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Dynamic optimization problem for a machine rigid block foundation on an inhomogeneous soil is con-
sidered. The soil deposit under the base of block corresponds to a layer with linearly varying properties
overlying a uniform half-space. Furthermore, the block may be surrounded by a backfill. The optimal de-
signs of a vertically excited rectangular block foundation are found by iterative application of a sequential
linear programming for a number of rationally inhomogeneous supporting media as well as for a uniform
half-space. It illustrates the problem of adequate modelling of the nature of the soil profile and provides
an insight into the action of the soil-foundation-machine system from the point of view of the long-term
satisfactory performance and safety.

1. INTRODUCTION

Generally, the design of machine foundations is a trial-and-error procedure that should lead to a
safe and economical foundation block satisfying the operational requirements of machinery and
installations and structural and psychological criteria [16]. A successful machine foundation design
requires a systematic using of principles of soil engineering, soil dynamics and theory of vibration
[9, 17]. The engineering decision-making process may be helped by structural optimization tech-
niques [1, 3, 15, 27]. Optimization of footings under static loads has been presented by Filipow
et al. [6], Garstecki [8], Huang and Hiduja [11], Truman and Hoback [28] and Chi and Dembicki
[5]. Dynamic optimization of a rigid block resting on a stochastic Winkler medium was conside-
red by Szymczak [26]. More complex problems accounting for the dynamic interaction between
the rigid block foundation and the supporting soil deposit have been solved by Sienkiewicz and
Wilezyriski [20-23]. If machine foundations are constructed as rigid concrete blocks, their response
to dynamic loads is completely determined by dynamic properties of the underlying soil deposit.
Then, the necessity of careful modelling of unbounded supporting medium properly distinguishes
soil dynamics from structural dynamics. For many years, properties of subsoil were evaluated on
the basis of the subgrade modulus being soil stiffness per unit area. This concept has been aban-
doned in advanced engineering practice and nowdays, the dynamic properties are usually described
in terms of complex-valued, frequency dependent impedance functions [9]. In the papers [20-23],
the dynamic properties of soil medium were described in terms of complex-valued and frequency
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dependent impedance functions of a homogeneous half-space. The most significant disadvantage of
the homogeneous elastic half-space model of soil is that it yields a very large radiation damping
for the vertical mode of vibration. In this case, overcritical damping is predicted for most larger
machine foundations and the response analysis may considerably underestimate the real vertical
vibration amplitude. It is a crucial problem from the point of view of performance and safety of the
machine-foundation structural system. Note that in real soils the confining pressure increase with
depth due to the overburden even for deep structurally homogeneous deposits of uniform sand or
clay. Then, the shear wave velocity and the dynamic shear modulus increase with depth depending
upon the type of soil {7, 17]. The problem of minimum weight design of a vertically vibrating ma-
chine foundation on an inhomogeneous soil has been solved by Sienkiewicz and Wilczyriski [24] for
a soil model corresponding to a layer with constant elastic properties overlaying a uniform elastic
half-space. In this study, the problem is considered for a more general model of soil corresponding to
a layer with linearly varying shear wave velocity overlying a uniform half-space, [25]. The results in
each case are compared with those obtained for uniform supporting medium. It provides an insight
into the action of the machine-block-soil system from the point of view of safety and long-term
adequate performance.

2. ANALYSIS MODEL

A dynamic system consists of a machine on a rigid rectangular block perfectly bonded to a layered
half-space. The block may be partially embedded in the ground (Fig. 1). Dynamic soil-foundation
interaction is performed by the substructure method in which the system is divided into two
substructures. The governing equations are developed separately and then are combined due to
conditions of equilibrium and compatibility at the foundation-soil interface, [10].
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Fig. 1. Machine-foundation resting on a layerd elastic soil

2.1. Substructure 1: machine-foundation system
The equation of vertical motion of rigid machine-block system for small amplitude is
mil,(t) = P.(t) + R.(t), (1)

in which m is the total mass of the block and machine, u,(t) = u, exp(iwt) is the uniform harmonic
settlement, P,(t) = P, exp(iwt)) is the harmonic external force, R, (t) = R, exp(iwt) is the dynamic
soil reaction, w is the circular frequency and i = /—1.
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2.2. Substructure 2: supporting medium

The semi-infinite elastic medium is excited by a harmonic vertical force Ry, (t) = R, exp(iwt) acting
through the centroid of the base of a massless embedded rigid block. The displacement field in the
medium, uz(z) exp(iwt), uy exp(iwt), u.(x) exp(iwt) must satisfy the Navier equations of motion in
each layer, the continuity conditions across layer interfaces, the condition of vanishing tractions on
the free surface of the half-space, the radiation conditions at infinity and the following condition
at the soil-foundation interface I':

uz(2) exp(iwt) = 0,
uy(z) exp(iwt) = 0, (2)

uz(x) exp(iwt) = upmy, exp(ivt), rel =TyUT,,

where u,, exp(iwt) is the uniform vertical dynamic settlement of a rigid massless block, and I'y, I's
are the horizontal and vertical interface, respectively.

The solution of the radiation boundary-value problem gives the distribution of the traction
T™(z)exp(iwt) at the interface I' that leads to the reaction force R,, exp(iwt)

Ron explivt) = / T () exp(iwt)dT(x) = Ryexp(iwt) + Ry exp(iwt), 3)
T'yUl's

where Ry exp(iwt) is the base reaction and R, exp(iwt) is the side reaction. Due to the difficulty of
obtaining rigorous solution, the contact reaction load on the half-space has been determined by an
approximate approach in which it is assumed that the tractions on the horizontal interface I', are
equal to those of a rigid massless plate bonded to the surface of a half-space, while the tractions
at the vertical interface I'y result from the action of an independent sidelayer under the cylindrical
plane strain condition [19)].

The distribution of base traction can be determined using the integral representation of the
surface vertical displacement field

us(@) exp(iit) = [ Gusla — &) explit) TP (E), @)
Ty

where G,.(x — &) exp(iwt) corresponds to the Green’s function, which gives the surface vertical
displacement of the half-space at a point z due to a harmonic vertical unit force 1exp(iwt) acting
at a point £. Including the condition of a rigid body motion (2) leads to the integral equation of
the Fredholm type of the first kind having Green’s function as kernel. The unknown of the integral
equation is the distribution of amplitudes of vertical traction 77 in the contact area I';. To solve
the equation, the contact area I'y is subdivided into a number of subregions I';;,n = 1,..., N and
it is assumed that the contact stresses are uniformly distributed within the small subregions I';,.
Imposing the displacement boundary condition of a rigid plate motion at the centers of the N
subregions leads to a linear algebraic equation system for the unknown complex-valued amplitudes
of traction at the interface I'y = UY_; = I',,. Finally

/ Tz, iw) exp(iwt)dT(@) = K (ie)um explivt), 5)
Ty

where R’,‘,’(z’w) is the complex-valued vertical dynamic impedance function of the half-space with
constraints imposed by a surface massless rigid plate.

The distribution of traction at the vertical interface I's has been determined by analytical solu-
tion of an elastodynamic boundary-value problem of an infinite elastic space subjected to harmonic
vertical vibration from a rigid, infinitely long circular inclusion [14]. It can be shown that

/ (5, iV ekp U ) = R (), expliit)), 6)
T's
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where f{f,(iw) denotes the complex-valued vertical dynamic impedance function of the backfll.
Combining Eqgs. (3-5) and (6) gives

R (iw) exp(iwt) = Ky (iw)um exp(iwt), (7)
where
K, (iw) = K9(iw) + K3(iw). (8)

The complex-valued vertical impedance function of the supporting medium can be written in the
form

K,(iw) = K!(w) + iK"(w) = Ko (@) + iwCy(w), (9)

where the real part of the complex-valued impedance function K (w) represents the contribution
of the force component that is in phase with the motion, whereas the imaginary part K”(w)
represents the contribution of the component that is 90° out of phase. In an equivalent spring-
dashpot representation of the supporting medium the stiffness of the spring is given by K,(«) =
Re(Ky(iw)) = Kj(w) and the dashpot coefficient is given by Cy(w) = Im(K,(iw))/w = K (w)/w.
The damping accounts for energy dissipation in subsoil stemming from wave propagation (radiation
damping). In contrary to structural dynamics, the equivalent stiffness and damping coefficients
depend on the frequency and they are also affected by soil material damping,

To illustrate the characteristics of the vertical impedance function for rigid massless block em-
bedded to a depth ZE in a soil, the case of a rectangular foundation 2B x 2L, B < L, is considered
(Fig. 2).
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Fig. 2. Rigid massless block embedded in a soil

The soil under the base of block consists of a layer of constant thickness HL bonded to an
underlying uniform half-space. The elastic layer is characterized by the density p;, Poisson’s ratio
11, hysteretic damping constants ¢;, and C1p for distortional and dilatational waves, respectively
and a distribution of shear modulus with depth G (2)

2z 2

G1(z) = G1(0) |1 + (CR — l)HL ;

(10)

where CR = +/G1(HL)/G1(0). It corresponds to linearly varying shear wave velocity of the layer.
The underlying homogeneous elastic half-space is characterized by the density po, Poisson’s
ratio vy, constant shear modulus Gy and hysteretic damping constants ¢z, and C2p. The backfill
is characterized by its density pp, Poisson’s ratio 14, constant shear modulus G and hysteretic
damping constants (ys and Cpp.
For the considered supporting medium, the complex-valued vertical impedance function can be
written in the form

K, (iw) = G1(0)B [kyy + 1a0Cu) , (11)
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where k., is the normalized stiffness coefficient, ¢,, is the normalized damping one and ag =
wB+/p1/G1(0) denotes the dimensionless frequency. The normalized stiffness and damping coeffi-
cients depend on ag, L/B, ZE/B, HL/B, Gy/G1(0), G1(HL)/G1(0), G2/G1(HL), ps/p1, p2/p1, Ve,
V1, V2, Cbsy Cbpy 15y C1py C2s AN (2p.

The non-dimensional stiffness and damping coefficients have been calculated for a, € (01, 3];
L/B € [1,2|; ZE/B = 0,1; HL/B € (2,10] U o0; Gp/G1(0) =1, G1(HL)/G1(0) € [1,10.5625];
G2/G1(HL) = 1.13; pp/p1 = 1; pa/p1 = 1.13; v = 11 = v = 0.33; Gps = Gop = C15 = (1p = 0.05;
and (2, = (2p = 0.03 and the part of the results is presented in the Figs. from 3 to 10. The results
show the effect of the frequency of motion and of the geometry of the contact area and soil profile
on the dynamic properties of the supporting subsoil. The Green’s function for a layered half-space
was determined by the procedure described by Luco and Apsel [13] and the results were obtained
by subdividing the base contact area into 64 rectangular subregions and using Gausian quadrature
to evaluate influence functions.
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Fig. 3. Variation of normalized stiffness coefficient ky, with dimensionless frequency a, € [0.1, 3] and aspect
ratio L/B € [1, 2]; uniform half-space HL/B = oo, (a) surface block ZE/B=0; (b) embedded block ZE/B=1
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Fig. 4. Variation of normalized damping coefficient c,, with dimensionless frequency a, € [0.1, 3] and aspect
ratio L/B € [1, 2]; uniform half-space HL,/B= o0, (a) surface block ZE/B= 0; (b) embedded block ZE/B= 1
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Fig. 5. Variation of normalized stiffness coefficient k., with dimensionless frequency a, € [0.1, 3] and the ratio
HL/B € [2,10]; layered half-space G1(HL)/G1(0) = 4, L/B= 1, (a) surface block ZE/B= 0; (b) embedded
block ZE/B=1
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Fig. 6. Variation of normalized damping coefficient ¢, with dimensionless frequency a, € (0.1, 3] and the ratio
HL/B € [2,10]; layered half-space G1(HL)/G1(0) = 4, L/B= 1, (a) surface block ZE/B= 0; (b) embedded
block ZE/B=1
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Fig. 7. Variation of normalized stiffness coefficient kv, with dimensionless frequency a, € [0.1,3] and the

contrast ratio CR = /G1(HL)/G1(0) € [1,3.25]; layered half-space HL/B= 5, L/B= 1, (a) surface block
ZE/B= 0; (b) embedded block ZE/B= 1
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Fig. 8. Variation of normalized damping coefficient c,, with dimensionless frequency a, € [0.1,3] and the
contrast ratio CR = /G1(HL)/G1(0) € [1,3.25]; layered half-space HL/B=5, L/B=1, (a) surface block

ZE/B=0; (b) embedded block ZE/B=1
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Fig. 9. Variation of normalized stiffness coefficient k.. with the ratios HL/B € [2,10] and CR € [1, 3];
layered half-space a, = 1, L/B=1, (a) surface block ZE/B=0; (b) embedded block ZE/B=1
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Fig. 10. Variation of normalized damping coefficient c,, with the ratios HL/B € [2,10] and CR € [1, 3];
layered half-space a, = 1, HL/B=1, (a) surface block ZE/B=0; (b) embedded block ZE/B=1
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2.3. Machine-block-soil system

Equilibrium of interaction forces between two substructures at the block medium interface leads to

Ro(t) = —Rum(t), (12)
and compatibility of vertical displacements requires that
Uz(t) = Um(t). (13)

Substituting Eqs. (7), (12) and (13) into the equation of motion (1) yields the complex-valued
displacement amplitude

a(805] = 0 0) O T e

K,(iw) — mw? (14

Then, the steady-state vertical motion of the machine-block system coupled with the semi-infinite
supporting medium is given in the form
Uus(t) = |uz(iw)| expli(wt + O)], ; (15)

where the real amplitude

|uz(iw)] = /(u)? + (uf)?, (16)

and the phase angle

ul/
© = arctan —= . (17)

z

3. STATEMENT OF THE PROBLEM

Structural optimization problems consist of minimizing some objective functions subjected to
constraints which are generally nonlinear functions of the design variables [3]. Mathematically

such problems (called the mathematical programming) can be expressed in the following form
(Box 1):

Box 1. Mathematical programming

Find the set of design variables D, that
minimizes F'(D) (objective function)
subject to 9;(D) <0, j=1,m, (contraints)
D; <D< D, (side contraints)

where F'(D) is the objective function to be minimized with the respect to the design variables
vector D = (Dy, Ds,...,D,) € R™ designated often as potential or stiffness, maximum stress or
volume or weight or cost, g;(D) as a typical inequality constraint can include requirements on the
structural response, m is the total number of constraints and D; and D,, are side constraints which
provide lower and upper bounds to the design variables. The objective is most commonly taken as
the weight of the structure.

In this paper the structure to be optimized is the rectangular machine foundation and the
problem of optimum design of vertically vibrating 3-D machine foundation coupled to layered half-
space can be stated as follows (Box 2.):
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Box 2. Problem statement

W (D) — weight (mass) of the concrete block — min
behavioural contraints:

o on vertical vibration amplitude Af,.x < AL,

e on amplitude of dynamic mean normal pressure o < Ofeas
and side contraints D; <D <D, ,

where: D = [Dy, Do]T — are dimensions of the foundation base (because of the tendency of the
optimization process to achieve the lower value, the height of the foundation is assumed as constant),
and symbols with index feas mean allowable values of behavioral constraints.

The above optimization problem is a standard nonlinear programming problem [1, 3, 18, 27|.
There exist dozens of different iterative methods of finding the minimum of objective function with
inequality constraints. For efficient structural systems the approximate concepts method is widely
used. Linear, hyperbolic as well as hybrid formulations are used for the approximation. In this
paper an iterative application of a sequential linear programming (SLP) has been applied [15, 29].
Direct linear approximations on nonlinear functions are accomplished by replacing the nonlinear
functions of the problem with their first-order Taylor series around DP?, (p is iteration number), [1].
So, we have (Box 3):

Box 3. Linearized problem

W (D) = W(D?) + V'W(D?)AD?, and
9i(D) 2 g;(D”) + V'g;(D?)AD”

where

gi(D) = aAa:Jnax(D)) and gi(D) = (D)

Then this linearized problem is solved with using Simplex algorithm [2, 15, 29]. The solution to
the optimization problem needs sensitivities of the objective function W and behaviour constraints
(see Box 2.) with respect to the design variable D;. The finite difference method (FDM) is addopted
to obtain the gradients of the objective function W and behavioural constraints g;. It is essential
to add a set of move limits to the constraints of the SLP problem in order to control a stability and
convergence of the algorithm [4, 12]. These move limits are specified as ADpin < AD < ADpax,
where AD iy and ADyax are the lower and upper limits on the design changes AD respectively.

A computer program has been developed for the analysis of a soil-machine-foundation system
and for the sequential linear programming method. This program was executed using IBM PC/AT.
The optimization procedure is considered to have converged to the final minimum weight when the
condition |W; — W;_1|/W;_; < € is satisfied for two succesive iterations, where W; and W;_; are
the foundation weight after 4 and ¢ — 1 iterations, and ¢ is a user defined tolerance (¢ = 0.01% in
this paper).

4. NUMERICAL EXAMPLES

To illustrate the effect of soil inhomogeneity on optimal design, a rigid rectangular machine foun-
dation on layered inelastic soil is taken into consideration, Fig. 1. The foundation is excited by a
single cylinder reciprocating engine after counterbalancing process. When counterbalancing is done,
the resulting unbalanced force in the vertical direction of piston motion has a primary as well as
secondary components (see Box 4).
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Box 4. Input data and limiting values of constraints

(1) machine data: (4) soil below the base of block:
mass of machine = 1400.0 kg, layer
total reciprocating mass Mp = 10.8 kg, thickness HL = 2, 3, 4, 5, 6, 7, 8, 9 and 10 m,
crank length r = 0.075 m, shear modulus G1(0) = 40000.0 kN /m?
length of connecting rod 1 = 0.3 m, G1(HL) = CR? x G1(0)
operating speed = 1200 rpm, CR = 110:1,25, 16,:1:75,2.0::2.25,:2:5, 2.75 and 3.0
unbalanced vertical force: Poisson’s ratio v1 = 0.33,
F, = Mprw? cos wt + MB(rzwz/l) cos 2wt density p1 = 1650.0 kg/ma,
hysteretic damping constants {15 = (1, = 0.05.
(2) block data: underlying half-space
density of concrete block = 2400.0 kg/m?®, shear modulus G2 = 1.13G;(HL)
height HB = 2.0 m, Poisson’s ratio v = v,
thickness of base slab HP = 0.5 m, density p2 = 1.13 p,
constant dimensions of top part of block: hysteretic damping constants {25 = (2, = 0.03.
YD =620 XD=8/0"mj
(3) backfill data; (5) limiting values of contraints:
thickness of backfill layer ZE = 0.0 and 1.0 m, | vertical displacement amplitude limit
dynamic shear modulus G = 30000.0 kN/m?, Yo =130.0 x. 3078 m,
density pp = 1350.0 kg/m?®, stresses in the soil limit Ofeas = 150.0 kN/m?,
hysteretic damping constants: {ys = (pp = 0.05, | size limits: 3.0 m < D; < 5.0 m, 2.0 m < Dy < 4.0 m.

The soil under the base of block consists of a layer of constant thickness HL bonded to an
underlying uniform half-space. The inelastic layer is characterized by a shear modulus G(2) varying
with depth according to equation (10), density p;, Poisson’s ratio vy, and hysteretic damping
constants (15 and ¢y, for distortional and dilatational waves, respectively.

The underlying homogeneous inelastic half-space is characterized by the constant shear modulus
(o, density pg, Poisson’s ratio vz, and hysteretic damping constants (25 and (a,. The backfill
is characterized by its constant shear modulus Gy, density py, Poisson’s ratio 3, and hysteretic
damping constants (ps, (pp. The design data parameters and limiting values of constraints are
summarized in Box 4.

The calculations were performed for two values of embedment ZE, nine values of layer thickness
HL, and nine values of contrast ratio CR = /G;(HL)/G1(0), where G1(0) and G;(HL) are the
shear modulus at the top and at the bottom of the layer, respectively.

Increase of the layer thickness and contrast ratio changes the stiffness and damping coeffi-
cients of the inhomogeneous soil medium compared with the uniform one. Furthermore, the backfill
surrounding the foundation alters its dynamic response by increasing the stiffness and damping
coefficients of the subsoil. The results of the optimization process are summarized in Tables 1 and
2 where the case CR = 1 corresponds to a uniform supporting medium characterized by the layer
properties.

The effect of the subsoil inhomogeneity and depth of embedment on the objective function
is shown in Fig. 11. For some inhomogeneous soil profiles, the minimal mass of the foundation
is greater compared to the uniform one. It is important from practical point of view, because an
underestimation of the mass of block will lead to failure of the machine-foundation-soil system. The
worst case for surface foundation corresponds to the layer thickness HL. = 3 m and the contrast
ratio CR = 2. The minimum of the optimal objective function also exists for HL. = 3 m and CR
= 3, when the decrease of vibration amplitude due to increase of soil stiffness is greater than its
increase caused by reduction of radiation damping, with reference to a uniform soil. The results
for embedded foundation create a nearly flat surface. It is worth to note that embedding the
foundation into the soil increase the total foundation-soil-interface and more energy is transmitted
to surrounding medium and nearby structures. Limiting amplitude of soil vibrations in the vicinity
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of embedded machine foundation can change results presented in Fig. 11b. It is remarkable that the
stress constraints are never active during the optimization process. To optimal rectangular shape
of block corresponds the appropriate stiffness and damping coefficients of the supporting medium.
They are shown in Figs. 12, 13, 14 and 15, and illustrate the way that the dynamic properties of

layered soil control the optimization process.

Table 1. Optimal design variables D1 X Dy [mxm)] for surface foundation

CR | HL = 3 [m] 4 [m]| 5 [m] 6 [m] 7 [m] 8 [m] 9 [m] 10 [m]
1.00 | 3.19x 3.00 | 3.19x 3.00 | 3.19 x 3.00 | 3.19x 3.00 | 3.19 x 3.00 | 3.19 x 3.00 | 3.19 x 3.00 | 3.19 x 3.00

(33072.5) | (33072.5) | (33072.5) | (33072.5) | (33072.5) | (33072.5) | (33072.5) | (33072.5)
1.25 | 3.58 x 3.20 | 3.48 x 3.14 | 3.41 X 3.05 | 3.36 x 3.01 | 3.34 x 3.01 | 3.34 X 3.01 | 3.36 x 3.00 | 3.36 x 3.00

(35353.9) | (34715.4) | (34069.7) | (33766.9) | (33673.9) | (33683.1) | (33692.1) | (33690.4)
1.50 | 3.83x3.43 | 3.75x 3.36 | 3.59 x 3.26 | 3.50 x 3.14 | 3.45 X 3.09 | 3.42 x 3.08 | 3.42 x 3.07 | 3.41 x 3.06

(37365.3) | (36708.7) | (35500.6) | (34765.1) | (34388.7) | (34267.7) | (34198.1) | (34128.1)
1.75 | 4.09 x 3.58 | 4.04 x 3.55 | 3.81 x 3.41 | 3.66 x 3.29 | 3.55 x 3.21 | 3.52 x 3.16 | 3.50 x 3.13 | 3.47 x 3.10

(39178.1) | (38810.6) | (37221.0) | (36067.5) | (35268.8) | (34927.2) | (34725.4) | (34542.4)
2.00 | 4.53 x 3.50 | 4.43 x 3.57 | 4.05 x 3.57 | 3.86 x 3.45 | 3.70 x 3.33 | 3.63 x 3.25 | 3.57 x 3.21 | 3.51 x 3.16

(40625.4) | (40590.7) | (38951.6) | (37559.9) | (36357.3) | (35729.5) | (35373.1) | (34895.9)
2.25 | 5.00x 3.11 | 5.00x 3.12 | 4.39 x 3.56 | 4.07 X 3.59 | 3.87 x 3.46 | 3.75 x 3.36 | 3.68 x 3.30 | 3.63 x 3.24

(40277.4) | (40347.7) | (40387.4) | (39131.9) | (37685.1) | (36703.9) | (36152.0) | (35685.4)
2.50 | 5.00 x 2.24 | 5.00 x 2.71 | 5.00 X 3.16 | 4.34 x 3.65 | 4.05 x 3.62 | 3.90 x 3.48 | 3.79 x 3.40 | 3.71 x 3.33

(35017.4) | (37846.4) | (40555.0) | (40581.6) | (39212.8) | (37884.6) | (37068.6) | (36415.4)
2.75 | 4.41x2.00 | 5.00x 2.24 | 5.00 x 2.93 | 5.00 x 3.29 | 4.29 x 3.73 | 4.05 x 3.65 | 3.92 x 3.51 | 3.82 x 3.41

(32191.3) | (35033.1) | (39201.1) | (41322.2) | (40815.8) | (39304.9) | (38144.4) | (37244.8)
3.00 | 3.94x2.00 | 4.82x 2.00 | 5.00 % 2.56 | 5.00x 3.23 | 5.00 x 3.44 | 4.27 x 3.77 | 4.08 x 3.64 | 3.93 x 3.51

(31053.1) | (33170.0) | (36969.4) | (40978.0) | (42212.1) | (40950.4) | (39431.5) | (38188.5)
(...) — optimal objective function (mass of foundation) in [kg]

W [ka] W [ka]
HL [m] HL [m]
a) b)

Fig. 11. Optimal objective function W [kg| versus HL € [3,10]m and CR € [1,3]; a) surface foundation,
b) embedded foundation
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Table 2. Optimal design variables D1 X Dz [mXxm] for embedded foundation (ZE = 1.0 m)

CR | HL = 3 [m] 4 [m] 5 [m] 6 [m] 7 [m] 8 [m] 9 [m] 10 [m]
1.00 | 3.00 x 2.05 | 3.00 x 2.05 | 3.00 x 2.05 | 3.00 x 2.05 | 3.00 x 2.05 | 3.00 x 2.05 | 3.00 x 2.05 | 3.00 x 2.05
(28964.9) | (28964.9) | (28964.9) | (28964.9) | (28964.9) | (28964.9) | (28964.9) | (28964.9)
1.25 | 3.00 x 2.35 | 3.00x 2.25 | 3.00 x 2.17 | 3.00 x 2.14 | 3.00 x 2.13 | 3.00 x 2.12 | 3.00 x 2.11 | 3.00 x 2.11
(30068.3) | (29708.7) | (29426.4) | (20311.2) | (29265.8) | (29220.8) | (29204.2) | (29180.8)
1.50 | 3.02x 2.59 | 3.00 x 2.48 | 3.00 x 2.34 | 3.00 x 2.26 | 3.00 x 2.21 | 3.00 x 2.18 | 3.00 x 2.15 | 3.00 x 2.14
(31004.3) | (30513.7) | (30034.7) | (20740.1) | (29571.3) | (29441.2) | (29352.5) | (29307.0)
1.75 | 3.24x 2.58 | 3.09 x 2.62 | 3.00 x 2.54 | 3.00 X 2.40 | 3.00 x 2.31 | 3.00 x 2.24 | 3.00 x 2.19 | 3.00 x 2.17
(31618.9) (31308.6) | (30747.9) | (30253.0) | (20917.2) | (29663.4) | (29493.9) | (29406.8)
2.00 | 4.14%2.00 | 3.33x 2.59 | 3.10 X 2.66 | 3.00 X 2.57 | 3.00 x 2.43 | 3.00 x 2.32 | 3.00 x 2.25 | 3.00 x 2.21
(31530.6) | (31934.1) | (31488.0) | (30835.8) | (30333.8) | (29956.9) | (20704.9) | (29568.3)
2.25 | 3.93%2.00 | 4.31x2.00 | 3.09 x 2.67 | 3.00 X 2.56 | 3.00 x 2.57 | 3.00 x 2.43 | 3.00 x 2.33 | 3.00 x 2.28
(31023.7) | (31946.4) | (32160.5) | (31487.7) | (30834.4) | (30336.9) | (30000.0) | (29805.8)
2.50 | 3.62x2.00 | 4.18 X 2.00 | 4.52 x 2.00 | 3.20 X 2.76 | 3.07 x 2.67 | 3.00 x 2.56 | 3.00 x 2.44 | 3.00 x 2.37
(30304.5) (31629.2) | (32438.7) | (32175.1) | (31429.0) | (30816.8) | (30394.8) | (30132.0)
2.75 | 3.32%2.00 | 3.96 X 2.00 | 4.49 x 2.00 | 3.14 X 3.00 | 3.20 x 2.74 | 3.09 x 2.65 | 3.00 x 2.58 | 3.00 X 2.49
(29564.0) | (31098.8) | (32384.9) | (32014.7) | (32109.5) | (31406.5) | (30902.0) | (30563.0)
3.00 | 3.04% 200 | 3.71 x 2.00 | 4.37 X 2.00 | 4.76 X 2.00 | 3.15 x 3.00 | 3.19 x 2.74 | 3.10 X 2.67 | 3.00 x 2.49
(28902.5) | (30504.3) | (32083.1) | (33024.7) | (32936.9) | (32096.6) | (31527.8) | (31114.5)

(...) — optimal objective function (mass of foundation) in [kg|

The sensitivity of an optimum to problem parameters can be estimated by general methods, e.g.
[30]. But the considered optimization problem is small scale and the reoptimization has been used
for specified changes of soil profile parameters.

Kyv [N/m] Kyv [N/m]
CR
HL [m]

9
11510/
]

9.2:10%

8
6.9°10—

4.6"10%

a) b)

Fig. 12. Stiffness coefficient of layered medium versus HL € [3,10]m and CR € [1, 3]; surface foundation-
optimal design, (a) primary component, (b) secondary component
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Cyv [Ns/m] Cuv [Ns/m]
HL [m] A HL [m] Acn
220

6
7.5°10
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2108

_1.5'10°

| -0

a) b)

Fig. 13. Damping coefficient of layered medium versus HL € [3,10}m and CR € [1, 3]; surface foundation-
optimal design, (a) primary component, (b) secondary component

Kyv [N/m] Kyyv [N/m]
HL [m] L"“ L
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9.2108—]
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4.6'108\ 

2.3'108\

Fig. 14. Stiffness coefficient of layered medium versus HL € [3,10]m and CR € [1, 3]; surface foundation-
optimal design, (a) primary component, (b) secondary component
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Fig. 15. Damping coefficient of layered medium versus HL € [3,10]m and CR € [1, 3]; surface foundation-
optimal design, (a) primary component, (b) secondary component
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5. CONCLUSIONS

Soil layering significantly affects the optimal design of the rectangular machine foundation. It
modifies the stiffness and radiation coefficients of the supporting medium giving the smaller or the
larger optimal weight of the foundation block compared to a homogeneous elastic half-space model
of soil.

From the point of view of performance and safety, the main effect of the soil heterogeneity is the
reduction of radiation damping for the considered vertical vibration mode of block. It is evident
that the underestimation of the motion amplitude of the machine foundation resting on a uniform
elastic half-space can interrupt the machine’s operation for long periods. On the other hand, for
some soil profile, the mass of the foundation attains the global minimum in the considered range
of the layer thickness and the contrast ratio. Then, from the theoretical point of view, it is possible
to improve the design by controlling the soil properties. However, in practice, semi-infinite nature
of the soil medium and uncertainties existing in the estimation of dynamic soil parameters should
be taken into account.

The method of dynamic analysis of the machine-block-soil system must adequately take the
shape of the block-soil interface, the amount of embedment, the nature of the soil profile and the
frequency of excitation into account.

The local soil conditions including the stratification and backfilling are important factors to be
considered in the rational design of machine foundations.
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