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The back-propagation neural network was trained off line in order to simulate operation of the return
mapping algorithm. Selection of patterns and the neural network training as well as testing processes
are discussed in detail. The network was incorporated into the FE computer code ANKA as a neural
procedure. The hybrid neural-network/finite-element-method program ANKA-H was used for the analysis
of two elastoplastic plane stress examples: i) perforated tension strip, ii) notched beam. The results of
computations point out quite good accuracy of the hybrid analysis. Some prospects of development of
hybrid NN/FEM programs are given at the end of paper.

1. INTRODUCTION

From among many nonstandard methods of data processing which have been developed in recent
years the artificial neural networks (ANNs) are worth emphasizing. ANNs have been applied to
the analysis of a great amount of problems in science and technology. This concerns also structural
engineering and especially mechanics of structures and materials [13].

Computer simulation of ANNs and their application for computation is called for short neu-
rocomputing. Neurocomputing has many special features, which distinguishes it from standard
computer data processing. One of them is worth mentioning, i.e. ANNs can be used to map in-
put into output data without known relations between them. This corresponds especially to the
Back-Propagation Neural Network (BPNN), cf. e.g. [14, 15]. BPNN is composed of layers and is
trained and tested by means of specially selected patterns which are completed as sets of known
input/output data [2, 9].

BPNNs can be efficiently used not only as particular simulators but they can be incorporated
into standard computational programs as neural procedures. This idea leads to hybrid neural-
network /computational computer programs. Of course, it is expedient to apply neural procedures
if they are more efficient than computational procedures are, cf. e.g. [3, 12].

Special attention should be paid to material nonlinear problems where neural procedures can be
applied to the analysis of constitutive equations. The BPNNs were earlier used to formulate the
stress-strain relations in concrete [1]. The moment-curvature relation was established on the base of
experimental data [4] or analytical formulae [6]. The inversion of uniaxial Ramberg-Osgood relation
was performed in [19].

In [6, 17] the idea of implementation of hybrid procedures in the finite difference or finite element
programs was sketched. The aim of this paper is to formulate an "objective" neural procedure for
the analysis of elastoplastic plane stress constitutive equations and use the procedure in a hybrid
BPNN/FEM computer code.
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2. BASIC RELATIONS AND MAPPING ALGORITHM

2.1. Elastoplasticity equations

The classical equations related to the plastic flow theory are used applying the following assumptions:

a)

Huber-Mises-Hencky yield surface (J; - yield criterion):

1
F= O'TPO'—§UZ=0,

1
2

where o is the stress vector and P is the digital matrix, cf. [8]:

2/3 -1/3 0
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isotropic strain hardening with respect to the effective stress o

e =00+ Hep,

(3)

where oy is the uniaxial tension yield point, H is the linear strain-hardening parameter and ¢,

is the plastic strain intensity accumulated of the increments [8]:

Aep = AN/ % ocTPo,

where A is the increment of plastic multiplier A;

small strains imply the addition of elastic and plastic strains:
Ae = Ae® + AeP? for Ae = {Aeg, Ay, Avay};
associated flow rule:

Ag?= A)\—aﬁ = A\ Po;
Jo

initially isotropic material which obeys Hooke’s relation:
B 1 v 0
Ao = E A¢€®, Ex—s| v 1 0

2.2. Return mapping algorithm

In the FE analysis of plane stress elastoplasticity the following problem has to be solved:

starting from the known stress vector o? (or oP at the yield surface ) and the increment
and corresponding consistent stiffness

of strain vector A€, find the actual stress vector oP

matriz E;.

(4)
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Fig. 1. Scheme of return mapping algorithm

The above problem is analyzed by a numerical procedure which can be briefly summarized as
elastic prediction and orthogonal return to the actual yield surface or as return mapping algo-

rithm [10].

In Fig. 1 a scheme of the algorithm is shown in the stress space. A special case is considered if
the starting point A is inside the yield surface and elastic increment Ag® = E Ag crosses the yield
surface FB = F(oB) = 0 at the point B. The main problem is how to find the point D at the
actual yield surface FP = F(aP, A)) = 0.

The return mapping algorithm can be written in the following steps:

i
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10.

oB =04+ aEAe,

Flo®)=0— a,
if a <1 then elastic range else go to 3,

o* =08+ (1 - a)EAe,
Initial value A,
I*=(I+A)MEP)},

g =iI"at;

o} = oTPo,

2
F(AN =40} — 1 (a8 + Ar/202) =0 — A,

12 = I(A)p),
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Algorithm (8) realizes the following mapping

{afaise} - mtiiey (R BN 9)

3. BPNN PROCEDURE
3.1. Neural network simulation

The crucial part of the return mapping algorithm (8) is associated with the solution of strongly
nonlinear equation F(AX) = 0 to find the increment of plastic multiplier A\p at the actual yield
surface FP = 0. In numerical procedure the value of AAp is computed in an iterative way which
follows the steps 5-8 of algorithm (8). The neural procedure NN simulates the part of the return
mapping algorithm discussed above.

The Back-Propagation Neural Network (BPNN) was used to formulate the neural procedure.
The input and output vectors

xax1) = {67,088 x},  yuxy = {AX, 0P} (10)
are composed of the following dimensionless variables:
g=0c/c8, Aeé=EAe/c2, AXN=EA)\ x=HJE. (11)

In Fig. 2 the scheme of BPNN procedure is shown. The strain hardening parameter y was fixed.
Thus, in fact, only six components of the input vector are used. Looking at algorithm (8) it is clear
that the output stress vector &7 is a function of the output variable AX. Despite the correlation of
output variables the output vector y was composed of A), P in the mapping x — y.

=B
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Fig. 2. Scheme of BPNN procedure

After computation of AX and &P by means of BPNN procedure the consistent stiffness matrix
EY = E-EJ is computed using formulae mentioned in algorithm (8) as steps 11-15.

3.2. Formulation of patterns for the BPNN training and testing

Patterns for the training of BPNNs are usually taken from examples corresponding to special cases
and fixed values of parameters. The values of parameters other than those applied to training are
used for neural network testing. Of course, generalization properties of such a formulation of BPNN
are limited only to considered special cases. This approach was called in [17] the subjective patterns
approach. In this paper the patterns for training and testing were taken from the Gauss points of
finite elements used for the analysis of a perforated plate.

To be independent of special cases of the considered plane stress state, i.e. for special shape of
domain, boundary conditions and load applications, objective patterns are formulated. The patterns
relate only to constitutive relations of the material considered.

Due to dimensionless variables (11) the computed patterns are independent of current instant.
The points corresponding to the stress vector @2 are uniformly distributed at the scaled yield
surface B = 0. In Fig. 3 the contour lines of the yield surface are shown for the shear stresses
ifg = const. For the whole yield surface (both for the positive and negative stresses fxBy ) 360 points
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Fig. 3. Contour lines on the yield surface F® = 0 at 75, = const. and fixed points &

&8 were selected. To each point an increment of strain vector A& was randomly selected from the
range Asz,Asy,A%y [~10.9,10.0]. In such a way about 1 10° patterns were formulated and
values of AX and &7 were computed following algorlthm (8).
Obviously, a part of formulated patterns {67, Ag}p gave elastic responses, i.e. AX = 0 and
|6P| < |oB|. Those patterns were eliminated and only from among plastically active patterns the
number of patterns L = 3349 and T = 9044 was randomly selected for learning (training) and

testing processes, respectively.

3.3. Selection of BPNN, its training and testing

The neuron features, network architecture and learning method should match well the problem
considered.

Because of positive and negative values of the output stress vector components {, Gy, 7zy} the
activation function was assumed as the bipolar sigmoid, cf. Fig. 4a:

1 — exp(—ov)

y(’U) - m & (—1, 1) for o>0 (12)
The computer simulation was performed by means of the SNNS program [11] (Stuttgart Neural
Network Simulator). In this program the value o = 1 was fixed.

Three-layer BPNN (two hidden layers and one output layer) was formulated, cf. Fig. 4b. On the
basis of numerical experiments 40 and 20 neurons were fixed for the first and second hidden layers,
respectively.

From among many learning methods which are accessible in the SNNS program the Rprop
(Resilient-propagation) method was used The method can be classified as a local ada.ptatlve learning
method for which the learning rate m] is associated with each synaptic weight ww (more details on
the Rprop method can be found in [9, 11]). According to the authors’ experience Rprop seems to
be one of the most efficient learning methods.

Before the network training all the output variables were scaled to the range [—0.9,0.9] in order
to work in good saturation interval of the activation function.

The learning process was being continued with respect to the Mean-Square-Error

p_lz 1
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MSE

ye

epochs S

Fig. 4. a) Bipolar sigmoid, b) Three-layer BPNN, c) Relation of MSE error and number of epochs s

where: P — number of patterns; tz(-p ),yz(p ) _ith target and computed output variables, for the p-th

pattern respectively, s — number of epochs (one epoch corresponds to one presentation and error
backpropagation of all patterns P).

The SNNS program enables us to have graphics for both the learning error MSEL and training
error MSET at the same number of epochs s. For the established BP neural network of the structure
6-40-20-4 the iteration process was continued up to S = 34000 epochs cf. Fig. 4c. The corresponding
errors are

MSEL(S) ~ 8%107%,  MSET(S) ~ 10x107°

for the number of randomly selected training and testing patterns L = 3349 and T' = 9044, respec-
tively.

In order to compare the computational time used by the neural procedure the same number
of 10000 the same patterns were analyzed by the numerical procedure and neural procedure. The
performed computations pointed out that the neural procedure needed about 40-50% of the time
consumed by the numerical procedure. The larger the value of the components of strain increment
vector Ag; the more iterations the numerical procedure needs, whereas the computational time of
neural procedure is practically constant (independent of values of Ag;).

4. HYBRID PROGRAM AND ITS APPLICATIONS
4.1. Hybrid NN/FEM program

BPNN discussed above was trained and tested off line and then the neural network was incorporated
into the FEM program as a neural procedure. The main goal of this procedure is to simulate the
return mapping algorithm in each Gauss point of reduced integration inside the plane finite elements.
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The neural procedure was incorporated into the ANKA finite element code [16]. The attention
was focused on the 8-node isoparametric finite element with 4 Gauss points of reduced integration.
The hybrid BPNN/ANKA program (in short the program is called ANKA-H program) was used to
the analysis of two elastoplastic plane stress plates taken from papers 8, 7]. The computations were
carried out also by means of the ANKA code with purely numerical procedures.

The computations were performed for different lengths of the displacement control parameter
and for the different values of the strain hardening parameter x = H/E.

4.2. Perforated tension strip

A rectangular strip with circural hole, subjected to external uniform tension was analyzed in an
earlier published paper [21] and then it was accepted as a bench-mark test [8, 10].

Data concerning geometry, load and material characteristics, taken from [8], are shown in
Fig. 5a,b. Because of double symmetry only a quarter of the strip is considered. The mesh of 8
node quadrilateral isoparametric elements is shown in Fig. 5c.

As a control parameter the horizontal displacement at point A, i.e. 7 = ug = u1g; was used. By
means of the computational program ANKA and the hybrid program ANKA-H the load paths A(ux)
were computed, where: A — load parameter depicted in Fig. 5a.

The length of the control parameter AT = Auy was assumed to be constant during the whole
deformation process. The computations were carried out by ANKA at various values of the control
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Fig. 5. a) Geometry and load data, b) Material characteristics, ¢) FE mesh of a quarter of strip
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parameter Auq = 0.01,0.02,0.08 mm. Similarly as in [17] it was stated that the length of control
parameter Au, does not affect the load path A(u,).

In [17] it was observed that in case of greater errors MSE(S) of the neural procedure trained off
line the load path A(u4), computed by the hybrid program ANKA-H is sensitive to the length of
control parameter Auy4. In the case of BPNN discussed in Section 3.3 the load path is practically
non-sensitive to changes of Auy € [0.01,0.8]. That is why computations by ANKA-H were performed
at Auy = 0.02 mm (a shorter length was used to have more smooth graphics).

In Fig. 6 load paths A(u,) are shown as continuous lines for ANKA and as broken lines for
ANKA-H. The neural procedure was trained at the value of strain hardening parameter x = 0.032.
This procedure was used to compute load paths for other values of the strain hardening parameter
X- From the results shown in Fig. 6 it can be concluded that for x € [0.0,0.07] the accuracy of

L2 T A VO e R e 0.100
---------------- 0.070
2iby =+ o b daloq 15 dnsmenslgadETEienivod sk
HETTE 2l ATTE 1907 et 0.050
£ BT 0.032
E 1sp —
) / 0.010
’ 0.005
| x = 0.000
05 i
FE code ANKA —
0 L i . NN/FEM code ANKA-H ------- :

0 0.1 0.2 0.3 0.4 0.5 0.6
displacement u4 = ujg; [mm)]

Fig. 6. Load paths A(ua) computed by programs ANKA and ANKA-H for different values of strain
hardening parameter x

+1.2x10°0 +2.7 % 10101

Fig. 7. Distribution of equivalent stress o. zones for y = 0.032 and u4 = 0.55 mm
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neural simulation is quite satisfactory from the viewpoint of analysis of all the FE system. For the
strain hardening parameter x = 0.10 there are discepancies for the load paths computed by FE
code ANKA and the hybrid program ANKA-H.

In Fig. 7 the postprocessed results are shown with respect to distribution of equivalent stresses
o, zones, corresponding to x = 0.032 and u4 = 0.55 mm. It was evaluated that in this case about
78% of effective stresses o, in Gauss points were beyond the yield points oy.

4.3. Notched beam

The other example was taken from [7], where a notched bar was analyzed by means of various
models of elastoplastic material and various FE programs. Contrary to [7], where the plane strain
state was assumed, the plane stresses are analyzed in the present paper.

The beam of geometry, boundary conditions and applied load is considered as a plate of unit
thickness, cf. Fig. 8a. Material of isotropic, linear strain hardening is assumed, cf. Fig. 5b, and data
are shown in Fig. 8a.

Similarly as in the previous example the 8-node isoparametric elements were used with 4 Gauss
points of reduced integration. The mesh of FEs is shown in Fig. 8b and node distribution in the
vicinity of the notch is shown in Fig. 8c.

Vertical displacement of the load application point A was used as the displacement control
(parameter 7 = v; = v,), cf. Fig. 8a.

The computations by means of programs ANKA and ANKA-H were performed at the fixed length
of the step Avg = —0.02 mm for v4 € [—1.0,0.0] mm.
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Fig. 8. a) Geometry, boundary conditions and load application of a beam, b) FE mesh for half of beam,
¢) Nodes in vicinity of notch
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Fig. 9. Load paths A(va) computed by programs ANkA and ANKA-H for different values of strain
hardening parameter x
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Fig. 10. Distribution of equivalent stress o. zones for x = 0.032 and v4 = —1.0 mm

The results of computations for different values of the strain hardening parameter x € [0.0,0.10]
are shown in Fig. 9. In this figure the load paths are shown for the displacements v4 = v; and w99y
(at the notch root), respectively. Similarly as in case of tension strip, cf. Fig. 6, the generalization
properties of neural procedure (which was trained at xy = 0.032) are quite satisfactory for x €
[0.0,0.07]. For the parameter x = 0.10 there are visible discrepancies for the load paths computed
by the FE code ANKA and the hybrid program ANKA-H, similarly as in the perforated tension strip.
In case of elastic perfect plastic material, i.e. for x = 0, the notch root (node 294) is practically
immovable.

In Fig. 10 distribution of zones is shown with respect to the effective stress o, at the value of
control parameter v4 = —1.0 mm. A concentration of stresses is visible in the vicinity of load and
support reaction applications as well as in the vicinity of the notch root. It was evaluated that in
this case about 46% of effective stresses o, in Gauss points were beyond the yield points oyg.

In order to compare processor time used by the program the computation was carried out for
the strain hardening parameter y = 0.005 and 65 steps Avg = —0.02 mm. In case of ANKA the
processor time was 74 sec at 145 global iterations. The processor time used by the ANKA-H progam
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was 38 sec at 83 iterations. Then the computation was repeated for x = 0.07. The processor time
was 78 sec at 146 iterations for ANKA and the corresponding figures were 64 sec at 117 iterations
if ANKA-H program.

5. FINAL REMARKS

Neural procedures open doors to formulation of new types of computer programs. In the paper the
back-propagation neural network is discussed as a neural procedure for the simulation of return
mapping algorithm operation. The network trained and tested off line on numerical patterns was
incorporated into a FE program. The hybrid NN/FEM program ANKA-H was verified on two
examples of plane stress state. It was stated that the accuracy of results by the hybrid and purely
computational programs, ANKA-H and ANKA respectively, are very close to each other.

It is rather difficult to conclude an opinion on the efficiency of the hybrid program. The compu-
tational time of neural procedure is in average about 40-50% of the time consumed by the numerical
procedure. The execution time related to the analysis of structures by ANKA-H can be even about
50% shorter than that achieved by ANKA. A deeper explanation of the mentioned computational
profits which gave the the hybrid program needs further investigations.

In the paper a very simple model of material is considered, cf. Section 2.1. A promising prospect
is that neural procedures can be easily formulated for much more complex materials. It is worth
emphasizing that not only theoretical models of material but also experimental data can be used
for the training and testing of corresponding neural networks.

Other prospects are related to the application of neural procedures on the cross-sectional level,
i.e. with respect to generalized variables, cf. [18], then to the analysis of the finite element charac-
teristics [20] and as solvers for the whole FE system with bilateral or unilateral constraints [5].

The research associated with the above mentioned implementation of hybrid neural-
network /finite-element programs is developed at the Institute of Computer Methods in Civil Engi-
neering of the Cracow University of Technology.
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