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The paper discusses the physical basis of the process of filtration of water in a case of very low velocities
and presents the mathematical model of the process, based on a new constitutive formula. The existence
and uniqueness of a weak solution to the resulting nonhomogeneous initial boundary-value problem is
then proven.

1. INTRODUCTION

The paper concerns the physical foundations and the mathematical model of the process of filtration
of water through the porous media for low velocities of water (the so—called prelinear filtration).

The problem of water filtration through cohesive and organic soils is basic in physics of soils
and its various numerical models have been recently investigated, see e.g. [3, 13, 18, 22] and the
references cited therein. It is also fundamental in civil engineering, since such soils make a significant
part of building sites or agricultural terrains. The evaluation of the filtration yield is required in
the design and the exploitation of the drainage systems or earthern dams or in the description
of the consolidation phenomena appearing e.g. in massive earthern structure bodies or in the soil
underlying structure foundations.

The paper is organized as follows. Sections 2 and 3 are devoted to the description of the phe-
nomenon of filtration and discuss various approaches to constitutive formulae. The mathematical
description of the filtration process is presented in Secs. 4 and 5, being the main part of the paper
contains existence-uniqueness results for the mathematical model, proved in the Appendix. The
final Section contains various comments. Note that earlier results in this direction, obtained by
authors have been presented in papers [15, 16].

2. PHYSICAL FOUNDATIONS OF THE FILTRATION PROCESS

There are several reasons for which water filtrate differently through cohesive soil than through
sand or another, medium-size grained materials:

a) The typical water movement in cohesive materials like clays or silts is characterized by a very
small velocity, since their water permeability compared with this of pure sand is about 3-10 orders
of magnitude smaller.

b) All phenomena of ground water occurring at the interfaces are dominating in the filtration
process. In particular, the loosely attached pore water has a comparable or even a greater volume
than the free one. This is a consequence of the fact that the specific surface, i.e. the surface of
particles or domains per unit weight, of the cohesive soil skeleton is much greater than in the
typical medium-grained soil. Particles of silt and clay usually have the form of plates (see Fig. 1
and illustrations in [7]), hence their surfaces are much more expanded than the surfaces of grain
whose shape is more regular.
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Fig. 1. Highly expanded surface of silt skeleton (5000 times enlarged view of sea bottom silt from Baltic sea)

¢) The surfaces of skeleton particles are usually negative electrically charged. Semipolar water
molecules and solution cations are attracted by the skeleton forming the so called double-layer (cf.
[6, 19]), composed of the strongly attached layer — the Stern layer (cf. Stern [19]) in which water
molecules and cations are attached with tension more than 20 — 50 MPa and the second one, much
thicker — the diffusive layer in which the electric potential and the tension of attraction caused by
it decrease exponentially to zero (see Fig. 2).
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Fig. 2. Double-layer potential ¢ versus the distance = from the skeleton border

Only the water molecules outside of the double-layer area (the free water) can move at the
beginning of the filtration process. When the hydraulic forcing (the pressure gradient) intensi-
fies, the increasing number of molecules break away from the diffusive layer and take part in a
movement. The effective porosity increases and then the sudden drop of the hydraulic resistance
appears accompanying the growth of the filtration velocity (see Swartzendruber [17]). The above
phenomenon disappears in the range of large velocities, when the whole amount of losely attached
water is involved in the filtration process.

The growth of conductivity in the initial range of velocities can be explained by the non-
Newtonian behaviour of pore water in the cohesive soil (see Swartzendruber [17], von Engelhandt
and Tunn [4]). The comparison of the average velocity of non-Newtonian liquid in a capilare with
filtration curves provide a desired intuition. (see Fig. 3).
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V)

Fig. 3. The comparison of nonlinear dependence of the average velocity of the non-newtonian liquid flow in
capillary with the non-darcian filtration in the initial range of slopes

d) Cohesive soils particles or flat domains usually are ordered in layers, which causes the dependence
of hydraulic conductivity on the direction of the flow velocity, which can be observed as well in the
dispersed sedimens (see Lambe [9]), turbulent domain stacks (see Aylmore and Quirk [1]) as in the
naturally or artificially consolidated cohesive materials.

3. LOCAL DESCRIPTION OF FILTRATION PROCESS, PARMETER IDENTIFICATION

Numerous attempts have been undertaken to express phenomena discussed above in one formula
relating the so called “filtration velocity” v, i.e. the unit flux of liquid through the porous medium
(cf. Bear [2]) with the hydraulic slope s (measured in the direction parallel to y).

The simplest and most frequently used description of the one-dimensional filtration effects in a
cohesive soil is given by the threshold formula

0 OSSSSO)
v (1)

k(s — so) S0 < 8.

Another well-known, more accurate formula is of a polynomial type (see Hansbo [8], Chowdury

31)
v= As 4 Bs", n>1, 8> 0. (2)

The quantities k, A, B are non-negative material constants.
Swartzendruber in [18] has introduced the formula

= M([s — so(1 — exp((—0s)/s0)],  8>0,

partially comprising (1) and (2). However his formula has not a direct generalization to the mul-
tidimensional case preserving the regularity properties of the former ones and, in addition, being
invariant with respect to rotations of a coordinate system, which is the natural requirement for
expressions describing the physical phenomena.

The new constitutive relationship, proposed by the first author in [13], overcomes the difficulties
mentioned above.

Let us denote by R® the three dimensional Euclidean space equipped with the scalar product
(€ln) = X3y &mi (€ = (&),n = (m) € R®) and the norm || u |= (u|u)/2. Suppose the filtration
process occurs in the domain (an open, simply connected and bounded set) {2 of R3,

Let h(t, x) be the piesometric height (the pressure related to the specific water weight) measured
at a point z of the filtration domain and at an instant ¢ of time.

It is assumed that for isotropic flows the filtration velocity v at a point 2 in a moment ¢ of time
is parallel to the gradient of the pressure (cf. [13]) and

u(t, 2, Vh) = ¢(t,z,|| VR ||)Vh, (3)
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(Vh =gradh = (%, gxﬁ’ gTh))’ where the coefficient of proportionality, the permeability function
1 Oz O3

®, is given by

rM(l—s—o(l—exp(—o—r))), forr > FE
£ So
0F
w(t’ma"') =4 M [% (30 = (30 +0E) €Xp (_3_0)) ] (4)
280 280 GE))]
e b S =r >0
\+(1 E+(E+0)exp( = v ol > vl

In (4) E denotes a constant depending on the floating point arithmetic accuracy and on the features
of the current soil pattern. The positive parameters M, sg, @ may depend on (t,z) variables. In
that case they are assumed to be strongly positive bounded functions, so regular that ¢ is of class
C'int, C%in z and C! in r € [0,00). For example, it suffices to assume that M, sy and 6 are C
with respect to their arguments.

The form of ¢ is based on the variable permeability v/s which can be deduced for r in [E, 00) from
the Swartzendruber’s formula. The formula obtained is then extended linearly over the interval [0, E]
in order to avoid the non-physical singularities near zero. This imposes the following relationship

M 0F
between 6, M, E and sg: 0<6<1, ﬁ(so — (80 +0E) exp(——s—)) > 0.
0

Remark 1. For anisotropic flows, frequently occurring in silts, the constitutive formula (3) assumes
the form

U(t’ Z, Vh') T (,O(t, Z, ”Vh”L)L(ta iI?)Vh, (5)

where ||Vh||L, = (VA|LVh)Y/2 and L denotes the 3 x 3 symmetric matrix representing the porous
medium anisotropy with entries /;;. The functions l;;(t, z) are assumed to be of class C! with respect
to t and C? in z. It is also assumed that the matrix L is positive definite, uniformly with respect
to (t,x) € [0,T] x 12 i.e.

lo (€1€) < (€|L(t,x)€) <1°(£l¢), € €R®, 0<lp<IC (6)

Without the loss of generality one can assume that [© = 1.

Note that in (5), similarly as in the isotropic case (3), all nonlinear effects are cumulated in the
function ¢ being, as in the previous case, invariant with respect to rotations of a coordinate system.

Parameters appearing in the constitutive formulae have been obtained mainly from the labora-
tory tests. The methodology of experiments, equipement and results concerning the measurements
have been described by Li Sung Ping [10] and Hansbo [8]. The first of them tested the big range
of slopes (up to 60) for which the behaviour of the filtration process in cohesive soils (clay from
Houston, Texas) is nonlinear.

Laboratory test performed by Wolski and others [21] for soil pattern from Biato$liwie, Poland,
made it certain that the effect of anisotropy together with the deviation of initial velocity is essential
in consolidated river deposits (see Table 1.).

Laboratory tests for the soil pattern from the very principle give only the local information.
More general information for the class of flows described by the constitutive relationships (3) or
(5) can be obtained using the inverse solution technique introduced in (14, 20].
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Table 1. Swartzendruber parameters so, ©, M for the Bialosliwie soil pattern under various, uniformly
distributed, vertical loadings.

Loading Vertical flow Horizontal flow
[kPas] S0 e M* 8o e M*
0 2.3 .82 5.8 2.2 .80 2.6
10 4.6 .85 24T 2.8 .86 2.9
40 5.9 .90 2.3 3.4 .86 1.5
80 8.1 .92 2.1 3.9 91 1.2

* (times 107%[m/s])

4. MODEL OF FILTRATION, MATHEMATICAL PRELIMINARIES

Suppose the process of the filtration through a body occupying the subset 2 of R® occurs during
the period T of time.

We will assume that the boundary 82 of the domain (2 is piecewise C'-regular, i.e. it is the
union of a finite number of surfaces being the graphs of C-functions. The unit outer normal to the
surface 042 at a point z will be denoted by n = n(z).

The piesometric height distribution A : [0,7] x 2 — R, describing the prelinear filtration pro-
cess through §2 in time 7' is the solution of the following initial boundary-value problem (see [2])
consisting in the balance equation together with the boundary (Dirichlet, Neuman) and initial
conditions

ﬂp(t,x)g—’t’ = divo(t,z, Vh) + Q(t,z) for (t,z) € (0,T] x £, (7)
h(t,z) = hy(t,z) for (t,z) € (0,T] x 2, (8a)
(n(z)[v(t,z, Vh)) = q(t,z) for (t,x) € (0,T] x O, (8b)
h(0,z) = ho(z) for z € 2, (9)

;
-8 a—z' is a divergence of the vector v = (v1,v2,v3) and v(t,z, Vh) is given by (3). @
describes the yiela of sources in the case of the undeformable skeleton or it comprehends both the
yield of sources and the volume strain velocity of the skeleton, if the skeleton deformation occurs.
Equation (7) can be considered as a part of the consolidation system of Biot’s type (see e.g. [22]). 8
is a coefficient of the water compressibility, p(t, z) is the distribution of the porosity of the medium,

q(t, z) is the boundary flux, 842y, 852, are parts of the boundary 012.

Remark 2. Observe that [7 - 9] has a classical (i.e. of class C?) solution provided ¢(t, z, || Vh||) is
differentiable everywhere which is not true, since the norm | - || is nondifferentiable at zero. Thus
one can expect only the existence of a weak solution (see definition below) to [7 — 9.

In what follows we will use notations (for more information consult for example [5, 11]). C¥(A)
is the space of k-times continuously differentiable real functions defined on A. L2(A) is the Hilbert
space of square summable over A real functions with a scalar product (u,v) = [, u(z)v(z) dz and a
norm ||ul| = \/(u,u). H(£2) denotes the Sobolev space on {2 of order 1, i.e. H'(2) = {u : u, Dju €
L*(£2),i = 1,2,3}, where D;u stands for the weak (distributional) derivative of u with respect
to z;. The norm in H'({2) is denoted by || - ||g1. By v (resp. m1) v : HY(R2) — L?*(82), (resp.
" : H'(2) — L*(8421)) is denoted the operator of trace on 952 (vesp. 852;). Set V = {u € H (1) :

div v =
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mu = 0}. Note that the condition f;, do > 0 implies that ||ully = [|[Vull = ([, [|Vul? dz)*/? is
the norm in V, equivalent to |Ju||g:.

Space of functions f defined on (0,7 x {2, continuous with respect to ¢, such that for all fixed
t € (0,T], f(t,) € Y, where Y is a given function space, e.g. Y = H'(£2) or C1(842;) etc., will
be denoted by C°((0,T);Y). Similarly, f € L?(0,T;Y) means that f(-,z) € L2(0,T) for almost all
z € 2 and f(t,-) € Y for almost all ¢ € (0, 7).

For a Banach space Y, Y’ denotes its dual, || - ||y denotes the norm of Y, and (,-) is the duality
pairing between Y’ and Y. Recall that (-,-) = (,-) for Y = L2(2).

By a weak solution of the problem [7 — 9] we mean the function h € L%(0,T; H!(2)) satisfying
the Dirichlet condition (8a): v1 h = hy and for all w € V' the variational equation

/ ﬂp(t,z)%wmdx ~ [ et I17ul) (VolVu) do + [ Q(t,z)uz) da (10)
(94 2 (93

+ | q(t,x)w(x) do.
J

5. MAIN RESULTS

The following theorem, being the main result of the paper, shows that under a very general,
physically plausible conditions the initial boundary-value problem for the nonlinear filtration is
well posed in the Hadamard sense, i.e. for the given initial and boundary data it has the unique
solution, continuously depending on them. More precisely, we have the following theorem.

Theorem 1. Assume 812 is piecewise C*-reqular surface such that

002 =82 U8D, O NO% =0, / do > 0, (1)
N

where the boundary of 02, relative to 082 is a union of a finite number of piecewise C disjoint
Jordan curves. Let ¢ be given by (10) and let Q € C°([0,T); L°(£2)), q € C°((0,T); C*(8¢2%)).
Finally, suppose that

peC'([0,T] x 2),  p(t,z) = aft)e(x), (12)
0<ag <alt) <al, 0<ey<e(x)<el for (t,x) € [0,T] x £2. (13)

Then for any ho € L*(2) and hy € C1([0, T] x d$2,) problem [7 - 9] has ezactly one weak solution
h satisfying

h € L*(0,T; H(£2)) N C°([0, T); L*(£2)) (14)

and depending continuously on the initial data.

Theorem 1 generalizes the result of [13] to the case of nonhomogeneous Dirichlet boundary
conditions. Also we impose here slightly weaker regularity conditions on characteristics of the
problem and on the function ¢.

It can be verified that, apart from the regularity of ¢, it follows from (9) that there exist positive
constants m, M such that

o(t,z,r)r — p(t,z,8)8 > m(r —s) for ¥ >, (15)

lo(t, z,m)r — o(t, 2, 8)s| < M |r — s (16)
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provided that (t,x) € [0,T] x £2. Note that in this paper besides the regularity of ¢, we will only
need properties (15), (16) in the proof of Theorem 1. Details are postponed to the Appendix.

The idea of the proof which we sketch here is standard: it consists in considering the problem
of finding weak solutions to [7 — 9] as the problem of solving the nonlinear operator equation

CH + B(t,h) = f(t), te(0,T)

with conditions (8a), (9), where C: V! — V/, B : [0,T] x H'(£2) — V' are the operators associated
with (7), (8b).

Applying the monotonicity and compactness methods to the sequence {hn} of Galerkin ap-
proximate solution to the operator problem above (compare [5, 11]) one gets the existence and
uniqueness of the weak solution.

If V,, is the n-dimensional subspace of V' (e.g. the finite element space) spanned by elements
{w1,...,w,} C V, then the Galerkin approximation h,, of the weak solution to [7 - 9] corresponding
to V,, is the function Ay, : [0,T] — V;, being the solution of the system

(Ch, + B(t, hn) — f(t),ws) =0, i=1,...,n, te(0,T]

with the appropriate initial conditions, specified later in the proof.

By Theorem 1, it is possible to obtain an information concerning the character of convergence
of the sequence {h,} of approximate solutions in case where the sequence {V,,} approzimates V,
i.e. when the set (3>, V,, is dense in V.

Theorem 2. Suppose the conditions of Theorem 1 are satisfied. Let {V,,} be the sequence of spaces
approzimating V and let h, be the corresponding Galerkin approzimation of a weak solution h to
the problem [7 - 9]. Then

hn—h  inC° ([0, T); L2(£2)) as  n— oo.

Theorems 1 and 2 admit a generalization to the case of anisotropic soils. Namely we have the
following result:

Theorem 3. Assume condtions of Theorem 1 are satisfied and suppose the flow is anisotropic i.e.
constitutive formula is given by (5). If l;; € C1([0,T); C%(82)) for i,j = 1,2,3, matriz L(t,z) =
(lij(t, z)) is symmetric and satisfies (6), then the assertions of Theorem 1 remain valid. For any
sequence {V,,} of spaces approzimating V the corresponding sequence {hn} of Galerkin approzimatie
solutions satisfies the conclusion of Theorem 2.

6. CONCLUSIONS

1) The constitutive formula proposed in the paper provides an accurate model of the three di-
mensional filtration process in cohesive soils taking into account various bounary conditions and
anisotropy of the hydraulic conductivity.

2) Consitutive formulae (3), (6) are sufficiently flexible and general to describe the fitration phe-
nomena in a broad range of hydraulic slopes (in both the initial or asymptotic ranges of velocities
for a given process). Moreover their regularity enables to apply the advanced mathematical tools
to the study the filtration equations.

3) The weak (variational) formulation of the initial boundary-value problems in the theory of fil-
tration is natural since it does not impose strong, nonphysical assumptions on the process, required
in the classical formulation.

4) The investigations of filtration of water through cohesive soils has been carried since about forty
years. The model presented here is the first one which besides good points mentioned above has
the reliable mathematical justification showing its well posedness (in the Hadamard sense).
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5) The Faedo-Galerkin method proved to be very fruitful in the case of filtration equations since
it provides a good starting point for various fast numerical methods of determining the filtration
flow. The full description of the fast FE/FD linearized schemes will be published in the next paper.

APPENDIX
Notations, auziliary lemmas. To formulate (7 — 9] in terms of operator equation, certain notations
d
will be required. Denote: X = L2(0,T;V), W = {u: u € X,u € X'}, where v/ = eqi
time derivative of u in the sense of scalar distributions on [0, 7).
Observe that X’ = L2(0,T;V’) and the expression ((f,u)) = fOT( f(8),u(s)) ds represents the
duality between X’ and X. For u,v € W the formula of integration by parts holds ([5, Ch. 1V, Th.

1.17)).
For u,v,z € H(£2) and t € [0, T set

denotes the

1
bty w,0,2) = oo ! o(t, 2, | Vull) (Vo[ Vz) da, (A-1)
£69) = al(t) ! Q(t, 2)2(z) do +a é ot, 2)2(z) do | . (A-2)

Note that by (15) and (16), ¢ is nonnegative and bounded. Since ¢(t,z,:) is C1, it satisfies
the Lipschitz condition with a constant, say K. In consequence for u € H(12) (t,z, [Vul]) €
L*(£2). Using this fact and the observation that Dyv, D;w € L2(£2) for v,w € H'(£2), by the
Hélder inequality, we conclude that for fixed ¢t € (0,7 ¢(t,-, ||Vul)DsvD;w is in L1(£2), hence
| [o@(t, z, || Vul|) DivDyw dz| < c(t, [ulloo(2)) | Div]| || Diw||, which shows that b(t,u,v,w) is well
defined. From the equivalence of norms || - |[z1, || - [|v and the above inequality it follows that

[b(t, w, v, w)] < (Bal)) ety u) [lolly wlly  for  tefo,T], (A-3)

where c(t,u) is bounded and ||c(t,u) — c(t, 2)||zeo () < Kllu — z||.
Let operators C : V! — V', B : [0,T] x (H'(£2))? — V' be defined by

Vi3gCg=egeV' ((egu)=(geu) for weV) (A-4)
(B(t,u,v),w) = b(t,u,v,w) for we HY{(N).

From (10) and the definitions above it follows immediately that h is a weak solution of the
problem [7 — 9] if it satisfies (8a), (9) and the operator equation

Ch' + B(t,h) = f(t), t € (0,7 (A-5)

where B(t,h) = B(t, h,h) and f € L*(0,T; V") is defined by (f(t),z) = f(t, 2).
Fix a € C1([0,T] x ) satisfying via = hy (the existence of such a function follows from (11)
and the regularity of 02y, cf. e.g. (12, Ch.III, Par.4, Th.2)).
The change of variables h = u+a transforms (A-5), (8), (9) into the problem with homogeneous
Dirichlet conditions:
du

C?i? + B(t,u +a(t)) = fi(t), (A-6)

uw0) =hy, uew, (A-7)
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where a(t) = a(t,-), fi(t) = f(t) — Cd/(t) and hy = ho — a(0,-). Recall that the space W is
continuously embedded in C°([0, T']; L?(£2)), hence (A-7) is meaningful.
The following lemmas are basic for the proof.

Lemma 1. Suppose ¢ satisfies (15) and (16). Then for a fizred a € CY([0,T] x Q) the map
B(t,-+a(t)), V > ur B(t,u+a(t)) € V' is Lipschitz continuous, strongly monotone and coercive,
uniformly in t € [0,T), i.e.

|B(t,u +a(t)) — B(t,v +a(t))|lv: < Mi|ju—v|v, (i)
(B(t,u + a(t)) — B(t,v+a(t)),u — v) > my|lu— v||%,, (ii)
(B(t,u+a(t),w) > &(lullv) lullv, &) — oo as s—o00 (iii)

with My, my, € independent of t.

Proof of Lemma 1. To simplify notations, set V(u + a(t)) = y, V(v + a(t)) = z,Vw = h,r =
lyll; s = llz[l, g = ||k]| and write ¢ for ¢(t, 2, k).

Us1ng the inequality |jaa — Bb]| < 2alla — b + |allal| — B]|b]|| valid for positive a, 8 and all
a,b € R3, for any h € R® from (15) and (16) we get

= |(ery — @s 2lh)| < llor y — s 2|l IRl < |[RII(20rlly — 2| + |or T — @5 8)
< |RI@M|ly — z|| + Mlr — s|) < 3||R[| M ||u — |-

Let w € V. By (A- ) and (A-4), ﬂa(t)l(B(t u+a(t)) - B(t,v+a(t),w)| =| [o(r y—ps 2|h)dx| <
Ba(t) g 3||RIIM||u — || ds < Ba(t)|[w]|v3M |[u - vl|v, which proves (i).

Slmllarly, applying inequalities (y|ly — 2) > r2 —rs, (zly — z) < rs— s and (15) one gets for all
y,z €R3

(0ry — s 2ly — 2) —mlly — 2|* = (or — M) (Yly — 2) — (ps — M) (2ly — 2) >
(or —m)(r? —18) — (0 — M)(rs — %) (ipr T — @5 8)(r — 8) — m(r — 8)% > 0.

Hence by the formula Ba(t)(B(t,u + a(t)) — B(t,v + a(t)),u — v) — mlu — v|} =
Jo ((pry — @s 2|y — 2) — m|ly — z||?) dz and the above inequality we get (ii).

From (ii) and continuity of B it follows that

(B(t,u +a(t)),u) 2 (B(t,a(t)),w) + mallull}; > —cllullv +m]juli,
where c is a positive constant independent on ¢. The above inequality proves (iii).

Lemma 2. For e € CY(£2) satisfying (13), the mapping C is continuous and

eollu —v||® < (Clu—v),u —v) <elju—v|? for wu,ve L3}R). (iv)

%(C’u, u) =2(Cu/,u) for ueW. (v)

Proof of Lemma 2. Continuity of C' and property (iv) follow from the definition of C. To prove
(v), observe that if v € W, then Cv € W and (Cv)’ = Cv'. Settlng u = Cv in the formula of the
integration by parts one gets (Cv(t),v(t)) — (Cv(0),v(0)) = 2 [F(Cv'(s),v(s)) ds from which (v)
follows.

Proof of Theorem 1.

Passing to the proof of Theorem 1, note that by Lemma 1 and 2, the operators B and C are
both monotone and coercive in V and L?(2) respectively, which permits to apply to (A-6), (A-7),
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with necessary modifications, the classical Faedo—Galerkin approach. The proof is very close to the
argument applied in [5] dealing with the case of C being the identity. For the sake of completeness
we insert here an outline of the existence proof.

Let {w,} be a basis of V, i.e. for any k elements wy, ..., wy are linearly independent and all finite
linear combinations of w; form a dense subspace of V' (such a basis exists, since V is separable).
Denote by V,, the subspace of V spanned by wy,ws,...,ws,.

Choose {uon} C Vi, uon = Yiv; (jnwj, such that ug, — hy in V as n — oo. Set u,(t) =
> j=19in(t) wj, where g;n(t) are so defined that u,(t) is a solution of the initial value problem for
a system of ordinary differential equations

(Cd:;"JrB(t ) ), TR E R (A-8)
i P S (A-9)

=1
By the definition of operators C' and B, from (A-8) and (A-9) it follows that the function
n(t) = (g1n(t), - .., gnn(t)) is the solution of the initial value problem

Cngn(t) = An(t, un(t))gn(t) + k(t, un(t)), (A-10)
gn(O) =(n = (Cln; cee aCnn), (A-ll)
where A, = (a;;) and C, = (¢;;) are n X n matrices with entries a;;(t, un) = —b(t, un +a(t), w;, w;),

cij = (ew;, w;) and k(t, un(t)) has components k;(t,u,) = (f1(t),w;) — b(t, un + a(t), a(t),w;).
The continuity of a;; and k; result from the continuity of b and f;. It is easily seen that they
are also bounded. Note that since b(t,un + a,un, + a,w;) = (B(t,un + @), w;), from Lemma 1 it
follows that An(t,us,) is Lipschitz continuous in u, so the right hand sides of (A-10) have the same
property with respect g, and the problem (A-10), (A-11) is uniquely solvable and its solution g, is
defined and of class C! on [0, 7] and, in consequence, u,, is uniquely defined and exists on [0, 7.
Multiplying (A-8) by gir(t), summing over i and using (v) one arrives at the formula
1d

7 77 Ctm(®),un(®) + (B(t,un(t) + a(0)), un(2)) — (B(t, (1), un(t) (A-12)

= (fa(t) - Bt,a(t)), un(t).
By (A-1) - (A-3),
[(2(8) = Bt a(0), und] < KFD), un)] + (e o un(0)
HUB(L a(0), un(t))] < 5—1@—) (11 a1 + llll 2 oi2ey I (Ol 20520

Hlea gl lun(®ll + et un)la)v fun(t) v = 1(2).

Ba (t)

Since V is continuously imbedded in L?({2) and trace operator 7 is continuous, ||u,(t)| <

cllun@®llv, lvun(®)llz200,) < c2llun(t)|lv , where cl,cz are certain constants. Inequality above
and (A-12) imply that for any t € [0, 7]

2 (Ctn(®), un(®) — (Cuon uon)) + [ (Bs,un(s) +a(s) ~ B(s,als))ua(s))) ds  (A13)
0

)
< / I(s)ds < clfun|x,
0

where c is a constant.
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Finally, using (A-13) we obtain from (ii) and (iv) the inequality
1 / 1
seollun(@)I + [ mllun(s)I ds < clfunllx + 3 ionl

0

valid for any ¢ € [0,T]. In particular for ¢t = T' we have

1 1
seollun(D? + mllunk < cllunllx + 5€°lluonl®.

From the inequalities above it is clear that the sequence {u,} is bounded in X and in
C%([0,T); L%(£2)). Setting t = T in (13) we get

((B(*yun + a),un)) < cllunllx + ((B(:,a), un)) — %((C“n(t)7un(t)> — (Cuon, Uon)) -

Since the sequence {u,} is bounded, the sequence {((B(:,un +a),un))} is also bounded, which by
monotonicity of B, implies that {B(-,u, +a)} is bounded in X’ (see [5, Ch.III, Cor.1.2 and Ch.VI,
Lemma 1.2]).

From the above considerations it follows that the sequence {u,} has a subsequence {u,} such
that

Uy = U weakly in X, (J)
uu(T) — 2 weakly in L2(12) Qi)
B(-,u, +a()) »v weakly in X' (1)

and the limits defined above satisfy
u€eWw, 8l0) = hy, WY =%, Cu' +v=Af. (jv)

Properties (j), (jj), (jjj) are clear. To prove (jv), note that by (12), we have for u,w € X

T + o
(Cuyw) = [(Culs),wis))ds = [ (u(s), ew(s) ds = ((w,ew)),
0 0

hence condition (j) implies that Cu, — Cu weakly in X. The reference to the argument used in
[5, Ch.VI, Lemma 1.4] finishes the proof of property (jv).

To complete the existence proof, note that by (jj), Cu(T) — Cz weakly in L%(£2) and in
consequence lim inf(Cu,(T), u,(T)) < (Cz, z). Applying formulae

Cu'+v=fi, (Cupuu))+{(Bra()+uu),u)) = ((f1,u4)

we obtain the inequality

imsup ( (s, 00) + 5((Ctos ) = (Cun(D),uT) ) < ((fr )

+5(Chay ha) = (C2,2) = (fr, ) = (Cols ) = {(o,),

which by the monotonicity of B, (j) and (jjj), implies that v = B(-,u +a(:)) (cf. [5, Ch.III, Lemma
1.3]), so u satisfies (A-6). From conditions u € W and (jv) it follows that u satisfies also (A-7).
Obviously h = a + u satisfies (14), (A-5) and the initial condition (A-8).
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Now suppose hy, hy are solutions to (A-6), (8). Then by (ii),

%((C(hl(t) = ha(t)), ha(t) — ha(t)) — (C(h1(0) — h2(0)), h1(0) — h2(0)))

(C(ha(s) — ha(s))', hi(s) — ha(s)) ds

o .

t
= / (B(s, h1) — B(s, ha), b1 — ha) ds < 0,
0

which, by (iv), implies the inequality eg||h1(t) — ha(t)||? < €°||h1(0) — h2(0)||? proving uniqueness
and continuous dependence of solutions of (A-6), (A-7) on the initial data.

Proof of Theorem 2. From the formula h,, = u, + a, where u,, and a are as in the previous proof,
it follows that it suffices to prove that

u, —»u in C%0,T); L3(R2)). (k)
For this end, observe first that

Up — U weakly in X (kk)

B(,un + a(-)) = B(-,u +a(-)) weakly in X/, (kkk)

(kk) and (kkk) result from the boundedness of sequences {u,}, {B(-, u,+a(-))} and the observation
that by the uniqueness property of the problem (A-6), (A-7), all their converging subsequences must
have the same limits u, B(-,u + a(-)) respectively.

For the proof of (k), choose a sequence {v,} C C'([0,T1];V;,) such that |lv, — u|x — 0, ||v, —
v||x» — 0 asn — oo.

Set (for simplicity arguments ¢ are omitted)

Il = _(B('aa+un) oo B(-,a+u),un —-U),
I2 = _<B('aa+un) = B('aa+u)7u —vﬂ>’
I3 = (C(u — vn)', Un — vp).

From the continuity of C, boundedness of sequences {v,}, {un}, {B(-,a+u,)} resulting from (kk),
(kkk) and conditions (i), (ii) it follows that

L <0, || <Mlun—ully |lu—vallv < Kilju = v,lv,
T3] < ICNHI(w = va) llv lun — vallv < Kal|w' — vl ||y,
where K; denotes suitable positive constants. We have

(C(un — V) un —vn) = (—~B(:,a + up) + B(,a + u), tp — V) =0 + I + I,

and a simple calculation gives

‘;‘((C(un(t) — Un(t)), un(t) — va(t)) — (C(un(0) — vn(0)), 4 (0) — vn(0)))

t t
& / (CUn(8) = Vn(5)), Un(8) — vn(s)) ds = / (K4 Ty +I) ds
0 0



Filtration in cohesive soils: mathematical model 13

t
< /(12 +13) ds S K1||u -'Un”X + KQHUI --’U:lllxl.
0

The last formula and (iv) yield for ¢ € [0, T the inequality
eollun(t) — vn(t)|| < K3 (60||un(0) — Un(0)]] + [l — vnlx + [’ - 'U;z”X’) )

from which (k) and the claim of Theorem 2 follows immediately.

Proof of Theorem 3. For v; given by (5) the weak formulation of the problem can be again written in
the form (A-6) with the scalar product (a|b) a,b € R? appearing in (1) replaced by (a|b)r, = (a|Lb).
From symmetry of L and (6) it follows that || - ||z and (:|-)L represent respectively the norm and
scalar product in R® equivalent to the habitual ones, hence all argumentation used in previous
proofs can be adapted to this more general case.
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