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Root finding method for problems of elastodynamics
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This paper presents a simple and efficient method for finding complex roots of dispersion equations
occurring in many problems of elastodynamics. The method is characterized by high accuracy in root
finding and absence of restrictions on function representation. The essence of the method is explained
geometrically; initial guesses are found as the solutions to the appropriate problems of elastostatics.
Numerical solutions to dispersion equations are obtained for two elastic isotropic waveguides: a plate of
infinite cross-section and a rod of rectangular cross-section. For an infinite plate, the calculated results
are in full conformity with those obtained by Newton-Raphson and bisection methods. For a waveguide
of rectangular cross-section, the earlier unsolved problem of finding complex roots of dispersion equations
is solved by the proposed method.

1. INTRODUCTION

Study of steady-state waves in elastic waveguides and vibrations of solids of finite dimensions neces-
sarily involves the solving of the transcendental dispersion equations. A dispersion equation governs
a relationship between frequency, ω, and propagation constant, γ (γ = 2π/λ, λ is the wavelength),
for guided waves in an elongated medium

F (ω, γ) = 0. (1)

For an elastic medium, ω is always real while γ takes real, imaginary and complex values. For every
value of frequency Eq. (1) has an infinite set of pointlike solutions γ corresponding to propagating
(real γ) and non-propagating (imaginary and complex γ) modes. Solutions to the dispersion equation
are mapped on an ω versus γ plot in a multitude of dispersion curves (modes). Each curve originates
from ω = 0 and extends to infinity.

Root finding for dispersion equations is an intractable problem, even in spite of the advanced
development of computational techniques and methods. This is caused by both double infinities
(the number of modes and a theoretically infinite frequency range) and complexity of Eq. (1) that
often cannot be written in a closed analytical form. In engineering applications, a frequency range
is usually restricted to finite interval [0, ω̂]. However, a huge amount of computations should be
performed to find all solutions γi (i = 1, 2, . . . , N) to Eq. (1) for every value of ω in [0, ω̂]. To solve
this problem, iterative techniques based on linear interpolation [10] or extrapolation algorithms [9]
are usually used. They are very fast in finding a single root, but when two roots are in a close
proximity, such schemes become unstable [7]. Another approach to determination of the roots of
dispersion equations is based on slower but safer techniques, such as Newton-Raphson or bisec-
tion [13]. However, application of these methods is complicated when the function F in Eq. (1) is
represented in a non-closed form [14], for example, as the determinant of an infinite system [8].

For complex values of γ Eq. (1) can be written as a system of two nonlinear equations

f(ξ, η) = 0 , g(ξ, η) = 0 , (2)
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where γ = ξ + iη, f = Re [F (ω∗, γ)], g = Im [F (ω∗, γ)] for a given value of ω∗. In general, determi-
nation of the roots of Eqs. (2) is a complicated task always requiring additional information specific
to the problem under consideration. While solving a dispersion equation, as such information we
can use initial guesses at ω = 0 corresponding to solutions of an appropriate static problem. If,
in addition to good initial guesses, we have analytical expressions for functions and their deriva-
tives, the Newton-Raphson or bisection methods are rather efficient. More complicated algorithms
have a reputation of robustness even with a bad initial guess [14], but are rather difficult and
time-consuming.

This paper addresses an alternative method for solvin the system (2). The method successfully
combines the simplicity of realization with the absence of restrictions on the representation of
dispersion equations. Being a certain combination of the coordinate-wise step and bisection methods,
the proposed method is characterized by a local convergence and requires a sufficiently good trial
solution. As initial guesses the solutions to elastostatic problems are used. The method permits
convenient graphical interpretation and is more stable and faster in finding a single root than the
traditional techniques. The rate of convergence of the method has the lowest values at the dispersion
curve bends. The proposed method is rather efficient for the solving of the dispersion equations in
many elastodynamic problems.

2. DESCRIPTION OF THE METHOD

The solutions to Eqs. (2) are common points to the zero contours of functions f and g, which divide
the (ξ, η) plane into regions with positive and negative values of these functions. The idea of the
proposed method consists in the following. Starting from an initial guess and analyzing the behavior
of the zero contours, a solution is improved until a predetermined convergence criterion is satisfied.
The root finding process can be most conveniently explained geometrically.

Let (ξ0, η0) be a solution to Eqs. (2) at ω∗ = ω−hω, where hω denotes a step chosen along [0, ω̂].
If hω is sufficiently small, then at ω∗ = ω zero contours of functions f and g have a common point in
certain vicinity of (ξ0, η0) (see Fig. 1) according to the continuity property for dispersion curves [4].
Therefore, we can use (ξ0, η0) as an initial guess to solution (ξ∗, η∗) of Eqs. (2) at ω∗ = ω. Thus,
the method is locally convergent.

Fig. 1. Illustration of the method for finding the root (ξ∗, η∗) of Eqs. (2) with an initial guess (ξ0, η0)

Let hξ, hη be the steps along the Oξ, Oη axes. Draw the line ξ = ξ0 through (ξ0, η0). Then find

the points of intersection (ξ0, η
(0)
1 ) and (ξ0, η

(0)
2 ) for this line with the zero contours by the change of

sign for functions f and g while passing through the contours. Next, move from (ξ0, η0) both sides
along the Oξ axis and perform the described operations with (ξ0+hξ, η0) and (ξ0−hξ, η0). Finally,
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calculate the lengths of segments formed by three pairs of the points of intersection:

h(0) = |η
(0)
2 − η

(0)
1 | , h(1) = |η

(1)
2 − η

(1)
1 | , h(2) = |η

(2)
2 − η

(2)
1 | . (3)

If h(1) > h(0), h(2) > h(0) and h(0) ≤ hη in (3), then (ξ0,
η
(0)
2 +η

(0)
1

2 ) is a solution to Eqs. (2) to within
the accuracy h = max(hξ, hη). To refine the solution, the values of hξ and hη should be decreased.

If h(2) ≥ h(0) ≥ h(1) (or h(1) ≥ h(0) ≥ h(2)) in (3), then the solution is located to the right (or

left) of (ξ0, η0) along the Oξ-axis. Use (ξ0 + hξ,
η
(1)
2 +η

(1)
1

2 ) (or (ξ0 − hξ,
η
(2)
2 +η

(2)
1

2 )) as a next initial
guess instead of (ξ0, η0). The described process is iterated to convergence.

The method must succeed that is guaranteed by the continuity property for dispersion curves [4].
If there are two or more roots in the vicinity of the initial guess, one of them will be found depending
on the values of hξ and hη. Changing hξ and/or hη the remaining roots can be found.

In spite of the fact that in general the method is rather fast, there exists a ‘pathological’ input
of data that causes extremely slow convergence. Such cases can be easily recognized by fulfilment of

one of the conditions |η
(0)
1 | >> |η0| or |η

(0)
2 | >> |η0| and demand special consideration. Graphically,

this means that the zero contours are parallel or almost parallel to the coordinate axes. In this case
lines ξ = η instead of ξ = const should be used.

It only remains to discuss practical criteria for determination of initial guesses at the first iteration
when ω = 0. These are the solutions to appropriate static problems. Since the zero contours of
functions f and g may be located arbitrarily, initial guesses should be sufficiently good to provide
a local convergence of the method. If the governing equation of the static problem can be written
analytically. Then the Newton-Raphson, bisection or other methods can be used for root finding.
In more complicated cases the most straightforward way is to map out the zero contours of both
functions and to find the roots as points of intersection of the contours.

3. APPLICATION OF THE METHOD

To illustrate the capabilities of the proposed method, we apply it to the problem about determination
of complex roots of dispersion equations. Let us consider harmonic longitudinal waves in two elastic
isotropic waveguides: an infinite plate and a waveguide of rectangular cross-section (a rectangular
waveguide).

Dispersion equation for an infinite plate is attributed originally to Lord Rayleigh (1888). This is
the fundamental equation, the roots of which are also eigenvalues associated also with vibrations of
circular disks [1] or rectangular rods [12]. Solutions to this equation were obtained and well studied
in the sixties of the past century [11, 13]. Here complex roots of the equation are calculated to
illustrate the accuracy of the proposed method.

In a rectangular waveguide the presence of two pairs of boundary faces leads to considerable
complication of the wave propagation process compared to that in an infinite plate. It is known [4,
5, 12] that for a rectangular waveguide with arbitrary side ratio the exact solution in a closed form
cannot be constructed. As a result, various approximate and numerical approaches were developed
to derive the dispersion equation in this case. The most powerful tool for performing the guided
wave analysis in a rectangular waveguide is an analytical method of superposition [4, 8]. The use
of this method permits to find the dispersion relation as the determinant of an infinite system of
equations. Study of asymptotic behavior of unknowns in the system enables developing effective
reduction methods for such systems [4] providing reliable results in a wide frequency range. In this
paper complex roots of the reduced systems for longitudinal waves are calculated by means of the
proposed method. To the author’s knowledge, similar results are known only for a static problem
for a rectangular rod [15], whereas for a dynamic problem there are no reliable solutions in the
literature.
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3.1. Infinite plate

Let us consider an elastic plate −b ≤ x ≤ b, −∞ < y, z < ∞ made of homogeneous isotropic
material that is characterized by density ρ, shear modulus G, and Poisson’s ratio ν, or by velocities
of compressional c1 =

√

2(1− ν)/(1− 2ν)c2 and shear c2 =
√

G/ρ waves. Plane waves propagating
in the positive z direction are assumed to be harmonic, that is U(x, z) = u(x) exp(i(γz − ωt)).
A solution to the Lamé equations of motion describing small motions of the elastic medium can be
obtained in terms of the scalar and vector potentials by the method of separation of variables for
waves symmetric and antisymmetric with respect to the middle plane of the plate x = 0 [2, 11].
Further we will discuss only symmetric (longitudinal) waves. Satisfaction of the zero stress boundary
conditions at the traction-free faces x = ±b leads to the following dispersion equation (further details
on the solution process can be found elsewhere [2, 4]):

F (γ,Ω) = (2γ2 − Ω2) cos
πα

2
sin

πβ

2
+ 4αβγ2 sin

πα

2
cos

πβ

2
= 0 . (4)

Here α2 = Ω2/k2 − γ2, β2 = Ω2 − γ2, k2 = 2(1 − ν)/(1 − 2ν), Ω = 2ωb/πc2 is the nondimensional
frequency.

An efficient method for the analysis of the roots of Eq. (4) and their roots was proposed almost
simultaneously by Mindlin [11] and Holden [6]. A large amount of complex roots of Eq. (4) was
calculated by the secant method [13]; asymptotic formulae describing behavior of complex roots
with large magnitudes were derived by Zlatin [17]. It was also shown [11] that in a plate at any
frequency ω, there exists a finite number of waves with real and imaginary values of γ and an infinite
number of waves with complex propagation constants.

Transcendental equations like Eq. (4) are solved quite easily with the assistance of modern
computing devices, even for complex roots. We consider the dispersion equation for an infinite plate
in order to both verify the proposed method and analyze properties of dispersion curves that are
rather similar for all elastic waveguides.

Solutions to the appropriate static problem for an infinite plate are used as initial guesses for
complex roots of Eq. (4). If in Eq. (4) Ω is allowed to approach zero in such a way that γ remains
finite, the following equation is easily obtained [4]:

F (γ, 0) = sinh πγ + πγ = 0 . (5)

A characteristic feature of this equation is the independence of its roots from Poisson’s ratio ν. The
values of the complex roots of Eq. (5) can be found elsewhere [4, 13, 17]. The similar equation for

Fig. 2. Zero contours for F (γ, 0) in Eq. (5)
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the static problem for an anisotropic elastic plate was derived and studied in detail by Wojnar [16].

Zero contours for the functions in the right-hand side of Eq. (5) are presented in Fig. 2. Contours
Re [F (Γ, 0)] = 0 are indicated by solid lines and contours Im [F (Γ, 0)] = 0 by dashed lines. Here
and in the following nondimensional propagation constant Γ = 2γb/π is used for convenience. The
relatively simple layout of the zero contours explains the simplicity of the root finding process.

Table 1 presents the first three complex roots of Eq. (4) for various values of frequency Ω at
Poisson’s ratio ν = 0.31. As the frequency increases from zero to a certain finite value, these

Table 1. Complex branches of dispersion curves for longitudinal waves in an infinite plate, ν = 0.31

Ω The first branch The second branch The third branch

0.20 0.7174+1.3315i 0.9881+3.4061i 1.1305+5.4323i

0.60 0.7248+1.2438i 0.9909+3.3757i 1.1321+5.4134i

1.00 0.7325+1.0499i 0.9958+3.3140i 1.1348+5.3755i

1.40 0.6951+0.6834i 1.0015+3.2191i 1.1382+5.3180i

1.73 0.5414+0.1855i 1.0050+3.1135i 1.1407+5.2552i

3.50 0.7678+1.9236i 1.1022+4.6462i

3.86 0.2402+1.4069i 1.0620+4.4527i

4.60 0.8585+3.9460i

5.15 0.2061+3.4272i

roots form complex branches of dispersion curves for longitudinal waves in the infinite plate. The
comprehensive analysis of dispersion equation (4) implemented in [4] shows that complex branches
join at a minimum of the real branch and at a maximum of the complex one; their intersections are
orthogonal. Analogous statement is held for imaginary and complex branches of the curves. Complex
branches are also orthogonal to the Ω = 0 plane. The performed calculations completely confirm
these statements, and moreover, the continuity and smoothness of the complex branches. The same
properties inhere in antisymmetrical waves in plates and, in general, in all types of harmonic waves in
elastic waveguides of various cross-sections. The knowledge of these properties enables considerable
simplification of the problem of finding complex roots and construction of dispersion curves for
waveguides of finite cross-section, for example, for a rectangular waveguide.

Numerical results obtained by the proposed method at ν = 0.30 for symmetric and antisymmetric
waves in the infinite plate agree within the accuracy of 10−4 with the data given in [13].

3.2. Rectangular waveguide

Let us consider harmonic waves with displacement vector U(x, y, z) = u(x, y) exp(i(γz − ωt)) in
a rectangular elastic waveguide −a ≤ x ≤ a, −b ≤ y ≤ b, −∞ < z < ∞ with the same material
properties as for the considered infinite plate. Dispersion equations for waves in the rectangular
waveguide can be derived analytically by means of the superposition method [4, 8]. The principal
idea of the method consists in using two ordinary Fourier series in terms of complete systems
of trigonometric functions in the coordinates x and y. Both series satisfy identically the Lamé
equations of motion within the rectangular cross-section and have six sets of Fourier coefficients
sufficient to implement the zero stress boundary conditions at the free waveguide faces. Because of
interdependency each coefficient of one series depends on all coefficients of another series and vice
versa. Therefore to get the solution to the problem one requires to solve an infinite system of linear
algebraic equations [3]. For longitudinal waves symmetric with respect to the middle planes of the
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waveguide, an infinite system is written as follows:

Y L
k a∆

(1)
k (q) + εk

∞
∑

n=0

XL
n bn

[

2α2
nβ

2
k

α2
n + q21

−
2α2

nβ
2
k

α2
n + q22

−
Ω2
0

(
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2

)

α2
n + q21

]

= 0,

XL
n b∆

(1)
n (p) + εn

∞
∑
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Y L
k ck

[

2α2
nβ

2
k

β2
k + p21

−
2α2

nβ
2
k
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−
Ω2
0

(

2γ2 − Ω2
2

)

β2
k + p21

]

= 0 , k, n = 0, 1, 2, . . . ,

(6)

where the notation

∆
(1)
k (q) = ck

{

q2
(

γ2 + β2
k

)

coth q2a−

(

γ2 + β2
k + q22

)2

4q1
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}
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{
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n
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(

γ2 + α2
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}

,

εi =

{

1
2 , i = 0;

1, i > 0;
, ck =

{

1, k = 0;
1
β2
k

, k > 0;
, bn =

{

1, n = 0;
1
α2
n

; n > 0;
,

αn =
nπ

a
, βk =

kπ

b
, p2i = α2

n + γ2 −Ω2
i , q2i = β2

k + γ2 − Ω2
i , i = 1, 2,

Ω1 =
ω

c1
, Ω2 =

ω

c2
, Ω2

0 =
νΩ2

1

1− 2ν
.

is introduced, and Xn, Yk (n, k = 1, 2, . . .) are unknown coefficients. The only non-trivial solutions
for Xn, Yk are those, for which the determinant of system (6) is equal to zero. The equation formed
by expanding the determinant is the required dispersion equation, which for a given value of a/b
relates ω to γ with Poisson’s ratio ν as a parameter.

In a square waveguide owing to the diagonal symmetry of the cross-section, longitudinal waves
are divided into pure longitudinal L modes with displacements symmetric relative to the diagonals,
ux(x, y) = uy(y, x), and the first screw S1 modes that are antisymmetric relative to the diagonals,
ux(x, y) = −uy(y, x) [5]. In this case the number of unknowns as well as the number of equations in
system (6) is halved, since Xi = −Yi for L-modes and Xi = Yi for S1-modes, where i = 0, 1, 2, . . ..

For proper reduction of infinite system (6) to a finite one an important role plays the law of
asymptotic behavior of the unknowns with large values of indices [4]:

lim
n→∞

Xn = lim
k→∞

Yk = A, (7)

where A is as yet unknown, in general, non-zero constant depending on frequency ω. A detailed
description of the reduction procedure and determination of A are given in [4]. Here it is only worth
to note that the solution of the finite system obtained by taking into account relation (7) provides
the knowledge of all coefficients Xn and Yk. This enables considerable increasing of the accuracy in
finding the roots of the dispersion equation.

Numerical evaluation of the roots of Eq. (6) is carried out for a square waveguide. Real and
imaginary roots were calculated and analyzed in [3, 8]. Here a special attention is paid to complex
roots that, to our best knowledge, were not studied earlier.

Solution to the appropriate static problem for a rectangular rod was obtained recently by means
of a finite element-transfer matrix procedure [15]. It was established that complex roots at Ω = 0
depend on Poisson’s ratio ν as well as on sides ratio a/b. The complicated layout (see Fig. 3) of zero
contours makes the root finding process very difficult. To determine complex roots at a non-zero
frequency we use the solutions given in [15] at ν = 0.25. For other values of ν the initial guesses
were determined as points of intersection of corresponding zero contours.

Complex roots of Eq. (6) for various frequencies Ω are presented by complex branches of dis-
persion curves in Fig. 4 for pure longitudinal and screw modes in a square waveguide at different
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Fig. 3. Zero contours of the function entering the dispersion equation (6) for a square waveguide at Ω = 0,
ν = 0.25

(a) (b)

(c) (d)

Fig. 4. Dispersion spectra for pure longitudinal L and screw S1 modes in a square waveguide: (a) L-modes
at ν = 0.3, (b) L-modes at ν = 0.125, (c) L-modes at ν = 0.25 ,(d) S1-modes at ν = 0.25

values of ν. Each dispersion curve is designated by the symbol according to the symmetry type with
the superscript in parenthesis representing the order of the mode. A bar over the symbol indicates
that the reflection of a particular branch in the Re [Γ] = 0 plane is shown. It is easy to see that



10 A. A. Krushynska

behavior of complex curves in spectra for pure longitudinal waves is almost independent from Pois-
son’s ratio. In the spectrum for screw modes in Fig. 4(d) there exists a complex branch joining the
real branch with the imaginary one instead of the Ω = 0 plane. The proposed method allows to
determine this branch. In this case accuracy of the obtained results is confirmed by the fact that
the calculated branch joins the extrema of real and imaginary branches, as it was assumed by the
properties mentioned above.

4. CONCLUSION

This paper presents a rather efficient method for finding complex roots of dispersion equations.
The method is characterized by the simplicity of realization and the absence of restrictions on
the representation of equations. It is shown that the results obtained by this method are in good
agreement with the data calculated by other methods for an elastic isotropic infinite plate. Calcu-
lations performed for complex roots of the dispersion equation for a rectangular waveguide, to our
best knowledge, are completely new results. It has been established that these roots form smooth
branches of dispersion curves with the properties typical for all elastic waveguides. The proposed
method can be applied to problems dealing with waveguides of other cross-section as well as to
vibration problems of plates and shells.

ACKNOWLEDGEMENTS

The author would like to express her appreciation to Prof. V.V. Meleshko (Kiev National Taras
Shevchenko University, Kiev, Ukraine) for helpful suggestions and valuable discussion during the
course of this work.

REFERENCES

[1] R.T. Aggarawal. Axially symmetric vibrations of a finite isotropic disk. J. Acoust. Soc. Amer., 24: 463–467,
1952.

[2] B.A. Auld. Acoustic fields and waves in solids. Robert E. Krieger Publishing, Malabar, 1990.

[3] A.A. Bondarenko. Normal wave propagation in a rectangular elastic waveguide. In: Proceedings of the 22nd
International Congress of Theoretical and Applied Mechanics (ICTAM2008), Adelaide, Australia, August 24–30,
2008, paper No. 10932, CD-ROM, 2008.

[4] V.T. Grinchenko, V.V. Meleshko. Harmonic vibrations and waves in elastic bodies. Naukova Dumka, Kiev, 1981.
[5] W.B. Fraser. Stress wave propagation in rectangular bars. Int. J. Solids Structures, 5: 379–397, 1969.

[6] A.H. Holden. Longitudinal modes of elastic waves in isotropic cylinders and slabs. Bell System Tech. J., 30:
956–969, 1951.

[7] F. Honarvar, E. Enjilela, A.N. Sinclair. An alternative method for plotting dispersion curves. Ultrasonics, 49:
15–18, 2009.

[8] E.V. Kastrzhitskaya, V.V. Meleshko. Propagation of harmonic waves in an elastic rectangular waveguide. Int.
Appl. Mech., 26: 773–781, 1990.

[9] M.J.S. Lowe. Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason.
Ferroelect. Freq. Cont., 42: 525–542, 1995.

[10] A.K. Mal. Guided waves in layered solids with interface zones. Int. J. Eng. Sci., 26: 873–881, 1988.
[11] R.D. Mindlin. An introduction to the mathematical theory of vibrations of elastic plates. World Scientific,

Singapore, 2006.

[12] R.W. Morse. Dispersion of compressional waves in isotropic rods of rectangular cross-section. J. Acoust. Soc.
Amer., 20: 833–838, 1948.

[13] D.S. Potter, C.D. Leedham. Normalized numerical solutions for Rayleigh’s frequency equation. J. Acoust. Soc.
Amer., 41: 148–153, 1967.

[14] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling. Numerical recipes in C: The Art of Scientific
Computing. Cambridge University Press, Cambridge, 1992.

[15] N.G. Stephen, P.J. Wang. Saint-Venant decay rates for the rectangular cross-section rod. Trans. ASME. J.
Appl. Mech., 71: 429–433, 2004.



Root finding method for problems of elastodynamics 11

[16] R. Wojnar. Homogeneous solutions and energy of a linear anisotropic elastic strip. Arch. Mech., 40: 857–869,
1988.

[17] A.N. Zlatin. On the roots of certain trasncendental equation occurring in the theory of elasticity (in Russian).
Prikl. Mekh., 16: 69–74, 1980.


