[1][1];

eql = —8.417839115 s1 — 1.594827552 52 + .0002993784801

> eq2:=ysol[1][2];

eq? = —6.518553710 s2 — 13.39539692 s1 + .0006569052057
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> sol:=fsolve({eql,eq2},{s1,s2});
sol := {s2 = .00004534418704, sl = .00002697394405}

> assign(sol);
> y:=map(eval,ysol[2]):

Then, the solutions for the y; are presented in Figs. 2-5.

4e-057
4e-054
2e-051
3e-051
D_
2e-051 -2e-051
-4e-051
1e-051
-6e-05
0 b ; :
0 “02:04.706-088 112 14 00204 06608 -1 12 14
Fig. 2. Deflection vs. storage height Fig. 3. Rotation vs. storage height
200 0
04
-1000+
-2004
_400_ '2DUD—
6004 -30004
0 4000
-1000
-5000
-12004
-14007 -6000-
0 07 04 06 08 1 1214 0 02 040808 1 12 14
Fig. 4. Bending moments vs. storage height Fig. 5. Shear force vs. storage height

6. CONCLUDING REMARKS

The extended form of slope retention technique can be applied to solving of linear boundary value
problems of non-autonom linear differential equation systems. To do that, symbolic Runge-Kutta
technique can be employed followed by numerical solution of a linear algebra system representing
the boundary conditions at the end of the integration interval.

Although the method needs only one integration pass, because of symbolic operation, the compu-
tation speed will slow down comparing with the pure numerical integration. However, in the future
the speed of the symbolic calculation could be increased considerably through software or direct
hardware developments similarly to the graphical operations.

A mechanical example was given to demonstrate this method, which seems to be useful especially
in case of systems with many unknown initial conditions.
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