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An analytical study of stability is made for a hydromechanical servomechanism used in copying systems.
In the framework of a nonlinear system of ODE mathematically modelling the servomechanism, we prove
that for a ramp input the steady-state solution bifurcates into a stable limit cycle for a certain value of
the underlap spool valve.

1. INTRODUCTION

A hydraulic copying system must reproduce a geometrical form known as the template in a work-
piece as close as possible. So, from the manufacturing point of view, the stability and accuracy of
the copying system are important.

The theoretical analyses of the hydraulic copying systems used until now the techniques specific
to linear control systems. Nonlinear analysis was carried out in (3, 4, 5], using numerical simulation.
no analytical approach to periodic solutions of the copying systems, neither to the behaviour of the
system in the presence of a limit cycle being available in literature until recently [1]. In this paper
such an analytical study of the behaviour of the hydraulic copying system having a ramp input
signal and loaded with a constant cutting force, Fy, is performed.

A typical hydraulic copying mechanism is shown in Fig. 1. It consists of a hydraulic spool valve
(a hydraulic amplifier) which commands a hydraulic linear motor. The spool of the valve is moved
by a stylus which is in contact with the template. Because of the intrinsic reaction between the
spool valve and the hydraulic motor, this one will receive the movement of the stylus yo(t) with an
error £(t). So the displacement of the tool will finally be, (2, 3, 4, 5]:

y(t) = yo(t) — e(t). (1)

The mathematical model of the hydraulic control system contains the equilibrium equation of
the copying slide, the flow equation through the control valve and the equation of the feedback
between the spool valve and copying slide. The proper nonlinearities of the hydraulic amplifier
with underlap spool valve are the insensitive zone and the saturation zone.

The theoretical assumptions are: the hydraulic oil used in the servomechanism is a Newtonian
compressible fluid; the flow equations are written for a turbulent flow at higher Reynolds numbers,
[1]; the hydraulic coefficient cq is constant and its value for a knife-type of flow port is: ¢g =
0.61; the hydraulic servomechanism is supplied at a constant pressure, ps; a hydraulic oil with
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Fig. 1. The Hydraulic Copying System. Principle Schema

the kinematic viscosity v = 80 - 106 [m?/s] and the specific mass p = 900[kg/m?®] at a constant
working temperature is used; the bulk of oil module, E, has an usual value [2,3] of 10° [Pa] for the
assumption of a less quantity of air in the oil column; the reservoir pressure pr has a small value
and can be considered to be zero.

2. MATHEMATICAL FORMULATION
The following model is essentially that proposed by Viersma [5, 6.

The flow characteristic equations through the valve ports, within the assumptions mentioned
bellow, are given by:

Q1=7chd(h—$)\/%\/@_—_; Q2=7Td0d(h+fﬂ)\/g\/f% (2)
Q=Q2— Q1, (3)
gps_A.p: %M‘; +E, (5)
T =y0—Y, (6)

with: d [m], the spool diameter, 7d [m] is the area gradient of the valve; h [m], the underlap of
the valve; A [m?|, effective cross-sectional area of the piston; Vo [m®], total volume of oil com-
pressed in servo; m [kg|, mass of copying slide; k [Ns/m], a coefficient related to the friction forces;
F,, [Ns/m], magnitude of dry friction coefficient in copying slide, [6]; F, [N], total dynamic cutting
force; Q [m3/s], the flow rate of the hydraulic motor.

Equations (2)—(6) imply:

Fo+my'" + (k+ F.)y =A(p2—s —P),
¥ (7)
7P =AY = Cl(h+yo—y)vP— (h—y0 +y)VPs — 1,

where, C = wdcd\/%.
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3. THE STEADY-STATE MOTIONS: EXISTENCE, STABILITY AND BIFURCATION

We prove that if the input yo in the system given in Eq. (7) is yo(t) = @t + b the system has a
solution y(t) = at + B, p(t) = P (the steady-state motion). We study its stability and we prove
that under a certain value of the underlap spool valve, h, the steady-state motion bifurcates into a
stable limit cycle. The period and the amplitude of this motion can be computed as in [1].

The system given by means of Egs. (7) can be rewritten as:

k Alp F,
grias Ll el (B - A8 O
Z = mz+m< p) § (8)

AE CFE A P
of s + 3o (-t =b—h)Vp+@—at—b+hvp—p|.
Vo

Substituting in the second equation of Egs. (8) the solution we are looking for, we find that
v=0 and

ot [ Jys BEDTURD

frmgemigpmg® ©)
According to the notation used in Sec. 2 of the paper, the pressure # must be positive. Then
substitution in the third equation of Eqgs. (8) gives:

o =4,
P G+h)\VE+(B—h)Vps—b _ Ad (10)
VP + Vs =P C(VB+Vps— b
The steady-state motion is:
§(t) = at + B,
4 ¥ (11)
p(t) =p

In order to investigate its stability we find it convenient to perform a translation of the system
into zero, so we define:

£ =j—y, (=2-2, n=p—p that satisfy:

€I:_C,
(12)
Che stdbdvots
¢ = m<+mn,
o — AE
c+—[<s+h BAOVE—n+E—h-B+bVo,—+n ]-—a
Ifwedeﬁne.
—gPe_Fa ki ps | F. ki
Cl—P—2 R 02—P3—01—?+7+X, (13)
5 2,/Cy Al
Hi=h-B+b=h 3 ,
. VCi+VC: ' C(/Ci +/Cq)
Ve Ad (14)
Hy < Bopgadish } £ =% —H,

VO +VC;  C(VCi +V/Ca)
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the system written in Eqs. (12) becomes:

EI = —(,
k A
¢'=——C+ =, (15)
, AE
77=—<+'_[§+H1\/01 +§ Hg\/C2+]—'700,.
The matrix of the linearised part of Egs. (15) around zero is:
0 -1 0
k A
B= 0 e i . (16)
E AE CE H, H2 >
C 8 T SOy (
s VG VG,
If we denote:
~ H, H2
b= (17)
5 ol o %

the characteristic polynomial of the matrix given by Eq. (16) is:

POYE )\3+)\2(k

CEh>+/\ k CE. - AE
2m Vg mWy

A ——h+—) +%(\/E’T+ VCs) (18)

and the asymptotic stability of the trivial solution of Eq. (15) is lost, according to the Hurwitz
criterion if:

k CFE - KOE .  A’E ACE
<— 4 h) ( h + ) (\/ C1+ Vv C?) (19)
m  2mVj mV

2mVy mVp

or equivalently

C%Ek A%CE 2\. A*
h? + +C h+ k—AC(\/Cl+\/Cg)=O.
4V, 2 Vo m m

Equation (19) has one positive root ho when the parameters are assigned the values corresponding
to the standard copying systems, like in the numerical example given in Sec. 4 of the paper. The
corresponding value of kg deduced from Eqgs. (17), (13) and (14) is:

by - YOOI(/Ci+ V)7 AT = VTo)
& 20, 2Cp, '

(20)

If b = ho the polynomial given by Eq. (18) has two imaginary roots A\; = iwg, A2 = —iwg and the
third one A3 is strictly negative as is easily seen when P()\) = A3 — A\3\2 4 w@\ — A\3w is compared
with Eq. (18). We infer that

k CE-

Aa:_a_ h’Oa

(21)

g
_(koE; | #E)\}
“o =\ mavg mVy
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Generally, if A;(R) is a root of P in Eq. (18), derivation with respect to A gives:

o ol K20
Ah)? + —A(h)
A A e ey __g_ o
LR L 3X2(h) + 2A\(h) <‘k‘ +_CE,;) W P
m ' 2V 2mVo ~ mWy

Relations (17), (14) and (21) imply for A = A(h) = a(h) + iw(h) that:

/ 1 /(3 2(01 + 02) CE (wg = A3%) (Cl 5 C2) -
a'(ho) = a1(h0)(\/c_l+ VC2)VCiCa T WO VCa)VCiCa(w? + 23) (22)
o)==, (had 2(Cy + Cy) C2E2uoho(Ch + Ca) =

(VCI+ VOVCiC:  4VE(VCi + VC)VCiCalug + A3

Since A\3 < 0 we have o'(hg) < 0 so from Hopf theorem [8, 9] we conclude that for h < hg,
h close to hg, the system given by (15) has a family of periodic solutions analytically depending
on h. The algorithm developed in [8] allows us to prove that a stable limit cycle arises and to
determine its period and amplitude. The computations are identical with those involved in the
study of bifurcation for the output a step input in a loaded system, [1].

For given values of the constants involved, we compute the value of ~g and then -y, the Lyapunov
coefficient is computed, too. Since this coefficient is strictly negative a stable limit cycle arises. Some
numerical results are given in the next section.

4. NUMERICAL RESULTS AND SIMULATION

Computations performed using Mathematica, with given values of the constants involved according
to usual standards, yield that a stable limit cycle arises for A close to hg and:

he < h < ho (24)

where h; = 2.78 - 10~5m is the value of the underlap in turbulent flow [6]. We start with the
following parameters of the hydraulic copying system in Eq. (7): A = 0,028 m?, C = 9.03386 -
10~* m%2 kg=1/2, k = 4000 Ns/m, m = 93 kg, ps = 2- 106 Pa, E =1-10° Pa, Vg = 3.5- 10~ m?,
a@=3-10"* ms™!, b= 1105 m. We determine from Eq. (19) the value of ho where bifurcation
occurs and then, as in [1], the amplitude A and the period T of the stable limit cycle.

The results are presented in Table 1, for different values of the perturbation force F, (the cutting
force) and h = 8- 1075 m.

The steady-state error €55 of the copying system is given by the difference between the steady-
state solution y(t) = at + B and the ramp input yo(t) = at + b.

Using a and S given by Eq. (10) we obtain:

et NI h(ps"2ﬁ) Aa
I G ve-5)  CWR VAP )

where p is given by Eq. (9).

The results presented in Table 1 show that the steady-state error increases with the increase
of F,. The evolution in time of £ = §j — y was simulated for different values of the underlap A of
the spool valve. The results of numerical simulations (using MatLab with Simulink) for system of
Eqgs. (15) are given in Figs. 2, Fig. 3. With the underlap A smaller then the value of bifurcation hq,
the error remains within an interval determined by A.
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Table 1
F,[N| 300 1300 2000 3000
ho[m] 8.32-107° 8.297 - 107° 8.267 -107° 8.206 - 107°
b— pBlm] | 5.09693-107° | 6.57955-107% | 7.61041-10"% | 9.06648 - 10~°
Alm] 4.10°8 3.69.107° 3.348 .107° 2.685-107°
T|s| 0.004 0.004 0.004 0.004
5 —2.60451 - 108 | —2.59828 - 108 | —3.11115-10® | —3.71203 - 10®
x10°7°
& [m] ,
S h=8-10"m
3 | #=910*m
7 1 5
h=10-10"m
v
1
0
-1
2 l
-3 v
8 ' : t[s]
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Fig. 2. Plot of & for different values of h.
The initial conditions are: £(0) = 1-1073 m, 5(0) =1 -10°Pa, ¢(0) = 0.02 m/s.
The tolerance of the integration method is 1-107%
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Fig. 3. Plot of &, ¢ and 7 for h =8-1075 m.
The initial conditions are: £(0) = 1-107® m, 7(0) = 1-10° Pa, ¢(0) = 0.02 m/s.
Time of simulation ¢ = 0.08 sec
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5. CONCLUSIONS

We prove that for a ramp input, the nonlinear system of ODE modelling the servomechanisms
used in copying systems has a solution of the same form: the steady-state solution. Even when the
steady-state solution is not asymptotically stable, the presence of a stable limit cycle ensures the
steady-state error will not increase. The results of simulations indicate an increase of the steady-
state error with perturbation force. Together with the analytical study, the simulations give some
evidence on the initial conditions that will ensure a correct dynamic system response of the system.
Practically when manufacturing with a given hydraulic copying system the choose of good initial
conditions means a correct choose of the parameters in the cutting process.
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