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The problem of sensitivity of viscoelastic response with respect to material parameters is studied in
the paper. The direct differentiation method is employed. The FEM-related implementation issues are
discussed. A number of numerical examples illustrates the theory.

1. INTRODUCTION

Constitutive modeling of materials exhibiting viscoelastic behaviour, together with applications
of the finite element method to solve corresponding initial/boundary-value problems, can now be
considered a classical subject with some three decade history, see [1] for a extensive in-depth review,
for instance.

The objective of the current work is to discuss a constitutive formulation similar in spirit to
those presented in [1, 2] and elaborate on it to put explicitly forward a formulation suitable for the
so-called direct differentiation method (DDM) of parameter sensitivity assessment.

We confine ourselves to isotropic materials characterized by only two distinct sets of relaxation
behaviour — one associated with the shear modulus and the other with the bulk modulus. No
difficulties with the sensitivity assessment are expected to emerge if more complex behaviour is
considered.

2. BASIC CONSTITUTIVE EQUATION

The following well known hereditary integral relationship between stress and strain is taken as the
constitutive equation defining the class of linear viscoelastic materials on hand:

;
deg (7’
0= [ Cigulr = 7' Seulr) av (1)
0

where 7 stands for the time coordinate while the dependence of all the functions on the spatial
coordinates zj is suppressed for compactness. The summation convention over twice repeating
indices is assumed to hold. The integrating functions Cjjki(T) represent relaxation moduli and are
expected to be decreasing functions of their argument. In fact, eq. (1) is based on the superposition
principle according to which the total stress at time 7 is obtained by superposing the effect at time
7 of all the strain increment at times 7/ < 7.

Linear viscoelasticity has the same limitations as linear elasticity: it is necessarily an approxi-
mate theory applicable only when the strain and rotation component are sufficiently small. Also,
linear elasticity can be regarded as the limiting case of linear viscoelasticity in which the relaxation
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functions are independent of 7. The isotropic form of the viscoelastic stress-strain relation is given
by

Cign(r) = 3 [C1(r) = Ca()) 8 + 5 C(r) ind + Gud] ©)

where C;(7), Ca(7) are independent relaxation functions and d;; is the Kronecker symbol. In the
interest of algebraic simplicity the relaxation behaviour is often represented as

~ T
Cijki(1) = Cijj + Cijki exp [—E] (3)
where C'i‘;-"kl are the so-called equilibrium moduli, @jkl the magnitudes of transient decay Fig. 1 and
o a relaxation time — only one relaxation time is considered in this section and later from section
4 onwards for convenience of notation but two (or more) of them as implied by the decomposition
of Eq. (2) can be handled with ease as shown in Section 3.

material moduli

Pt

time

Fig. 1. The physical meaning of the moduli

At 7 = 0 the moduli C;;; become, cf. Fig. 1
Df =~

Cijki(0) = Cigy = Cfa + Ciji (4)

known as the instantaneous (glassy) moduli. Using Egs. (3), (4), the constitutive relation (1) is

transformed to the form

[ 2 7 —1'1] den(r’)
Oij (T) = ‘0/ [C%okl + Cijkl exp [—— ” }] o dr’
r ~ T —1'11] dera (7'
" / [C%kl = Ciji [1 Bbuis [_ 0 ]H Sl,r(/ ) dr' = C?jklekl(T) = 0,(;) (5)
0

where the “creep” stress (difference between the purely elastic stress C%klekl based on the instanta-
neous moduli and the actual stress o;;) is defined as

0‘1(;)(7') = /Téijkl [1 — exp [—T _QTIH der(r’) dr’ (6)
0

dr’
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3. CONSTITUTIVE EQUATION WITH MULTIPLE EXPONENTIAL TERM

The constitutive equation with two exponential terms is considered in the form

2
Cijki(1) = A7) ij0k1 + () (Gikdj1 + Suadjn) = [EM(T) & H(T)] 8ij0kt + p(dirdji + 0udjk)

- % [Cy(7) = Ca(7)] s + -;—Cl(f) (8ik0j1 + Bk
2u(r) = CGi(7),

3xlr) = Ca(7),
de ( )
% = / 20l = )= 00
Okk /3f<; T—1) gkk d'r',
for which the relaxatlon moduli take the from
T T
Cijii(r) = Cfy + Cliy exp [_ _] + Cf exp [— _] (7)
Ql‘ Ok
where
Gott 5 T
p(r) =u +pexp|——|,
Ou
~ T
k(1) o= K% Kexp [——] ;
Ok

2
Cii(T) = |5h% = ”oo] 8ij0k1 + 1> (Gikjt + Gudjn),

X
N

s - T
—E—” 0ij0kt + i exp [— Z)—] dikdjt + durdjk

Cf‘jkl('r) = gﬁexp y ¢

9 b
= géij‘skl + (dirdj1 + 6il6jlc)] Ji exp [——T—} ;
L Ou
Chin(T) = —Kexp [—-T—] 0i50ki -
Ok

The glassy moduli are defined as

C%kl(T) % ijpkl * Czjkl( ) + ijkl("-), (8)
while the constitutive equation may be written as follows:

0i5(1) = Ciipiert — “or,(;) - KUZ(;) 9)
where

3
= T —1'|| dea (7’
“oz(]c) = /C;‘jkl [1 — exp [— o ” (Icilr(’ ) dr’

T —7'1] depa(7')
ff = [ G [t en[ 27| B e

All the derlvatlons discussed belowed for the constitutive equation with one relaxation time can
easily be extended to cover more general situations.
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4. INCREMENTAL FORM OF CONSTITUTIVE EQUATIONS

It is clearly possible to develop a finite element methodology based on the constitutive equations
(5), (6) — any such procedure will require solving a set of Volterra integrals of the type Eq. (6).
However, guided by the widely demonstrated efficiency of finite element time incremental schemes
a constitutive equation form suitable for such an approach is now looked for. It is emphasized that
up to the numerical accuracy both the schemes are fully equivalent, the latter (i.e. incremental) is
only believed to be less costly numerically. We begin with the observation that for any function

T

1) = [ o r)ar, (10)

0

under appropriate smoothness assumptions, we quite generally have

d dg(
e [ 2520
By applying this rule to Eq. (6) we arrive at
(c) (r) 17 7 —71'7] deg(7") . 1 & ©
d'r = Eo/ Cijkiexp|— . o [ ijkiekl(T) — 0y (T)] (12)

which is the time evolution equations for the creep stress or( °)
The constitutive description based on equations (5), (12) allows its easy incorporation in the

standard time stepping finite element algorithms. In the simple form of Eq. (5) the stresses cr( )
treated as some internal parameters whose time evolution is governed by, again quite stralghtfor-
ward, Eq. (12).

5. COMPUTATIONAL ISSUES

An implicit time integration algorithm will be used to advance the solution in time 7, for spatially
discretized problem described by means of the virtual work principle. Assuming that the virtual work
principle is satisfied at the beginning of a typical time step ¢ — ¢ + At (which amounts to saying
that the equilibrium and stress boundary conditions are satisfied in a weak sense at t), the FEM
solution generates the incremental nodal displacements which are then used to compute stresses and
other field variables. Corresponding to the end of the step the so computed stresses will generally
not satisfy principle of virtual work at ¢ — t 4+ At which necessitates iteration improving the
incremental displacement until the virtual work equation is satisfied within an acceptable tolerance.

The basic ingredients required by the above algorithm are the time integration scheme and the
consistent (algorithmic) stiffness matrix assuring quadratic convergence of the iterative procedure.
The implicit time integration of the constitutive equation to be performed at each spatial integration
point within the FEM methodology is based on using the backward Euler scheme to compute the
end-of-the-step value of the creep stress by Eq. (12) according to

t+Atg(e) _tgle) 1 t+AL. _ t+AL
_1 _ (e)
= : [Er+ate o] (13)

t+At

resolved for o9 to yield

1 1.1 to.(c) é t+Ats
LRAR L (¢) (Ll oy, o : 14
5 [At+ ] [At E A 5 s
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The constitutive equation (5) is then used as
t+Ato_ s CO H—Ate - t+Ato,(c) (15)

It is seen by Egs. (14), (15) that once the incremental strain +4% is computed, no iteration at
the integration point level is needed to calculate the value of t+Atg  Also the tangent operator

consistent with the time integration scheme adopted has the form

bras i e AtC
C' = e = 0—[— —] i 39 (16)
9 tHate At 0 At + o
The constitutive equation may be rewritten as
1 1] [tel | & it
t+At, _ cOt+Atg _ | = 4 = — O* At _ 2 ¢t (o)
o € [At+ ] [At + ” € —At+ga (17)
The global equilibrium is enforced at ¢ + At by using the virtual work equations in the form
/ 14T e dQ = / p LT 5udQ + / T 6u 460 (18)

Q MNg

in which pf and t are the volumetric and boundary surface load vectors acting upon the system.
By introducing in Eq. (18) the standard finite element displacement approximation as

u = Nq, Au = NAq, € =Bq

and substituting Eq. (17) we arrive at

3 b
5q — [ = AtL/ BdQ}

(tq+ Aq)T L/BTCOB dQ

¥e10349 541 P
—[—+ ] g+ Aglt /B CB dQ1| iq
At
i L p(tf+Af)TNdQ} éq + / ('t + At)TN dOQ, | dq. (19)
0Ny
Introducing the notation
trarg” = / p(tf+Af)TNdQ} 6q + / (tt + At)T N doQ, | dq, (20)
00
e / BTC'Bd0| ! (21)
L)
9 = | [BTEBAR| f+ i | [ BT a0 (22)
At+p At+g
LQ B!
tF 451 tFO et tF(C), (23)
At F o~ ] At~
(B, = / TE&Bd i A 24
AF At+Q_QBC Q| Aq R (24)
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K — / BTC'BdQ, (25)
Q
- / BTGB dQ, (26)
Q
&b o
Wi T ~v* e
K _/B CBd2 =K’ - =K, (27)

Q

observing the symmetry of the above three stiffness matrices and using the arbitrariness of the
variation du allows to rewrite Eq. (19) as

At -
[KO ey QK] Aq = H+AtQ — g0 4 tF(C), (28a)
[KO iy f{] Aq = HAQ - 'F (28b)
At+ o ’
or, more compactly
K*Aq = tHAtQ — 3 tF(C)7 (292)
K*Aq = t+AtQ = tF, (29b)

By moving over to the right-hand side the term involving K we obtain

KOAq - t+AtQ i tFO i t+AtF(C)(Aq), (303)
K°Aq = *2tQ — 'F + AF()(Aq). (30b)

We observe that using the formulation given in Eqs. (29) reduces the procedure to just one non-
iterative solution of the linear algebraic equation system at each incremental step. In contrast, the
procedure based on Egs. (30) requires the direct iterative solution defined by the recursive formula

KOAQ(+D = t+atq _tg0 4 t+AtF(C)(Aq(i)), i=12.5". (31)

We also note that whereas K° remains constant during the whole process, the tangent matrix K*
shares this property only if the time step length remains unchanged.

6. SENSITIVITY ANALYSIS

We assume now that our interest lies in finding a computationally effective technique of evaluating
the gradient of any response functional with respect to a material parameter (say, h) entering the
theory — such a gradient is referred to as the response first order sensitivity. It has been shown
in the literature, see [3] for instance, that the gradient of any response functional can be expressed
in terms of the displacement sensitivity du/dh. Thus, our objective now is to develop a system of
equations to be used for the computation of du/dh — in the context of the FEM methodology the
goal is clearly fulfilled once a technique is developed to determine the value of dq/dh.

The so-called direct differentiation (DDM) method is used in this paper. The method requires
differentiation of the governing equation with respect to the parameter h — any material parameter
entering the theory can be substituted for h in specific applications.

For the sake of derivation compactness we observe that

dtF atF® gt
Ak Tan " an
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- 0 t
d F L/BT-ang} K“i—q,
ah
g [ ]f{t /BtaCBdQ
& o lAtto At+g

Kl 0 - [ 0 ] Tata.(C)
+8h[At+g] L/B iy o = e N i U

e dd
[ Al ]Kd_q
At+ o dh

dt+AtQ
dh ~ 0,
OK? o GQY
8 KZ B
0K  [.rdC
= = Q/ B athQ

Using the above results we now differentiate Eq. (29b) with respect to h to obtain

0 K G t t t (c)
g d8q _ [aK_[ At ]GK a[ At] }A _dF(dqdo- )

dh oh  |At+ol Oh Oh |At+o dh \ dn’ dh (32)
This equation can be solved for dAq/dh provided the right-hand side is known — in fact the solution
would be quite straightforward bearing in mind that the matrix K* is available in decomposed form
which has just been needed at the equilibrium solution stage. In order to see how the right-hand
vector in Eq. (32) can be effectively evaluated we observe that:

e the stiffness matrices K° and K* are by the definition explicitly given functions of the parameter
h,

e diq/dh and d*o(®)/dh are known and have only to be recovered from the computer memory.

To elaborate on the last statement we first note that the displacement sensitivity accumulation
along the solution path takes place in accordance with the update rule of the recursive form

t+At t

d , d'q i dAq (33)

dh dh dh
Thus, having the beginning-of-the-step sensitivity and adding to it the incremental sensitivity com-
puted by Eq. (32) allows to obtain the end-of-the-step sensitivity. This rule can obviously employed
at any time instant in the course of the process.
In order to see the way to compute the end-of-the-step value of do(© /dh on the basis of its value
the time increment earlier we differentiate Eq. (14) to obtain

dt+atg(c) 9 [ 1 1]—1 lta(c) C t+At€]
———= 5

“ e ¢ Tl N i 5
1 1rifated 1 1180 . ad 8%
=t [E‘FE] [—dh Z—t+5 EL- e+C an . (34)

All the terms on the right-hand side are known: the beginning-of-the-step values are recovered from
memory, while **Ate and dt+4%e/dh are easily computable from
t+At€ =B t+Atq (35)
d t+Ate d t+Atq

T =B an (36)
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Thus, using Eq. (34) we are able to establish the end-of-the-step value of d t+2te(%) /dh; since the
above discussion is valid for any ¢ (i.e. at any time step), the algorithms assures the effective way to
advance the sensitivity solution along the whole solution path. It is worth observing that the need
to carry along all the values of dq/dh makes it basically impossible to employ another technique of
sensitivity assessment known as the adjoint system method — for details justifying this important
statement the reader is referred to [3], though.

In case one is inclined to use the iterative equilibrium solution based on Eq. (31) the sensitivity
analysis would require iterations as well. This is clearly seen from the differentiated equation (14)
which may be presented as

dAq)  9KO . d'F  dAF© (dAq®
0 — (i4+1) _ _
K = = Aq —= = = =1 1,2,3.... (37)
where
dAF© 81 At 1=~ At 10K At 1~ dAq
dh _B_h[At+g} - [At+g]% q+[At+g]K dh - (38)

We summarize in Box 1 the (non-iterative) computational algorithm for sensitivity assessment
at a typical time step [¢,t + At].

Box 1. The (non-iterative) computational algorithm for sensitivity assessment at a typical time step
[t,t+ At]

(a) On the basis of known values of all the necessary functions (*q,*o (%)) at time ¢ form the
equation system (37) and solve it for Aq.

(b) Using Aq and, additionally, d‘q/dh and dto(®)/dh compute the incremental displace-
ment sensitivity by Eq. (32) with the already decomposed stiffness matrix K*.

(c) Update the function values

*8lq =‘q+Aq,

t+At,  _ B t+Atq’

dto© 1 1 =4 to(c) é t+At

—_— ==+ - + ,
dh [At g] At 0

t+Ato. =0 t+At€ o t+Ato,(c) (lf needed),

and sensitivity values

dt+Atq _ d tq qu
dh dh dh '’
dittAte _ Bd t+Atq
dh it W
dttatg(c)
e r.h.s. of eq. (34),
dt+Ata. 8Co Sl % dt+At€ dt+Ato.(c) g
i T8 e+C o a (if needed).

(d) Go to next step with **Atq, t+Atg (<) and d t+2tq/dh, dt+2te(©) /dh stored in memory.
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7. NUMERICAL ILLUSTRATIONS

The constitutive model presented in the paper has been implemented in an in-house object-oriented
finite element system WIMES32 written in C++ (BC 4.52) programming language. Computation
have been performed on a Cyrix P166 machine under Windows95 with 64 MB RAM.

7.1. Uniaxial test example

The plane stress configuration is shown in Fig. 2. The material constants are taken as E® = 500 kPa,
E*® = 100kPa, o = 1s, v = 0.3. Load history is shown in Fig. 3. 200 time steps of 0.2sec are
considered. Numerical results are displayed in Figs. 4-9.

4m

J/ 2m ,,L W

Fig. 2. FEM mesh with linear (Lagrange-type) 4 node elements — imposed displacement for relaxation test
and for creep test

load (creep test)
prescribed displacement (relaxation test)

1kN/m |1m

time

10s

Fig. 3. Load history
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The differences between the FEM results and the analytical solutions have always been within
1%.

The example is completed by considering three additional complex load histories cases reaching
the same value at time ¢t — oo Fig. 10. The results of the relaxation and displacement tests
demonstrate that the infinite time behaviour of the material is independent of the time history of
load (Fig. 11), the same applies to sensitivity results (Fig. 12).

7.2. Thick walled cylinder in plane strain

One quarter of the problem analyzed is shown in Fig. 13. The analytical solution has the form

et poa?b(l —v)(1—2v) (b 7_‘) D(t)

T a4 (1-2v)b2 r b

(39)

where

D(t) = Do + D1 (1 - e_i)

Epo
A N
1
D —_ —
0 EO

The numerical data were taken as v = 0.3, E® = 100kPa, E° = 500kPa, o = 1s, t = [0,40s].
100 time steps of At = 0.04s were considered. The time-constant internal pressure is taken as
p = 0.1kPa.

The numerical solution is shown in Fig. 14 and compared against the analytical curve. The
sensitivity results are displayed in Figs. 15, 16. Computation time using the consistent tangent
matrix was 5 min, while using the elastic matrix (iteration at each time step) it was 14.30 min. An
implict factor generating the above difference in the algorithm performance is the degree of shape

2m

2m

Fig. 13. One quarter of the thick walled cylinder
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Fig. 16. Sensitivity of displacement with respect to E*
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functions used the higher the degree, the greater the difference in performance due to computations
needed to form the right-hand side of Egs. (29), (31).

8. CONCLUSIONS

A linear viscoelastic material model including its parameter sensitivity and a finite element formu-
lation has been discussed.

The backward Euler integration algorithm for the constitutive equation appears to assure a stable
behaviour and good accuracy of the solution in both the creep and relaxation tests.

Two versions of the FEM equilibrium and sensitivity formulation have been developed and tested.
The first is based on the elastic stiffness matrix and needs global iteration at each time step while
the second based on the consistent tangent matrix is iteration-free. The first version is typically
more than two times slower than the second one.

Object oriented approach has assured an easy and fast implementation of the model in an object
oriented finite element system written in C++ programming language. Details of the implementation
will be described elsewhere.
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