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The axisymmetric flow of a viscous fluid and heat transfer in a pipe filled with porous media driven
by suction at the pipe wall is examined. For low suction Reynolds number flow, asymptotic solutions are
developed. Using MAPLE, the solution series is extended and a bifurcation study is performed. Our results
show that a decrease in the permeability of porous media may reduce the magnitude of heat transfer across
the wall. The absence of real solutions of the given type between two turning points is also noticed and
this gap of no solution disappears as the permeability of the porous media decreases.

1. INTRODUCTION

Flow in a pipe filled with a porous media under the influence of uniform wall suction is important
for the following reasons. Firstly, the study is of immediate relevance to a multitude of technolog-
ical applications, e.g. in lubrication of porous bearings, ground water hydrology and in industrial
filtration processes where a porous matrix is used inside the fluid passage. Several geophysical and
energy engineering applications were elaborated by Kim et al. [8]. Secondly, nutritional problems in
the alimentary canal such as indigestion, constipation, diarrhea, etc., could be effectively rectified
if the biomechanics of chyme absorption in the small intensine (which can be easily simulated using
this model) is well understood.

Berman [1] presented an exact solution of the Navier-Stokes equations that describe the steady
flow in a channel driven by suction at the walls. He exploited the Hiemenz [7] similarity form of
solution in order to reduce the problem to a fourth order nonlinear ordinary differential equation.
In this regard numerous authors e.g. Terrill and Thomas [12], Durlovsky and Brady [4], Zaturska
and Banks [14], Makinde [9], etc., have developed and generalized this exact solution for the case
flow in a pipe driven by uniform wall suction. The most amazing and significant result in their
study is the presence of a region bounded by two turning points in the solution field where no real
solution of the given type exist.

However, in the present work, the suction driven flow in a pipe filled with porous media is
considered. In this type of study, the common approach has been to use Darcy’s law in the porous
medium (generally with low permeabilities) together with the Navier-Stokes equations.

Our objective is to study the effect of porous media on the bifurcation that takes place in
the flow field as the suction Reynolds number increases. To achieve this goal, we have employed
a novel computational approach to the study of bifurcations presented by Drazin and Tourigny
[5]. The technique relies on the use of power series in the bifurcation parameter for a particular
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solution branch. This technique was utilized by Makinde [10] in the study of steady flow in a slightly
asymmetrical channel.

In Secs. 2 and 3, we establish the mathematical formulation for the problem. The comput-
er extension of the resulting perturbation series solution, its analysis and analytic continuation,
including bifurcation study are examined in Sec. 4. We discuss the pertinent findings in Sec. 5.

2. MATHEMATICAL FORMULATION

We consider the flow of viscous incompressible fluid in a pipe of circular cross-section filled with a
porous media. Take a cylindrical polar coordinate system (r, 0, z) where Oz lies along the centre of
the pipe, r is the distance measured radially and 6 is the azimuthal angle. Let « and v be the velocity
components in the directions of 2z and r increasing respectively, a the pipe characteristic radius,
V' the characteristic suction (negative for injection) velocity and K a parameter that characterizes
permeability of the porous media. Then, for axisymmetric steady viscous incompressible flow, the
Navier-Stokes equations are
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where V2 = 82/0r% + 8/rdr + 8%/922, p is the pressure, T the temperature, p the density, a the
thermal diffusivity and v the kinematic viscosity of the fluid. The equation of continuity is
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porous media
Fig. 1. Schematic diagram of the problem

The appropriate boundary equations are

8u_0 or

= =0, .6?:0, v=20 on r =10, (5)
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where T is the reference temperature. We shall introduce the stream-function ¥ and vorticity w
in the following manner:
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Eliminating the pressure p from (1) and (2) by using (7) and (8) we get
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The following dimensionless variables are introduced;
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And we seek a similarity form of solution due to Hiemenz [7], (neglecting the bars for clarity),
that is,

¥ = 2F(r), w = —2G(r), T = 28(r). (12)

The dimensionless form of the governing equations together with the boundary conditions in terms
of similarity variables F' and G, can be written as

[t eo] -2 -rE () ]
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The boundary conditions are
%(%Z—f):o, F =0, 3—i:0 on r =0, (16)
Z—fzﬂ, F==1,"6=1“onr=1. (17)

Hence the problem depends on three principal parameters, i.e., the porosity parameter o =
(av/KV), the Prandtl number @ = v/a and the suction Reynolds number R(= Va/v).



392 O. D. Makinde and P. Sibanda

3. METHOD OF SOLUTION

To solve equations (13)—(17), it is convenient to take a power series expansion in the suction
Reynolds number R, i.e.

o0 . €0 . 0 .
F=) BF, G=)RG, 8= R, (18)
1=0 =0 =0

Substituting the above expressions (18) into (13)—(17) and collecting the coefficients of like powers
of R, we obtain the following;

Zeroth Order:

Litooo]-a a-2(93), £
F =0, % (%-dd?):ﬂ, % =g on r=il (20)
B =-1, %:0, =0 oo r=1l (21)

Higher Order (n > 1):
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We have written a MAPLE program that calculates successively the coefficients of the solution
series. In outline, it consists of the following segments:

(1) Declare arrays for the solution series coefficients e.g., F' = arrays(0..43), G = array(0..43),
0 = array(0..43), etc.

(2) Input the leading order terms and their derivatives, i.e. Fy, Go, 0o, etc.

(3) Compute the skin friction, axial pressure gradient, centerline axial velocity and wall heat
transfer coefficients.

Details of the MAPLE program are given in the Appendix. Some of the solutions for the stream-
function, vorticity and temperature are given by

i
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1
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The non-dimensional skin friction is given by

A —%K on r =1, (29)

where 3 = G(1) and we have,
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where p is the dynamic coefficient of viscosity. From the axial component of the Navier-Stokes
equations, the pressure drop in the longitudinal direction can be obtained. Thus, in dimensionless
form we have
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and we obtain the dimensionless fluid pressure p as
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where the bar has been dropped for consistency and 7 is scaled with (p = ap/uV). The rate of heat
transfer at the wall given as S = df/dr at r = 1 can easily be obtained as

L T P e .
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4. COMPUTER EXTENSION AND BIFURCATION STUDY

In order to investigate the flow structure at moderately large suction Reynolds numbers using
the series summation techniques, we expand the following in powers of suction Reynolds number;
B = -G(1), v = w(0), H = Op/20z and S = df/dr at r = 1, representing the skin friction, the
centrline axial velocity, the axial pressure gradient and the rate of wall heat transfer respectively.
For a given value of Prandtl number @, we have obtained the series for several values of o > 0, for
instance, the expansion when @ = 7.0 (i.e water) and o = 0.1 is

19 1583 1600673 1202094983
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(34)
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The first 65 coefficients for the series represented above were obtained. We observe that for very
large permeability of the porous media i.e. as ¢ — 0, the signs of the coefficients are the same
and are monotonically decreasing in magnitude, hence the convergence of the series may be limited
by a singularity on the positive real axis. The Domb-Sykes plot [3] together with Neville’s [11]
extrapolation at 1/n = 0, (i.e. n — o0) reveal that the radius of convergence depends on the
porosity parameter i.e. R. = R.(0) and for the case ¢ = 0.1 represented by the above series, we
obtain R, = 2.336.

The effect of a porous media on heat transfer across the wall is also investigated. It is observed
that a decrease in the permeability of the porous media may reduce the magnitude of heat transfer
across the wall (see Table 1).

Table 1. Variation of wall heat transfer with respect to o

R | |S],6=0 ||S|,0=.01 | |S|,0 =03 | |S|,0c =05

0.1 | 1.7173628 1.7171037 1.7165864 1.7160701

0.2 27.55573 27.530516 27.480209 27.430088

0.3 | 613.33869 612.51637 610.87689 609.24424

0.4 | 7976.4460 7964.7670 7971.4849 7918.3037

Meanwhile, following Drazin and Tourigny [5], we examine the bifurcation in the flow field
using the series solutions obtained for several values of o. The procedure leads to a special type of
Hermite-Padé approximant. Let us suppose that the partial sum

N
UN(A) =D anA® =UN) + OAN) as A -0, (38)
n=1

is a known solution. We shall make the simplest hypothesis in the context of nonlinear problems
by assuming that U(X) is the local representation of an algebraic function u of . Therefore, we
seek a polynomial Fj; = Fy(\,u) of degree d > 2, i.e.,

d m
Eal st Soidmebll sodt s (39)
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Condition (40), which yields fo1 = 1, ensures that the polynomila Fy; has only one root which
vanishes at A = 0 and also normalizes F;. There are thus

d
1+Z(m+1):%(d2+3d—2), (42)

m=2

undetermined coefficient in the polynomial (39). The requirement (41) reduces the problem to a
system of N linear equations for the unknown coefficients of Fjy. The entries of the underlying
matrix depend only on the N given coefficients a,,. Henceforth, we shall take

N = %(d2 +3d—2), (43)

so that the number of equations equals the number of unknowns. A bifurcation occurs where the
solutions of the nonlinear system change their qualitative character as a parameter changes. In
particular, bifurcation theory is about how the number of steady solutions of a system depends on
a Newton’s diagram (Vainberg and Trenogin, [13]). Using the above procedure, we consider first
the case of o = 0 which coincides with the Berman [1] problem. Our results show the presence of
two disconnected turning points R; and Rs. We also noticed that

B~pBaRY,  H~H R, v~y R! as R—0, (44)

on the secondary branch (see Table 3 and Table 4 below). This is also in agreement with the
computed results of Terril and Thomas [12] and Makinde [9]. Secondly, we investigate the effect
of porous media on the flow bifurcation diagram. Our results show that the radius of convergence
Ry, increase with an increase in porosity parameter or decrease in the permeability of the porous
media. As o — 00, this turning point eventually disappears (see Table 2).

Table 2. Computations showing variation of bifurcation point with respect to porosity parameter o

o 0 0.1 0.5 1.0 1.5 2.0 2.5 3.0

Ry | 2.298 | 2.336 | 2.505 | 2.766 | 3.114 | 3.616 | 4.461 | 11.149

5. RESULTS AND DISCUSSION

We are interested in the combined effects of wall suction and permeability of the porous media on
the flow characteristics. It is interesting to note that o = 0 gives the case of a pipe without any
porous media inside the fluid passage way. As o — oo the permeability of the porous media inside
the pipe decreases. From our numerical calculations in Tables 1-2, we observe that the rate of heat
transfer across the pipe wall decreases with a decrease in the permeability of the porous media. At
very large permeability, we observe the presence of two turning points in the solution field between
which no real solution of the assumed type exists. This region disappears as the permeability of the
porous media reduces. Figures and show sketches of the bifurcation diagram and wall heat transfer
respectively.

Finally, most filtration devices are of low permeability. Consequently, the magnitude of the skin
friction will automatically increase in order to maintain constant suction (Fig. 2b). This may even-
tually damage the equipment. Hence, for efficient industrial filtration process, it is recommended
that such devices are made to withstand the friction.
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Table 3. Computations of bifurcation points using the D-T method (o = 0)

Table 4. Computations showing asymptotic behaviour of secondary solution branch as R — 0 using the

d | N R R®

2 | 4 | 2.219858965302754653007841

3 | 8 | 2.299591435888679094512663

4 | 13 | 2.298944554015399102282373 | 9.231445938
5 | 19 | 2.298947597198399236964974 | 9.112409713
6 | 26 | 2.298947597447284940827505 | 9.112481962
7 | 34 | 2.298947597447332260530929 | 9.112503439
8 | 43 | 2.298947597447332263107502 | 9.112502909
9 | 53 | 2.298947597447332263107410 | 9.112502849
10 | 64 | 2.208947597447332263107410 | 9.112502849

D-T method (o = 0)

d | N R 79 HY

2 |14

3 | 4 | —73.19132206 | —34.64246021419

4 | 13 | —67.43240223 | —35.66324435704 | —346.37931680
5 | 19 | —67.49732198 | —35.31456772558 | —348.17295010
6 | 26 | —67.66383415 | —35.31497742406 | —348.64827877
7 | 34 | —67.67015929 | —35.31497341348 | —348.65065895
8 | 43 | —67.67020677 | —35.31497346667 | —348.65071000
9 | 83 | —67.67020667 | —35.31497346683 | —348.65071000
10 | 64 | —67.67020667 | —35.31497346683 | —348.65071000




On suction driven flow and heat transfer in a pipe 397

) g/ w0{

\’v——.—d—'—"
51 N\ | s
T R
-—5 0 U
-5 0 5 -
—54 54
(a) High permeability (o — 0) (b) Low permeability (o — c0)

Fig. 2. A sketch of the bifurcation diagram in the (R, 3)- plane

|51

10 a =19

Fig. 3. The rate of heat transfer at the wall, Q = 0.7

6. APPENDIX

The MAPLE procedure to silve the system of equations (20)—(23) and the values of the coefficients
of wall shear stress.

e Decleration of arrays for the solution series coefficients Digits: =50:
F:=array(0. .64):G:=array(0. . 64):Fr:=array(0. . 64):
Gr:=array(0. . 64):Th:=array(0. . 64): Thr:=array(0. . 64):

e Input the leading order terms and their derivatives
F[0]:=(r"4 — 2%r"2):G[0]:=8xr:Th[0]:=1:
Fr[0]:=diff(F[0],r):Gr[0]:=diff(G[0],r): Thr[0]:=diff(Th[0],r):
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e Solving the governing equations for higher order terms
for n from 1 by 1 to 64 do
A:=Rssigma*xG[n-1]+R /rxsum(G[i]¥Fr[n-i-1]+ F[i|*(G[n-i-1] /r-Gr[n-i-1]),
i=0,..n-1):
B:=R*Qssum(Th[j]xFr[n-j-1]-F[j]*Thr[n-j-1]), j=0..n-1):
gll:=r*(int(A,r)+K1):Bl:=int(B,r)/r:
gl:=int(gll,r)/r:B2:=int(B1,r)+K3:
f11:=r*(int(gl,r)+K2):
fl:=int(f11,r):
ri=1:
K1:=solve(f11=0,K1):K2:=solve(f1=0, K2):
K3:=solve(B2=0, K3):
="y
F[n]:=normal(f1):G[n]:=normal(g1): Th[n]:=normal(B2):
Fr[n|:=diff(F[n],r):Gr[n]:=diff(G[n],r): Thr[n]:=diff(Th[n],r):
K1:='K1":K2:=K2":K3:=K3":

e Computing the skin friction coefficients (e.g sigma=0.1)
print(evalf(sub(r=1,G|n])));
od:
quit();
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