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The single mode equation of motion of a suspended elastic cable under planar excitation is considered,
and numerical exploration is focused on the chaotic oscillations which occur in a certain domain of system
control parameters. Bifurcations of the subharmonic resonance oscillation and their evolution into chaotic
attractor are studied. Then the global bifurcation theory is applied to determine the critical system
parameters for which the chaotic attractor undergoes the subduction destruction in the “boundary crisis”
scenario. The post-crisis transient motion, which in this case becomes the generic long-lasting chaotic
system response, is also studied.

1. INTRODUCTION

The nonlinear planar oscillations of a suspended elastic cable were studied extensively in a series
of papers by Rega and his associates [1, 2, 11, 12]. An essential progress in the investigation of
strongly nonlinear and chaotic phenomena was due to the reduction of the original partial integro-
differential equation of motion to a single-mode motion mathematical model. This model made it
possible to apply the theory of bifurcation and the methods developed recently for chaotic dynamical
systems [6, 10, 20]. The mathematical model takes the form of the second order ordinary differential
equation with a forcing term. The main features of the relevant dynamical problems are associated
with the presence of both quadratic and cubic nonlinearity in the equation of motion.

In this type of dynamical system the chaotic attractor was found for the first time by Ueda [19]
with the aid of analog computer. Further studies revealed that various interesting bifurcational
phenomena were closely related to the 2T-periodic resonance, and that the concept of stability limit
of the periodic solutions of different periods plays an essential role in understanding the occurrence
of the chaotic oscillations. Due to this observation some relations between various periodic solutions
studied by the approximate analytical methods and the chaotic solution obtained by computer-based
method were established [14, 16, 17].

In the earlier literature an attention was focused on the evolution of the periodic subharmonic
solution into chaotic motion, i.e. on the bifurcation and explosion of the chaotic attractor. Little
attention was paid to the mechanism of destruction of the chaotic attractor (crisis), its disappearance
from the phase space and the further post-crisis system response.

The goal of this paper is twofold:

1. First we try to explore the bifurcation of the system response taking into account both branches
of the subharmonic resonance — the nonresonant and the resonant isolated solution branch. In
the earlier literature bifurcation of only the nonresonant branch was studied, the branch which
evolves from the nonresonant T-periodic solution. The first period-doubling bifurcation of the
solution gives rise to the nonresonant branch of the 2T-periodic subharmonic resonance, and
the further series of bifurcations (observed at decreasing the driving frequency) leads to the
generation of the chaotic attractor. But the theory and computer simulation reveal an existence
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(and coexistence) also of the isolated, resonant branch of the subharmonic resonance solution.
In the paper we try to explore the sequence of bifurcations that occur at the resonant branch,
and to establish a relation between the chaotic attractor that evolves from the nonresonant T-
periodic solution and the chaotic one, which, possibly, evolves from the resonant branch of the
2T-periodic subharmonic resonance.

2. Then we investigate the mechanism of destruction of the chaotic attractor by the use of the
global bifurcation theory. We show that the destruction is due to the “boundary crisis” of the
chaotic attractor, the phenomenon which originally was defined as “a collision of the chaotic
attractor with an unstable orbit not on the attractor” [4, 5]. Further studies revealed that the
phenomena can be also defined in terms of the global bifurcation theory. First, it was proved that
the boundary crisis is also defined by the homoclinic bifurcation of the unstable orbit not on the
attractor, the orbit whose stable invariant manifolds form a boundary of the basin of attraction
of the chaotic attractor. In the paper we verify by numerical computation another theoretical
approach to the boundary crisis. We show that the boundary crisis can be also defined as the
heteroclinic bifurcation of the unstable orbit not on the attractor and the principal saddle of the
chaotic attractor [8].

We also want to draw an attention on the post-crisis response of the system — the response that
belongs to the category of the long-lasting, unpredictable chaotic transient. This class of motion
was already studied by the Authors in association with the occurrence of fractal basin boundaries
of coexisting periodic attractors [18]. In this paper we show and illustrate the other case, when the
chaotic transient motion becomes a generic response of the system.

In Section 2 we begin with a review of the derivation of the single-mode equation of motion of a
suspended elastic cable, and of the approximate analytical results (amplitude-frequency character-
istics) of the T-periodic (primary resonance) and 2T-periodic (subharmonic resonance) solutions, as
well as of the early analog-computer results indicating occurrence of chaotic oscillations. Although
in recent publications additional chaotic motions zones were found which appeared to be related to
the 3T-periodic subharmonic resonance, only that one which occurs close to the stability limit of
the 2T-periodic resonance occupies a significant region in the system control parameter plane and
is considered in the present paper [12]. In Section 3 we discuss our main results concerning the bi-
furcation diagram of the both (resonant and nonresonant) branches of the 2T-periodic subharmonic
resonance, the theoretical aspects of the boundary crisis of the chaotic attractor, and the post-crisis
chaotic transient motion.

2. EQUATION OF THE SINGLE-MODE MOTION OF A SUSPENDED ELASTIC CABLE AND
THE APPROXIMATE ANALYTICAL STUDY

We consider a heavy elastic cable suspended between two fixed supports at the same level (Fig. 1).
The single-mode motion of the system subject to planar excitation was derived by Benedettini
and Rega [1]. The initial state equilibrium configuration C*, which is assumed as a referenced
configuration in the zy plane, is represented by a parametric function y(s), s being a curvilinear
abscissa. The varied configuration C” occupied by the cable under action of a vertical distributed
load p(s,t) is described by the horizontal and vertical displacement coordinates u(s,t), v(s,t) of a
point P(s).

The equations of motion of the cable are obtained by the use of the extended Hamilton’s principle
(for details we refer the reader to [1]). The following assumptions are made:

(i) the static equilibrium configuration of the cable is described through parabola

v=afi- ()}
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Fig. 1. Static and dynamic cable configurations

which entails d; ~ d, and T ~ H, H standing for the horizontal component of the initial
tension, T" — for the cable tension in the initial configuration;

(i) the gradient of the horizontal component of the dynamic displacement is negligible with respect
to unity, i.e. moderately large rotations occur in the cable motion;

(iii) the longitudinal inertia forces mii are neglected.

Under these assumptions the cable motion can be described by the unique partial integro-
differential equation in the vertical displacement v (s, t)

mi — {H1')+ [ETA] (y'+v')/t

0

[
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where the prime states for /0z and the dot — for 8/0t; E, A and m denote the elastic modulus,
the cross sectional area and the mass per unit length, respectively, and § is a viscous damping
coefficient per unit length.

Equation (1) is accurate for studying suspended cables used in overhead transmission lines for
which the sag-to-span ratio d/l = 1/20, H/EA = O[(d/)?], and the dynamical displacement com-
ponents are, respectively, u = O(ed?/l) and v = O(ed), with € being a small parameter of the order
of amplitude.

A nondimensional form of the equation of motion is obtained by introducing the following nor-
malized variables:
l2
-, 2

2:%, 5:2, f=wgt, o=
where wq is the natural frequency of the linearized system (1). For the sake of simplicity, the sign
of tilde will be omitted in the subsequent expressions.

By representing the displacement through the eigenfunction ¥(z) corresponding to the frequency
wp , and a time function z(¢), and by considering a monofrequent harmonic excitation of frequency
w with the given spatial distribution ®(z),

6w0l2
H )

i~

pi=

T

v(z,t) = ¥(2)z(t), p(2,t) = ®(2)P coswt, (3)

one can apply the conventional Galerkin projection method and arrive at the following single ordi-
nary differential equation of motion in the variable z,

i+ hi + Q%z + apz® + a3z® = F cos wt, az > 0; 4)

where the coefficients h, Q% , ay, a3, F are uniquely determined by the parameters of Egs. (1), (3)
and the shape functions ¥(z), ®(z).
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By applying the change of variables [7],
T =2+ 2, : (5)
3043

Eq. (4) is reduced to the form

&:‘1+hi}1+Cl2$1+(13.’£?=P0+P1COSQ}t, (6)
where
o s dgetable gebit vl pygtheddy P=F (7)
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Equation of the single-mode motion of the elastic cable in the form (4) is suitable for our numerical
analysis; the transformed equation (6) enables us to relate the present results to those obtained
earlier by the use of analog computer and the approximate analytical methods [14, 17, 19].
The potential energy V(z) of the system governed by Eq. (4),
1 4

1 1
Viz) = —2-9(2)1‘2 + 5(12:1’:3 + Zagm ,

possesses single equilibrium position z, at F' = 0,
z,.= 0,

which is stable:
d*v

dz?

=S0.
=0
The corresponding equilibrium position of the system governed by Eq. (6) is biased due to the
action of the constant force P,. For instance, at P, = 0, P, # 0 and C? = 0, the equilibrium
position is given by

Z1e = ¢/ Fy-
In this case, by the successive change of variables,
z2 =z1 + Py,
Eq. (6) can be reduced to the form
&g + hiy + o3 = Py + Py coswt. (8)

One can also arrive at Eq. (8) from Eq. (4) under the following assumptions [17]:

Q2=\3/ 02; a2=\3/P0; az =1, $2=:L‘+3P0.

The first reports on the occurrence of chaotic oscillations in the system governed by Eq. (8)
is due to Ueda, 1980 [19]. By the use of analog computer he investigated the system response at
three different values of the parameter P, (Py = 0.020; Py, = 0.030; Py = 0.045), with the other
coefficients kept constant: P; = 0.16, h = 0.05, and showed that in certain region of the control
parameters of the system the periodic oscillation evolves into aperiodic and unpredictable chaotic
response.

Further investigations based on the approximate analytical methods combined with the analog
computer study brought the observation that the zone of chaotic motion is related to the stability
limit of the 2T-periodic subharmonic resonance, i.e. chaos occurs in the neighborhood of the critical
system parameters for which, in weakly nonlinear system, the 2T-periodic solution loses stability
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Fig. 2. Schematic diagram of the amplitude—frequency curves of the approximate periodic solutions in the
region of the 1/2 subharmonic resonance

in favor of the primary resonant T-periodic solution. In this section we recall and review these
problems, because the analysis of periodic solutions appeared to be an essential step in the further
development of knowledge and understanding of the phenomena of chaotic oscillations in the single-
well potential, dissipative nonlinear oscillator driven by periodic force.

Our present analysis relates to the system governed by Eq. (8) with the coefficients of Ueda [19],
ie:h=0.05 C?=0,a3 =1, P, =0.16, P, = 0.045. The equivalent coefficients in Eq. (4) are:
h =0.05, 2% = 0.38, a» = 1.067, a3 =1, P, =0:16.

We begin with the schematic diagram of the amplitude-frequency curves of the approximate
periodic solutions, shown in Fig. 2. For the primary, T-periodic resonance the first approximate
solution is assumed in the form

z5(t) = z5(t + T) = Cp + C'sin(wt + ¢1), 9)

and for the subharmonic, 2T-periodic resonance the solution is put as
z4(t) = z5(t + 2T") = Cp + C cos(wt + ¢1) + Asin(%t + ¢2), (10)

where the amplitudes A, Cp, C and the phase angles @1, @2 are determined by the harmonic balance
method [7, 15]. The dashed branches of the amplitude—frequency curves C = C(w), A = A(w) denote
unstable solutions (saddles). Points of vertical tangents snA, snB, snC correspond to the stability
limits, or, in terminology of the bifurcation theory, to the saddle-node bifurcations. Due to the
nonlinear term in the equation of motion (6) the resonance curves exhibit “nonlinear resonance
hysteresis”, i.e. at certain zone of the driving frequency w two stable solutions — the resonant and
nonresonant ones — coexist; they are denoted as A, , C, and A, , Cy, respectively.

It was found that at the low values of the coefficient Py, e.g. Pp = 0.20, the system response
examined by analog computer was very close to that assumed by the first approximate solutions,
given by Egs. (9), (10). If the computer simulation was started at w > ws at zero initial conditions
and the driving frequency was gradually decreased, the system exhibited first the nonresonant low
amplitude primary resonance solution Cj, and then, at w = wy the subharmonic term A, appeared,
so that the T-periodic solution bifurcated into the 2T-periodic resonance. At the stability limit snB
the system exhibited jump to the high amplitude primary resonant solution C . The isolated branch
of the subharmonic resonance curve (4, in Fig. 2) was not considered in that time.
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At the value Py = 0.45 the Poincaré map of the response revealed the existence of the strange
attractor in the system [19]. This zone of the driving frequency where the chaotic motion occurs is
schematically depicted in Fig. 2 and denoted as CH. The region marked as G indicates the zone of
irregular response, undergoing a series of various bifurcations, but it was not recognized as “chaos”
in the early stage of investigations.

In Fig. 3 we illustrate the coexistence of the chaotic attractor and the T-periodic primary reso-
nance orbit in the phase plane z — z, in the zone of frequency denoted as CH. The chaotic attractor
is represented by a Poincaré map of the chaotic response (sampled trajectory), while the T-periodic
solution is shown as the full, continuous time, trajectory. Comparison of the theoretical stability
limit of the 2T-periodic subharmonic resonance snB with the zone of chaotic motion shows that in
the single-well potential system the chaotic motion zone appears as a transition zone between the
two different periodic resonances, and in this sense replaces the classic “jump phenomena” known
in the theory of weakly nonlinear systems.

At this point it becomes clear that the approximate analytical methods can not be useful to
explain and understand the phenomena of the unpredictable, chaotic response in this region of the
system parameters.
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Fig. 3. Coexistence of the resonant T-periodic attractor (continuous time trajectory) and the chaotic
attractor (sampled trajectory); w = 1.0

3. EVOLUTION OF THE 2T-PERIODIC SUBHARMONIC RESONANCE INTO CHAOTIC
ATTRACTOR, THE BOUNDARY CRISIS, AND THE POST-CRISIS TRANSIENT RESPONSE

The results obtained and presented in this section are based on numerical analysis of the response
of the nonlinear oscillator, governed by Eq. (4). The Dynamics computer program [9] proved to be
very useful in our investigations.

To get an insight into the behavior of the system at the subharmonic resonance region and all
these bifurcations that turn the 2T-periodic solution into the chaotic motion, we apply the concept
of maps and examine the bifurcation diagram for both branches of the subharmonic resonance:
the nonresonant one (denoted as S3), which bifurcates from the T-periodic solution (denoted as
Sn), and the resonant 2T-periodic isolated solution (denoted as S%;). In the bifurcation diagram the
sampled T-periodic response z(nT), n = 0,1,2,..., is represented by a single line (drawn versus the
driving frequency), and the 2T-periodic response — by two lines. Chaotic response is represented
by, theoretically, infinite number of points at w = const, but in the computer realization — by a
large number of points, and it looks like a shaded region (Figs. 4a,b,c).

Figure 4a shows the sequence of bifurcations of the solution, which for w > w9 is T-periodic, and
represents the nonresonant branch of the primary resonance S, (see Fig. 2). With the decrease of
the driving frequency w, at wpg ~ 1.37 the T-periodic solution S, loses its stability and undergoes
the period-doubling bifurcation; the post-bifurcation stable solution S%; is denoted by two points
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Fig. 4. Bifurcation diagrams of the subharmonic resonance solutions S%p, Shp with decreasing the driving

frequency w; the coexisting T-periodic resonance solution S, is also depicted: (a) the nonresonant branch Syr;

(b) the resonant branch Sjr; (continued in the nest page)
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Fig. 4. (continued); (c) — the diagrams (a) and (b) superimposed
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162 and 28%., and it represents the nonresonant branch of the 2T-periodic subharmonic resonance
which exists in the frequency region of approximately 1.21 < w < 1.37.

We note that the transition from the 2T-periodic oscillation S3, to chaotic motion develops
via the cascade of period-doubling bifurcations, the route found and reported by Feigenbaum in
1978 [3]. At decreasing the driving frequency w the 2T-periodic solution develops the series of
period-doublings in which orbits of period 2 x 2" (n = 1,2,...) are successively produced, leading
to the generation of small-size chaotic attractors; then a series of bifurcations of small-size chaotic
attractors takes place, which involves a number of band mergings alternately with a number of
periodic windows; finally, at w = wep, a “burst” of full size chaotic attractor appears.

Let us now consider the resonant branch of the 2T-periodic resonance. The isolated solution is
realized in the system under properly chosen initial conditions (or disturbance of motion) and is
born in the saddle-node bifurcation (point snA in Fig. 2) at wspa =~ 1.30. The stable 2T-periodic
solution Sh; is represented by two solid lines denoted as 'Sy and 285 . A portion of the unstable
solution is also drawn and marked by dashed lines. At decreasing the driving frequency w we again
observe a sequence of bifurcations qualitatively the same as that of the nonresonant branch: the
2T-periodic solution develops the cascade of period-doublings followed by a series of bifurcations
(explosions) of small-size chaotic attractors; at last, at the value wep = 1.07, an explosion of a full
size chaotic attractor is observed.

To a clear comparison of the bifurcation scenarios of both (resonant and nonresonant) branches of
the subharmonic resonance solution, the two corresponding bifurcation diagrams (Figs. 4a and 4b)
are superimposed in Fig. 4c. We note, that although there is a difference between the values of
the parameter w for which the first period-doubling of the 2T-periodic solution occurs, and the
bifurcations of the small-size chaotic attractors on the two branches of the subharmonic resonance
also differ slightly, both branches evolve into the same full size chaotic attractor at w = wep. It
follows that the sudden disappearance of the chaotic attractor at we = 0.96 occurs in the system
whether the nonresonant or resonant branch of the subharmonic resonance is realized prior to the
crisis.

To understand the mechanism of the sudden loss of stability and disappearance of the chaotic
attractor from the phase portrait we make use of the concept of maps applied to the basins of
attraction and the geometric structure of invariant manifolds of an unstable orbit. The unstable
orbit which plays a crucial role in the problem is the unstable T-periodic solution (cyclic saddle)
associated with the T-periodic resonant attractor Sy .

Figure 5 illustrates the basins of attraction of the two attractors: the chaotic attractor and the
T-periodic resonant attractor S,, which coexist in the zone of frequency wer < w < wen . In the
sampled phase plane z(nT) — £(nT), n =0,1,2,..., the T-periodic orbits are represented by fixed
points; the unstable orbit (the saddle) associated with the T-periodic attractor S, is denoted as Dy .

-1.5 -1.0 -0.5 0.0

Fig. 5. Basins of attraction of the T-periodic attractor S (grey) and the chaotic attractor (white); w = 1.0
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The invariant manifolds of the saddles are mapped here as smooth lines: the unstable manifold (left
outset) tends to the periodic attractor S, and the other branch (right outset) forms a complicated
structure. From the recent publications [4, 8] it is known that, in fact, the structure of this outset is
very close to the structure of the chaotic attractor. The two stable manifolds of D, (insets) define the
boundary of the basins of attraction of the two coexisting attractors: S, and the chaotic attractor.

Now let us look at the following problem: what happens if at further decrease of w the insets
of D, and the right hand side outset of D, became tangent and next, begin to intersect? Thus we
came to the concept of the homoclinic bifurcation. At this point it is essential to notice, that, if the
two invariant manifolds intersect once, they will intersect infinitely many times. The consequence of
the bifurcation is the catastrophe for the chaotic attractor: its basin of attraction and the attractor
itself cease to exist [13].

Recently another interpretation of the boundary crisis in the light of the global bifurcation theory
is considered. It is based on the theoretical conclusion that the two different geometric structures:
the outset of D, which tends to the chaotic attractor (the right-hand branch in Fig. 5) and the
outset of the principal saddle of the chaotic attractor (i.e. the inverse saddle I,, in our example)
are extremely close to each other in the phase space [5, 8]. This implies that the boundary crisis
can be defined either by the homoclinic bifurcation of D, or by the heteroclinic bifurcation of D,
and I,. In other words, the two types of global bifurcations should occur at the same (in the sense
of the accuracy of numerical computation) values of the control parameters. The equivalence of
the three definitions of the boundary crisis can be verified only by “numerical evidence”. In the
paper we computed the critical values of the boundary crisis of the chaotic attractor by making use
of all the three criteria: (i) boundary crisis as a collision of the chaotic attractor with the saddle
D,; (ii) boundary crisis as the homoclinic bifurcation of the saddle D,; (iii) boundary crisis as the
heteroclinic bifurcation of the saddle D, and the inverse saddle I,, . Numerical computation confirms
that indeed the three types of bifurcations occur at the same values of the system parameters and,
therefore, each of them can be used as a criterion of the boundary crisis. The results are presented
in Figs. 6a and 6b. In Fig. 6a the collision of the chaotic attractor (represented by a Poincaré map
of the chaotic trajectory) and the saddle D, is illustrated. Then the heteroclinic bifurcation as
defined by the tangency condition of the right-hand outset of D, and the inset of I, is shown. The
homoclinic bifurcation of D, is not presented on a separate figure, because, in fact, the geometrical
structure of the invariant manifolds would be very close to that in Fig. 6b.

The phenomenon of the boundary crisis which results in the annihilation of the chaotic attractor
brings us to the problem of the system transient motion: what are main features of the transient
motion after the boundary crisis? How the system trajectories leave the region of the phase plane that
was formerly occupied by the chaotic attractor? Here we came across the phenomena of transient

(a) (b)
1.5 — . ; . 1.5
X
1.0 | . 1.0
+s,
0.5 . 0.5
0.0 - 4 0.0
0.5 F . 0.5
A8t - -1.0
4.3 . - : - -1.5

Fig. 6. Boundary crisis of the chaotic attractor: (a) defined as the collision with the saddle D,; (b) defined
as the heteroclinic bifurcation of the saddle D, and the inverse unstable periodic orbit I, embedded within
the chaotic attractor
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chaos — long lasting, irregular and unpredictable transient motion, that may look like steady-state
chaos for a long time and then suddenly jump to a remote attractor — the T-periodic resonant
attractor S, in our example.

Our numerical experiment on the post-crisis transient response of the system was performed in
the following way: to the system exhibiting steady-state chaotic oscillations in a close vicinity of the
boundary crisis, an increment of the driving frequency Aw was added suddenly, so that the system
was set into the region of the system parameters where the chaotic attractor ceases to exist. Yet,
the system still realized the response that looked exactly like the annihilated steady-state chaotic
oscillations, until the response suddenly jumped into the remote unique attractor of the system,
i.e. the high amplitude T-periodic primary resonance oscillation. We visualize our results in two
ways: first the full, continuous time history of the response z = z(t) is presented, and then the
stroboscopic image of the response, with the sampling time T' = %’r , is depicted (Figs. 7a and 7b).
The preliminary remarks on the chaotic transient motion after the boundary crisis of the chaotic
attractor signal that the phenomena can play an essential role in experimental mechanics.

4. CONCLUSIONS

The computer aided exploration of the chaotic oscillations in the mathematical model of a suspended
elastic cable under planar excitation leads to the following conclusions:

e Chaotic oscillations in the single-well potential oscillator are closely related to the loss of sta-
bility of the subharmonic resonance. The chaotic motion zone of the system parameters can
be interpreted as a transition zone between the two generic periodic responses: the 2T-periodic
subharmonic and the T-periodic primary resonances;

e The full size chaotic attractor evolves from the both branches of the subharmonic resonance —
the nonresonant and resonant ones;

e Sudden disappearance of the chaotic attractor can be explained as the “boundary crisis” phe-
nomenon. The critical system parameters of the crisis can be determined by the use of one of the
three equivalent methods: (i) by treating the boundary crisis as a collision of the chaotic attrac-
tor and the saddle D, , whose insets define the boundary of the basin of attraction of the chaotic
attractor prior to the crisis; (ii) by computing the critical system parameters for which the ho-
moclinic bifurcation of the saddle D, occurs; (iii) by determining the critical system parameters
of the heteroclinic bifurcation involving the saddle D, and the principal saddle I,, (embedded in
the chaotic attractor);

e The post-crisis response of the system is the long-lasting chaotic transient motion; the phe-
nomenon should be taken into account in interpretation of the experimental research carried out
in various nonlinear dynamical problems.
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