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The single-mode equation of motion of a class of buckled beams is considered, and the attention is focused
on the phenomena of irregular, unpredictable transient oscillations which are observed in the region
of the nonlinear resonance hysteresis. This type of transient motion may be dangerous in engineering
dynamics, because it may last very long and is defined neither by the coefficient of damping nor by the
magnitude of perturbation. While the steady-state chaotic motion has been studied extensively in the
recent literature, little attention was paid to the chaotic transients. In the paper the criteria for transient
chaos, i.e. the domain of the system control parameter values, where the chaotic transient motion can
occur, are determined. The criteria are based on the theoretical concept of global bifurcations, and are
estimated numerically.

1. INTRODUCTION

If a dissipative vibrating system is driven by a periodic force, it is expected that the steady-state
response is also periodic and that a transient motion, induced by a perturbation of the steady-
state, is strictly defined by the damping force and the magnitude of perturbation. When Tseng and
Dugundji [23] published in 1971 their results of an experiment on a lateral vibration of a buckled
beam, and obtained a random-like, irregular steady-state response, it was rather interpreted as
a result of some “noise” in realization of the experiment, than a discovery of a new nonlinear
phenomena.

Although at that time the phenomena of chaotic motion in deterministic dynamical systems
were already studied extensively in mathematical physics, and also were observed in a mathematical
model of atmospheric turbulence [7], crucial publications relevant to mechanical systems did not
appear until the year of 1979. Then the series of papers on the subject appeared, which covered
all aspects of the problem that were essential for engineering oriented people; occurrence of the
chaotic motion in deterministic dissipative mechanical system was presented by performing physical
experiments, and was studied theoretically by considering a single-mode equation of motion from
a theoretical point of view, and verified by an analog computer [5, 9, 10, 12].

Since that time the theoretical and computational aspects of the new, strongly nonlinear phe-
nomena, were studied extensively by a number of authors, and the list of the references would be
extremely large indeed; we refer the reader to some of them, published in book form: 3. 4,14, 14,
251 211

The aim of this paper is twofold: we want to present the aspects of the occurrence of chaotic
motion which are relevant to safe engineering, and also to draw an attention of the engineers to
the theoretical and numerical aspects of the problem which are useful in establishing the criteria
for the system control parameters values. We exemplify the problem by the use of a mathematical
model of a buckled beam under lateral excitation.
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In the studied model the nonlinearity that gives rise to the nonlinear phenomena is due to large
displacements and belongs to the category of geometric nonlinearity. In the light of the recently
developed theory of chaos in dissipative dynamical systems [14], the original equations of motions
of the continuous systems need to be reduced to the three-dimensional dynamical system with
continuous time, that is to the set of 3 autonomous, first order differential equations of motion:

Z-je),  r=Guax). 1)

In our example the dynamical system takes the form of the nonautonomous, second order ordinary
differential equation:

&+ hi + ooz + asx? + a3z® = Fcoswit, (2)

where: =2, =20, wt= z3.

At this point it is essential to refer to the question of adequacy of the reduction of the continuous
system, described originally by the partial integro-differential equations, to the Egs. (1), (2). We
briefly note that the reduction has two aspects: it has been proved that the essence of the chaotic
phenomena is usually captured by the three dimensional dynamical system and, from the other
hand, the relevant theorems that enable us to perform appropriate quantitative numerical analysis,
are also confined to the three-dimensional dynamical system. A detail consideration of the problem
can be found in books which include the center manifold theorem, e.g. [3].

In engineering practice, it is a common assumption that if the eigenvalues (i.e. the natural
frequencies of a linearized system) are incommensurable, the sufficient approximation is obtained
by a single-mode motion approach, that is, by assuming that the displacement v(z,t) can be written
as:

v(2,t) = ¥(2)a(t),

where ¥(z) is a properly selected eigenfunction (usually the fundamental one if the driving frequency
w is not too high). Then the standard Galerkin projection method is applied, and the effects of the
higher modes are neglected.

Central to understanding the chaotic motion properties is the concept of maps. For continuous
motions (flows), this amounts to discrete time sampling of the motion in the phase space. For the
periodically driven oscillators considered, it is common to use the period of excitation T' = 27 /w
as the sampling time. The map thus obtained can be viewed as a stroboscopic image of the system
response and it allows us to reduce the dimension of the phase space from 3 to 2 and to present the
results on the phase plane. The stroboscopic picture of the motion in the phase space z(nT') —i(nT),
synchronous with the forcing function, is called a “Poincaré map”.

For the stroboscopic picture of x (or &) versus a selected forcing parameter (F or «) — the term
bifurcation diagram is adopted.

The same idea is applied for visualization the basins of attraction of coexisting attractors (i.e.
steady-state stable solutions, periodic or chaotic). We recall that the basin of attraction of an at-
tracting set is defined by the domain of all initial conditions (z(0), #(0)) in the phase plane whose
trajectories approach asymptotically that attracting set. It is important to notice, that there are the
coexisting unstable solutions (saddles), which, although physically unrealizable, play an important
role in basin organization: the stable invariant manifolds (insets) of the saddles are the lines which
separate domains of attraction of the coexisting attractors. With the increase of the forcing param-
eter the boundaries of the basins of attraction undergo relevant changes from a regular (smooth)
structure to a more complicated fractal structure, i.e. highly intertwined, fine-scale structure with a
fractional (non-integer) dimension greater than 1 (e.g. [8, 14]). The concept of the fractal structure
of basins of attraction of coexisting attractors is central to understanding the most essential prop-
erty of chaotic motion: the sensitivity to initial conditions. The metamorphoses of the structure of
basins’ boundaries and, in particular, their various fractal patterns, are governed by the underlying
geometric structure — the intersection of the stable and unstable invariant manifolds of one or more
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coexisting unstable periodic orbits (saddles). This type of relevant changes in the global topology
of the phase space belongs to the category of global (homoclinic and heteroclinic) bifurcations [3,
14, 25, 26]. Computation of the threshold values of the system control parameters, for which the
global bifurcations occur, enables us to determine the regions of the system parameters, for which
the system becomes chaotic, that is, for which a random-like, unpredictable motion can appear.

All these geometric and qualitative properties of the chaotic system dynamics require numer-
ical computations, and presentation of the results needs the use of high quality color computer
graphics. For instance, computing basins of attraction we create a grid of boxes (with an assumed
resolution) covering the screen, which represents the phase plane (z, 2). Numerical procedure fills a
grid box with an assumed color if the trajectory of its center converges, after a predefined number
of iterations, to the particular attractor.

In the paper we first briefly outline a derivation of the single-mode equation of motion of a
buckled beam subject to lateral external periodic excitation. The system belongs to the category of
oscillators with two stable equilibrium positions at ' = 0 (the twin-well potential system of Duffing
type) and is so rich in various, inherently nonlinear phenomena, that it gives a good opportunity to
present multiple aspects of the problems of the modern nonlinear dynamics, and to draw attention
on the adequate methods of investigation.

The main purpose of the paper, however, is to determine the criteria for the transient chaotic
motion, that is the critical system control parameters which give rise to random-like, unpredictable
and, consequently, dangerous oscillations in the region of the primary resonance. The major inves-
tigation, computational results and discussion on multiple aspects of the chaotic transients and the
related indeterminate outcomes are presented in Sec. 5.

Numerical results presented in the paper were obtained with the use of the computer program
Dynamics, which accompanies the book [13]. Most of the data were run with a Runge-Kutta solver
of order 4, with 95 steps per cycle (we also run some data with higher numbers of steps per cycle,
but the results were almost identical).

2. MATHEMATICAL MODEL OF A CLASS OF BUCKLED BEAMS

The twin-well potential Duffing system studied in the paper has a mathematical relevance as the
simplified model of a buckled beam undergoing forced, lateral vibrations. The partial integro-
differential equation governing such motion, obtained by a standard method, can be written in a
nondimensional form as [6]:

1
¥+ 0" + 00 + Hov" — k {/[v’({)]zdf} v" = F(z,t), (3)
0

where v(z,t) is the lateral deflection, a prime denotes differentiating by z, and a dot — differentiating
by ¢,  represents viscous damping, k denotes the nonlinear membrane stiffness, and H, stands for
the axial compressive load applied to the beam.

The nonlinear term expresses the fact that the axial force in the beam increases with lateral
deflection, leading to increasing restoring force. We assume that Hy is higher that the first Euler
load, Ho > HJ,, so that the beam takes up a stable buckled statée when the lateral force F(z,t) is
Z€ro.

By representing the displacement by the linear eigenfunction ¥(z) and considering a monofre-
quent harmonic excitation with a given spatial distribution &(z):

v =¥ (2)u(t), F(z,t) = ®(2) f cos &t, (4)

and applying the conventional Galerkin projection method, we obtain a single ordinary differential
equation of motion:

i + kit — au + Bud = Acosit, a,B >0, (5)
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where A is the amplitude of the generalized force:

1
A= | ®(2)¥(2)fdz,
/

and the generalized mass equals 1.

The single-mode equation of motion (5) was first derived for beams with simply supported
boundaries and the buckling induced by the axial compressive load. Then it was shown that the
same equation governs the single-mode lateral oscillations of a wide class of beams with various
boundary conditions, and buckling induced also by different than the axial load mechanisms [12,
23].

For the sake of generality we reduce the equation (5) to the standard form:

1
:E+hd:—§a:+%w3=Fcoswt, (6)
where:
@ /ﬁ k A (B
— ) = — = — = — = e— e — 2
782, w 7R L=k 5 h 7% F Z\ o 20 = V2a,

and {2 is the linear natural frequency of oscillations around the stable, buckled position.

The standard system (6) satisfies the condition, that the two stable (buckled) equilibrium po-
sitions are located at 29, = %1, the unstable equilibrium position corresponds to z = 0, and the
natural frequency (2 = 1.

3. PERIODIC AND CHAOTIC OSCILLATIONS IN THE TWIN-WELL POTENTIAL DRIVEN
OSCILLATOR — PRELIMINARIES

In this paper the twin-well potential system (6) has been derived as a simple mathematical model
of the single-mode motion of buckled beams driven externally by a lateral harmonic force. It is
worthwhile to recall, however, that the system has become a central archetypal model for studies
of chaos and fractal basin boundaries in nonlinear dynamics, the studies being still continued by
applied mathematicians and physicists in various branches of physics.

For the sake of simplicity it is useful to interpret the system behavior as a motion of a ball (mass
point) in the twin well potential, with the base vibrating harmonically (Fig. 1a). The ball can
oscillate around one of the two stable positions, i.e. can exhibit single-well motion, or, at certain
values of the system control parameters F,w, it can leave the potential well and oscillate around
all three equilibria to exhibit cross-well motion (chaotic or periodic).

To derive an equation of the single-well motion it is useful to introduce a new coordinate z =
z + 1,which denotes the displacement from the stable rest position = +1. It follows that after the
change of variables, Eq. (6) is transformed into:

3 1
2‘+hz’+z:|:§z2+§z3=Fcoswt. (7)

It is known that the steady-state cross-well motion (chaotic or periodic) occurs at high values of
the forcing parameter F. In this paper we focus attention on the system behavior at lower values
of F, the values which seem to be of interest in real engineering problems. In practice the most
dangerous and hence the most interesting phenomena occur in the region of the primary resonance,
i.e. in the neighborhood of the driving frequency w = 1, where the nonlinear resonance hysteresis
occurs. It follows that within each of the potential wells two stable T-periodic oscillations (resonant
and nonresonant) coexist. This is schematically illustrated in Fig. 1b, where the closed trajectories
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of the solutions are depicted in the phase-space x — . On the Poincaré map these T-periodic
trajectories are reduced to stable fixed points: S,,, S, and S,,, S. denote nonresonant and resonant
stable periodic orbits (attractors) in the left and the right potential well, respectively. The related
unstable T-periodic orbits, i.e. single-well saddles (dashed trajectories) are reduced to unstable
fixed points D" and D”. The Poincaré map of the unstable T-periodic solution that occurs close to
x =0 is denoted Dy and is called the hill-top saddle.

V(x) (a)

sin ot

«

Fig. 1. (a) Schematic diagram of the potential energy of the system; (b) Coexistence of resonant and
’ n ! "
nonresonant T-periodic single-well oscillations: S, , S, — resonant attractors; S,, , S,, - nonresonant attractors;
U ”n
D, D - unstable single-well orbits (saddles); Dy - hilltop saddle

At very low values of the forcing parameter F' (Fy < F < F}) the system behaves as a weakly
nonlinear oscillator with a softening characteristic of restoring force. The steady-state response is
very close to a harmonic one with frequency w, and the amplitude-frequency curves skew towards
the lower frequencies than that of the linear natural frequency (2, = 1 (Fig. 2a). The upper stable
branch of the curve corresponds to the resonant attractor, the lower branch — to the nonresonant
one. The two stable solutions are separated by the unstable one (dashed line) — this corresponds to
the in-well saddle D in Fig. 1b. The nonlinear resonance hysteresis occurs between the two stability
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limits A and B (saddle-node bifurcations). At the stability limits the jump phenomena is observed,
but the resulting motion is always confined to the same potential well.

Yet the approximate theory gives a good agreement with the numerical results within a very
slim zone of the forcing parameter F. At higher values of F' (F; < F < F3) the steady-state
solution obtained by computer based methods begins to reveal some irregular and unpredictable
behavior. In Fig. 2b we indicate schematically two aspects of the phenomena. First, we see that
the saddle-node bifurcation B ceases to exist and instead another mechanism of the annihilation of
the resonant attractor (known as a period-doubling—chaos—crisis scenario) takes place (an insight
into this scenario, which occurs in the narrow PD-crisis region of driving frequency indicated in
Fig. 2b, is given in Sec. 4). Moreover, one may not predict whether the ensuing motion will jump
into the nonresonant branch within the same potential well, or will leave the well and settle into
the corresponding nonresonant solution in the opposite well. This two possibilities are marked by
downward and upward arrows in Fig. 2b. Thus we came across the phenomena of the unpredictable
or indeterminate outcome [15, 19, 24].

xmax

(a)F&<F<FI'

@

Fig. 2. Schematic amplitude-frequency curves in two regions of the forcing amplitude F'
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4. STEADY-STATE OSCILLATIONS IN THE REGION OF THE PRIMARY RESONANCE HYS-
TERESIS

To examine the asymptotic behavior of the system in the region of the primary resonance hysteresis
we first determine the region of existence of the resonant and nonresonant T-periodic attractors,
and then focus on the bifurcations which occur at the boundaries of the coexistence of the two
attractors. The results are presented in the system parameter control plane F — w at fixed value of
damping h = 0.1 (Fig. 3).
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Fig. 3. Bifurcation diagram in the F' — w control plane at h = 0.1, covering the region of primary resonance

hysteresis. The resonant and nonresonant single-well attractors coexist within the triangle-like area confined

by snA, snB and period-doubling PD bifurcation arcs; curves indicated as M , hom and het denote critical
lines of global bifurcations (section 5)

The resonant and nonresonant T-periodic attractors coexist within a triangle-like area confined
by three arcs (stability limits): the arc snA denotes the saddle-node bifurcation of the nonresonant
attractor .S, the arc snB — the saddle-node bifurcation of the resonant attractor S,. Finally, the arc
PD depicts the first period-doubling bifurcation of the resonant attractor S,. The points indicating
the local saddle-node bifurcations A and B are already shown in the amplitude-frequency diagram
in Fig. 2a, and the period-doubling bifurcation PD is also marked schematically in the Fig. 2b. The
diagram in Fig. 2b suggests, that as the saddle-node bifurcation snB ceases to exist, the strict loss
of stability of the resonant attractor S, is followed by some irregular phenomena. The bifurcation
diagram zp = zp(w) (where zp denotes the Poincaré displacement on the Poincaré section plane)
gives an insight into the sequence of bifurcations which occur in a narrow region between the arcs
PD and crisis (Fig. 4). The diagram was obtained by decreasing the driving frequency w, starting
from the interior of the triangle-like area and crossing the values of w, where the attractor ceases
to exist. The diagram indicates, that the final annihilation of the resonant attractor is preceded
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by a cascade of the Feigenbaum period-doubling bifurcations, the cascade which was found in many
physical systems, and which is regarded in nonlinear dynamics as a generic route to chaos [1]. At
the end of the cascade the single-well steady-state chaos (chaotic attractor) is observed in a very
narrow band of the driving frequency, and this attractor is finally annihilated by a mechanism
of a boundary crisis, i.e. the collision of the chaotic attractor with a coexisting saddle in its basin
boundary (2, 16, 22]. In this paper we do not enter into details of this type of chaos. The two versions
of the bifurcation diagram are mainly aimed at illustrating also another irregular phenomenon -
the indeterminate final outcome. We see, that under a small increment of the forcing parameter F
(AF = 0.0001) the system, after annihilation of the chaotic attractor, settles onto the nonresonant
attractor in the same potential well, or it leaves the well and settles onto the nonresonant attractor
in the opposite well (Figs. 4 a and b, respectively).

Figure 3 also indicates (shaded area) that at the zone of forcing F' > F5 and the zone of driving
frequency w, where the frequency of the saddle-node bifurcation A is lower than the frequency of
crisis, so that the both types of single-well attractors cease to exist, the system exhibits a cross-well
chaotic motion [17].
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Fig. 4. Bifurcation diagrams of the resonant right-well attractor S;I and two possible outcomes after crisis
(to the same or to the opposite well), under small step-increments of driving force: (a) F = 0.0620;
(b) F = 0.0621
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5. CRITERIA FOR CHAOTIC TRANSIENT MOTION

In this section we consider the transient chaotic motion that occurs in the region of the primary
resonance, and focus on establishing criteria for the system parameter critical values F,w, which
define the boundary between regular and chaotic motion. We show that the transient chaotic motion
can be induced by two different mechanisms: one mechanism is related to a “disturbance” applied to
the steady-state periodic motion, and the other is due to a “disturbance” of the control parameter
values F,w at the strict loss of stability of the periodic motion, the disturbance that results in an
annihilation of one of the coexisting attractors.

First we look at the transient motion that occurs at the boundary of existence of the nonresonant
S attractor, i.e. at the saddle-node bifurcation A. -As this type of bifurcation belongs to the
category of discontinuous bifurcations, the attractor is supposed to disappear suddenly at w = wa.
If so, the transient motion that the system exhibits until the ensuing trajectory settles onto another
remote attractor, can play a significant role. The results presented in Figs. 5a and 5b reveal that the
transient motion after crossing the snA line by adding a small increment Aw in driving frequency
may have dramatically different form. At F' = 0.05 the transient trajectory is perfectly regular,
and the final outcome (resonant attractor in the same well) is unique; the time of transient from
nonresonant, to resonant attractor is very short, and the “rate of decay” is clearly seen (Fig. 5a).
At F = 0.075 the long-lasting cross-well transient chaos and the two different final outcomes are
observed (Fig. 5b). The time of duration of the transient motion is unpredictable (can not be
established), and for a long time it may look like “steady-state chaotic motion”, because any “rate
of decay” can be seen. Moreover, the final outcome is also unpredictable (or indeterminate); in the
upper part of Fig. 5b the motion remains in the same potential well, settling onto the S; resonant
attractor; in the bottom part of the figure, the motion finally jump into the opposite well and
settles onto the S, resonant attractor.

-- Am=0.004
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Fig. 5. Examples of time histories of the ensuing trajectory past the saddle-node bifurcation of the nonres-

onant attractor S;, under small step-increments Aw of driving frequency; (a) F' = 0.05, before any global
bifurcation: in-well smooth transient decay with the unique, predictable outcome; (b) F' = 0.075, past the
heteroclinic bifurcation: long lasting cross-well chaotic transients with unpredictable outcomes

The indeterminate outcomes may also occur after annihilation of the resonant attractor S, via
the cascade of period-doublings and crisis of the single-well chaotic attractor [19]; the event was
just illustrated on the bifurcation diagrams shown in Fig. 4a, b.

At this point we turn to our major question: how to determine the critical F,« parameters which
define the boundary between the occurrence of regular and chaotic transient motion?

Preliminary answer to the question lies in the theory of global bifurcations. In the most general
term one can state, that the global bifurcations generate sensitivity to initial conditions and this
implies chaotic phenomena.

The concept of the global bifurcations is based on the structure of the invariant manifolds of the
saddles, associated with the coexisting attractors. Before we proceed to the definition of this type of
bifurcation it is useful to look at the pattern of the invariant manifolds and the associated basins of
attraction in the case of a regular system (Fig. Ia,b). First we notice that the saddles (i.e. Poincaré
map of unstable periodic orbits) are situated at the boundaries of the basins of attraction, and that
the boundaries are smooth, one dimensional lines. In this example we deal with 3 coexisting saddles:
the hilltop saddle Dy and the single-well saddles D’ and D”. The figures clearly show, that Dy lies
in the boundary between basins of attraction which belong to the attractors in two potential wells,
and D' and D" — on the basin boundary between resonant and nonresonant attractor within the
same well.
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When we compare the boundaries of the basins of attraction with the invariant manifolds of
the 3 saddles Dy, D' and D", we notice immediately that the boundaries are defined by the
stable manifolds (insets), i.e. the sets of initial points which tend to the saddle as ¢t — oo (for the
sake of clarity, in Fig. Ib we show only short, most relevant segments of the invariant manifolds,
corresponding to a short time of numerical integration).

Then we proceed to the concept of the global bifurcations and the role they play in our problem.
The major events that define global bifurcations are schematically illustrated in Fig. 6a,b. The

x (@)

®
D,
Fig. 6. (a) Schematic diagram of the homoclinic orbit (dashed line) and the stable W, and unstable Wy,
manifolds of the saddle D (solid line) after homoclinic bifurcation; (b) Schematic diagram of the heteroclinic

orbit (dashed line) and the unstable manifold W5 of the saddle D1 and the stable manifold Wp,, of the saddle
D3 (solid lines) after heteroclinic bifurcation

theory says, that as long as the stable manifold W7 and unstable manifold W} of the saddle D
(or of the two saddles D; and Ds) do not intersect transversely (transversal, or generic, intersec-
tion means that the intersection point is robust against small perturbations), the system behaves
regularly: basins of attraction of the coexisting attractors have a smooth (one dimensional) basin
boundary, defined by the stable manifolds, and hence there is no sensitivity to initial conditions.
The homoclinic (or heteroclinic) bifurcation occurs when the two manifolds (stable and unstable)
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of the same saddle (or of the two different saddles, respectively) intersect transversely in the phase
space. It is also known from the theory that one intersection implies infinite number of them (it
results from the fact that the manifolds are invariant subspaces) and, consequently, infinite num-
ber of unstable orbits. This destroys the regular boundary between basins of attraction of the two
coexisting attractors in the system, and the basin boundary becomes fractal. In the domain where
the fractal nature of the basin boundaries occurs, the system is sensitive to initial conditions. In
this sense the system becomes chaotic.

It follows that the criteria for chaotic transients can be found by determining all types of the
global bifurcations that occur in our system, i.e.:

e the homoclinic bifurcation of the hilltop saddle Dy

e the homoclinic bifurcation of the single-well saddle D’ (D");

e the heteroclinic bifurcation of the hilltop saddle Dy and the single well saddle D’ (D").

Between the listed bifurcations only the first one (known as the Melnikov criterion) can be deter-
mined approximately by an asymptotic perturbation method [3]. The two other bifurcations, which
are related to the existence of the nonlinear resonance hysteresis, require numerical exploration.
The critical bifurcational values F,w correspond to the tangency condition of relevant manifolds.

Results of computation are depicted in Fig. 3. The curve M denotes the homoclinic (Melnikov)
bifurcation of the hilltop saddle Dg. With the i increase of the forcing parameter F the homoclinic
bifurcation of each of the single-well saddles D', D" occurs and is denoted as hom. It is followed
by the heteroclinic bifurcation, which lnvolves the insets of the hilltop saddle Dy and one of the
outsets of each of the in-well saddles D', D" , namely that one which tends towards the resonant
attractor S.. (S.). The latter blfurcatlon is denoted as het.

To explore effects of the sequence of global bifurcations on the generation of the fractal structure
of basins of attraction we demonstrate and discuss separately the basin-phase portraits and the
related chaotic transient motion at the values of the control parameters F,w in three subdomains:

L. the subdomain between the Melnikov (M) and in-well (hom) homoclinic bifurcation, Fiy <
< B hom)

II. the subdomain between the in-well homoclinic (hom) and the heteroclinic (het) bifurcation,
Fhom < F' < Fhet;

II1. the subdomain above the heteroclinic bifurcation (het), but prior to the loss of stability of
both single-well attractors (PD, snA), Fiet < F < Fpp N Fhet < F' < Fypa.

It turns out that the effects of the homoclinic Melnikov bifurcation within the subdomain I on the
fractal structure of the basins’ boundaries, although emerging, remain negligible on a macroscopic
level of observation, and therefore, the related basin-phase portraits are not presented in the paper.

Significant effects are brought by the hom bifurcation in the subdomain II: the regular basin
boundary that separated in each well the basins of attraction of the resonant and nonresonant
attractors is broken and a layer of the fractal basin boundary is formed. This is shown in Fig. Ila
and in the blown-up picture which covers a small rectangle of the phase-space in the right well —
Fig. IIb. This effect leads to a sensitivity of the system response to initial conditions and so, to the
unpredictability of the final outcome: the trajectories that start from the fractal area exhibit chaotic
transient motion until they restabilize onto the resonant or nonresonant attractor. Two examples
of such time histories in the subdomain II are displayed in Fig. 7a,b; they are obtained for sets
of slightly different initial conditions in the close neighborhood of the fractal basin boundary in
the right well (2(0) ~ 0.79, (0) ~ —0.37). Note, that this type of chaotic transient is confined to
the motion within a single potential well and, therefore, the phenomenon is not restricted to the
twin-well potential oscillator.

For the comparison we show in Fig. 8a,b two examples of transient trajectories which initialize in
the phase plane very close to the former ones, but in the smooth (non-fractal) domains of the basins
of S, (Fig. 8a) and S, (Fig. 8b) attractors; the trajectories reach the correspondlng attractors after
significantly shorter and more regular transients.

One may expect that due to the Melnikov homoclinic bifurcation the system has also a possibility
of generating the cross-well transient chaos. But the fractal layer of the basin boundary which



Criteria for chaotic transient oscillations 75

involves the basins of attractors from both potential wells is so thin (and situated close to the edges
of the basins), that this type of transients is neglected in the subdomain considered.
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Fig. 7. Samples of the in-well chaotic transients with unpredictable outcomes after the homoclinic bifurcatior}l,
F = 0.058, w = 0.72, for slightly different initial conditions close to the fractal boundary of the basins of S,
"
and S,: (a) z(0) = 0.7941, £(0) = —0.3770;  (b) z(0) = 0.7941, &(0) = —0.3768

The fractal structure of the basin-phase portrait that form a tangled mixture of the basins
of all four coexisting attractors (two attractors in each well) develops dramatically after crossing
the threshold values F,w which correspond to the heteroclinic bifurcation (line het in Fig. 3) -
subdomain III. As the parameters F,w become more distant from the critical het values, the effects
of the heteroclinic bifurcation are growing, that is, the subset of initial conditions corresponding
to the fractal domain of the basins is increasing, and gradually begins to cover a significant area
of the phase space 2(0) — #(0). To highlight the effect we display the basins of attraction for the
forcing parameter value F' = 0.075, which significantly exceeds the critical Fje; threshold, but still
remains within the triangle-like domain where all four periodic attractors coexist (Fig. III). In
this case, the highly intertwined structure of the basins gives rise to cross-well chaotic transients,
which can result in as many as four different final outcomes. Four examples of the time history of
chaotic transients which settle finally onto each of the four coexisting attractors, are displayed in
Fig. 9. They are obtained for sets of slightly different initial conditions in the close neighborhood
of z(0) = 0.11, £(0) = —0.009.
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Fig. 8. Two time histories of the trajectories initializing at the smooth (non-fractal) domains of the basins
of attraction, for the same control parameters as in Fig. 9: (a) z(0) = 0.95, (0) = —0.36 (basin of SZ);
(b) z(0) = 0.90, £(0) = —0.45 (basin of S, )

Fig. 9. Samples of cross-well chaotic transients with four unpredictable final outcomes at high forcing value,
F' = 0.075, with slightly different initial conditions: (a) z(0) = 0.1100, £(0) = —0.0090; (b) z(0) = 0.1102,
#(0) = —0.0088 ; (c) z(0) = 0.1099, &(0) = —0.0090; (d) z(0) = 0.1097, £(0) = —0.0095
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X |4

.6

Fig. 1. (a) Basins of attraction (in the z — & plane) of the four coexisting attractors, prior to any global bi-

furcation: F' = 0.05, w = 0.72. Yellow depicts the basin of S; , red — basin of S:: , green — basin of S;, and

blue — basin of S... The grid resolution is 640 x 480; (b) The corresponding family of invariant manifolds of

the hilltop saddle Dy (insets in green, outsets in blue) and of the single-well saddles D’, B" (insets in yellow,
outsets in red)
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Fig. II. (a) Basins of attraction of the four coexisting attractors past the homoclinic bifurcation of the single-

well saddles (Fhom < F < Fhet): F' = 0.058, w = 0.72; (b) Blown-up region of the basins (depicted as s-

mall rectangle in Fig. 10a) in the neighborhood of the S;’ attractor. Color correspondence and grid resolution as
in Fig. 6a
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Fig. II1. Basins of attraction of the four coexisting attractors at a higher value of forcing: F' = 0.075, w = 0.79 .
Color correspondence and grid resolution as in Fig. 6a
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When we turn back to the phenomena of transient chaos and indeterminate outcomes due to the
disturbance of the control parameters F,w at the stability limit of the periodic attractors (Figs. 4
and 5), we find out that also in this case the criteria for the chaotic transient are defined by the
‘heteroclinic (het) bifurcation [19, 20, 24].

6. CONCLUSIONS

The numerical study of the criteria for chaotic transients in the mathematical model of buckled
beams, i.e. the driven twin-well potential oscillator, leads to the following conclusions:

e the concept of maps plays an essential role in the computer based explorations, because it
allows to reduce the three-dimensional phase space to the two-dimensional one. The graphical
presentation of the results on the phase plane (z,%) provides a key to clear interpretation of the
system chaotic properties;

e application of the mathematical theory of global bifurcations in the system, where as many
as three saddles associated with the four coexisting attractors give rise to occurrence of a series of
the homoclinic and heteroclinic bifurcations, enables us to determine the loci of the critical system
control parameters F'(«), which define the boundary between regular and chaotic system behavior;

e the criterion for the most dangerous phenomena — the cross-well transient chaos with un-
predictable final outcome — is determined by the heteroclinic bifurcation (het in Fig. 3). For the
values of F' > Fje both types of transient motion: the transient induced by a perturbation of the
periodic motion, and that caused by a perturbation of control parameters in the close vicinity of the
stability limit of one of the coexisting periodic attractors, become chaotic, with the unpredictability
in both time of transient duration and its final outcome.
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