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In certain problems of loading of elastic-perfectly plastic thin sheets a continuous displacement solution
may not exist. The evolution of plastic zone is then connected with the evolution of discontinuity lines
in both velocity and displacement fields. In the present paper it is assumed that in the presence of
discontinuity lines the localized plastic zones start to proceed. A numerical study of decohesion within
thin elastic-plastic sheets is conducted to total collapse. It is shown, that the localized plastic flow may
develop simultaneously with the diffuse plastic zones. The structural softening caused by decohesive cracks
is coupled with a complex elasto-plastic deformation process, where the previously developed diffuse plastic
zones are subjected to unloading. The post-critical analysis is performed using a new reliable algorithm
of a continuation method. The algorithm is based on a rank analysis of the rectangular matrix of the
homogeneous set of incremental equations.

1. INTRODUCTION

In real structures the changes in geometry often arise from the formation of new free surfaces re-
sulting from the decohesion processes. The initiation of material failure may take various forms,
either as a result of void nucleation, growth and coalescence, or crack initiation and growth. Sev-
eral sophisticated material models have been proposed in the literature in order to capture such
processes. For example, the effects of void nucleation and growth within large deformation theory
with account for hardening and softening effects were treated by Needleman [1] and Tvergaard [2].
The problem with decohesion can also occur, when the material is treated much simpler as an
elastic-perfectly plastic either within the framework of small strain (see, Zyczkowski and Tran-le
Binh [3]) or finite strain theories (see, Zyczkowski and Szuwalski [4]). When the structural material
is treated as an elastic-perfectly plastic, a continuous displacement solution may not exist and the
evolution of plastic zone is connected with the evolution of inadmissible discontinuity lines in both
velocity and displacement fields. The formation of discontinuity lines may be regarded as an upper
bound to all criteria of decohesion ([3]). Under force-controlled loadings the decohesion proceeds as
a brittle rupture, however, for other boundary control such as prescribed displacements, a structure
can be loaded well beyond the loading limit point.

The material instability may be regarded as the loss of ellipticity, when the positive definiteness
of acoustic tensor is lost. As the failure is intimately connected to material behavior, one may
construct the unified constitutive equations, which yield the correct discontinuous mode in addition
to stress-strain responses prior to post-critical responses ([1, 2|). However, a quite different approach
can be encountered, when the governing set of equations is augmented by a separate function
relating the traction components and displacement discontinuities along the localization zone. The
simplified exponential relation between the driving decohesion force and the displacement jump
at the interface was presented in the theoretical paper by Schreyer and Zhou [5]. In the case of
elastic-perfectly plastic material model Hill [6] proposed a treatment of discontinuity lines as the
onset of a continuous necking process. Obviously, necking results with the ultimate crack formation
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and softening behavior. Such physical idea was utilized by Mréz and Kowalczyk (7] for the problems
of thin sheets with the localization mode constituted by out-of-plane shearing. In general, the aim
of additional relations is to describe the failure modes and preserve the problem well posed. The
complete analysis in a real structure within finite strain theories and sophisticated material models
might be extremely expensive. Much cheaper calculations within small strain theory seem to be
more attractive, as the large strains are confined within the plastic decohesion zone.

The decohesion within any part of the structure induces a nonlinear character of the deforma-
tion process. The nonlinear analysis can be conveniently performed using finite element modeling
and continuation (or path-following) methods, which are well described in many textbooks (see,
for example, [13, 14, 15]). Within continuation algorithms the incremental set of equations is aug-
mented by the so-called constraint equation. It is obvious since the beginning of investigations on
path-following algorithms (see [16]) that the Jacobian of augmented incremental system should
be nonsingular. The experience indicates that this fundamental condition can not be fulfilled,
when the procedures are tested on a great variety of problems. For example, the limit capacity of
elastic-perfectly plastic structures defines the mathematical limit for usefulness of the well known
continuation schemes. When the ultimate loading becomes constant and strains and displacements
increase into infinity (see, [17]), the problem with singularity of tangent stiffness matrix can not
be removed by any kind of augmentation. The physical validity of the limit state theory is ob-
viously confined, but the loss of its significance does not necessary occur immediately, when the
loading approaches its maximum. When perfectly plastic material is analyzed together with soft-
ening caused by decohesion, the problem with ill-conditioned tangent stiffness matrices becomes
extremely severe.

In the present paper, the evolution of decohesive cracks within the elastic-perfectly plastic thin
sheets is studied numerically. The simultaneous development of diffusive plasticity and decohesive
cracks propagation is analyzed until the complete separation at the interface. The material behavior
in a localized zone is described in terms of the formula proposed in [7] and the cracks are modeled
by the interface elements. The elastic-perfectly plastic material model together with the Huber-
Mises yield condition and the associated flow rule are used within the diffusive plastic zone. The
calculations are effectively performed by the new compatible procedure proposed by Kowalczyk [18,
19]. The method is based on rank analysis of the matrix of the incremental set of equations written
in a homogeneous form. The rank analysis is used in order to generate automatically the control
variables at each step during the iteration process. The constraint equation is not defined in an
explicit form. It is shown, that the control variables induced by the algorithm have their important
physical meaning within the considered problem.

2. PRELIMINARY EXAMPLE

As an introductory example into the problems of elasto-plastic deformation in the presence of
discontinuity lines consider the annular disk uniformly loaded by the pressure p at its external
boundary r = b and rigidly supported at the interior boundary r = a (see Fig. 1). The thin
disks are analyzed with the thickness H small in comparison to a, i.e. H < a, so the plane stress
assumption is justified. The discussion is confined to the prerequisites for an assumption, that the
appearance of the displacement discontinuity lines can be interpreted as an onset of the localized
flow. Since the large deformation process is confined to a narrow cohesive zone, the analysis of the
whole structure is conducted within the small strain theory. The complete solution of the problem
was presented by Mréz and Kowalezyk in [7].

Denote by u(r,t) the radial displacement, by &,,&; the radial and circumferential strain com-
ponents and by o,,0; the respective stress components. The elastic deformation of the disk is
described by a solution of the set of equations composed of the equilibrium condition, the Hooke’s
law and the geometric relation between the strain components and radial displacement. Neglecting
the thickness variation, the respective relations are specified as follows
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where £ and v are elastic constants. The boundary condition for the external edge is specified as

or(b) =p

(4)

and at the beginning of the loading process the respective condition for the internal edge is given

as
u(a) = 0.

The onset of plastic flow occurs at r = a, when the external pressure exceeds the value:

pr = ;T‘]z [(1 + )b +(1— u)a2] for Treska yield condition,
PHM = mfﬁ [(1 + V)b + (1 —v)a?| for Huber-Mises yield condition

(o¢ is the yield stress).

2.1. Initiation of decohesion

(5)

When the first plastic flow occurs for the Tresca material, then o,(a) = o and oi(a) < og. It
follows from the equilibrium condition, that the stress states within the subsequent plastic regime
must satisfy the yield condition oy — o9 = 0, so the state o,(a) = oi(a) = og should have been
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reached immediately. It is seen, that without the admitted displacement discontinuity at 7 = a an
elasto-plastic solution satisfying the condition (5) does not exist for the Tresca material.

On the other hand for the Huber-Mises material a continuous elasto-plastic solution for a com-
pressible material (¥ < 0.5) and for the condition (5) can be constructed. After the first phase of the
elastic deformation process the plastic zone propagates throughout the disk from the interior edge.
Denote by p the radius of the plastic zone. At r = p, i.e. on the boundary in between two zones,
the solution obtained from (1)-(4) for the elastic zone for p < r < b must satisfy the continuity
conditions and the yield condition

u(p) =uP(p), or(p) =0ar(p),  ai(p) = at(p), (6)

where e and p denote elastic and plastic solutions respectively. The solution for the plastic zone
must satisfy the boundary condition (5) and the constrain imposed on the stress states by the
Huber-Mises yield condition. The latter is satisfied by using the convenient stress representation

lo 20{:05( +7r) 0, 20005( ﬂ) (7)
r = —F/— W — 3 = — W — =

\/g 0 6 t \/g 0 6 L]
where w is a stress parameter specifying a stress point on the Huber-Mises ellipse

02 + 07 — 0,0, — 0g = 0. (8)

Thus, the stress field in the plastic zone for a < r < p is specified by providing a function w = w(r).
When the associated flow rule is used, the strain and stress rates are related by

(é,- b %(ar “ vc'r;)) R (g-,_ dl %(m r uer,,)) B < 2], ©)

where (") denotes differentiation with respect to time parameter 7. Using the equations (1)—(3) the
following differential equation for the circumferential strain rate can be derived

déy i 200w ( 1 sin w )
o A RA 10

%~ V3 =" \iGeme T 3K )" W
where K = E/3(1 — 2v) is the bulk modulus and G = E/2(1 + v) is the shear modulus. The above
equation can be solved numerically, and then the radial strain component can be determined using
the compatibility condition

. O(ré

It can be found from the last two equations, that the radial strain rate at »r = a is given as
follows

—200w 1 sin?w(a
éela) = il e
V3 cos [u;(a) - 5]
Note, that the radial strain £,.(a) increases rapidly, tending to infinity when the stress point repre-
11
senting the stress state in the plane o, — o} for r = a approaches the parabolic point at w = —.

Such infinite strain (or a displacement discontinuity) may create doubt about the physical validity
of the solution. In fact, this means that a regular elasto-plastic solution no longer exists.

Physically, it can be expected that a localized flow zone occurs in the situation described above.
Various physical criteria of decohesion were extensively investigated in the literature. It was found
by Clift et al. in [8], that among all published continuum fracture criteria the only one, which is
in accordance with experiments and successfully predicts the fracture initiation, is a limited value
of unit plastic work. In view of this conclusion only limited plastic strains may occur within the
discussed annular disk and the onset of decohesion near the edge r = a must occur.
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2.2. Simplified constitutive model for decohesion

In the presence of discontinuity lines an additional constitutive relation between the rate of dis-
placement discontinuity and the respective traction rate along the material discontinuity line was
assumed by Mréz and Kowalczyk [7]. The assumed model for decohesion is justified by the following
reasoning.

For granular materials it has been demonstrated experimentally by Desrues in [9] in plane strain
tests, that after the formation of a localized band, the material outside it remains essentially rigid.
Similarly, for the Huber-Mises or Treska yield conditions, the materials can be treated as a rigid-
perfectly plastic within a narrow cohesive zone, since the plastic part within strain components
dominate over elastic part and the latter can be neglected. Figure 2 presents the mode of deforma-
tion in the case of rigid-perfectly plastic material. Two rigid material blocks are sliding along slip
planes towards middle plane and the localization process develops within the zone a <r < a+ >
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Fig. 2. Mode of deformation in the localized zone.

[

The inner edge of the disk is displaced by
u(a) = [da] (13)

(where [dy,] describes displacement jump across plastic decohesion zone). The reduced thickness at
this edge is h = H — 2[d,]. Within an assumption that the radial stress distribution is uniform
from the condition of equilibrium of radial forces it follows

1

or(a) = o* (1 - E[[dn]]) for [d.] < i

H 2
o P (14)

or(a) =0 for [d.] > ry

where o* denotes the radial stress at the onset of decohesion process. On the other hand, the
usual flow rule occurs within domains of regular solution. The conditions (13) and (14) replace the
boundary condition (5) in the analysis of deformation process in the presence of the progressive
decohesion.

The methodology developed by Mréz and Kowalczyk in [7] could be applied to any problem where
the localized deformation develops. It was shown, that the separation of disk and hub induces the
post-critical behavior of the disk. The continuous solutions for Tresca and Huber-Mises materials
were presented thoroughly using the Hencky-Ilyushin deformation theory and for the flow theory.
It was shown, that the onset of decohesion within the annular disk may be followed by both stable
or unstable response. As was shown in [12] the primary plastic zone is small, so it was neglected
in [7] when using the Hencky-Ilyushin deformation theory and only the secondary plastic zone
was taken into account. The obtained load-displacement curves for the Treska and Huber-Mises
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materials were similar. However, the respective curve obtained using the flow theory and taking
into account the primary plastic zone was significantly different (see Fig. 3). The response is also
very sensitive on the disk thickness since the decohesive ductility specified by the conditions (13)
and (14) depend explicitly on H. In all cases the previous analysis was finished at the limit states
with the secondary plastic zone spread over the whole disk. Recalling the conclusion of Clift ([8])
the plastic deformation can not proceed into infinity, so the analysis presented in [7] does not solve
the disk problem to the end. It can be expected that the separation from the hub might be followed
by the evolution of radial localization zones which subsequently become the radial cracks leading
to the ultimate disk collapse.
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Fig. 3. Response curves of load factor versus displacement.

3. FINITE ELEMENT MODELING FOR NONLINEAR STRUCTURE

In this Section a brief outline of the derivation of discrete equations with the aid of finite element
method is presented. The general consideration described below should facilitate to assess a meaning
of the assumed simplification in the structural modeling. In a sequel the attention is focused on the
numerical method used as a solver for boundary value problems.

3.1. Discrete set of equation

The finite element method based on a displacement discretization is used in the paper in order to
solve the problems with the interaction of diffuse and localized plasticity. The evolution of these
two forms of deformation are described by two different constitutive models implemented into two
different types of finite elements. The evolution of diffusive plasticity within domains of material
outside the localization zones is described by the classical theory of plasticity, where the strain
rates & are related to the stress rates . On the other hand, the constitutive relation used for
material within the decohesive cracks describes variation of the tractions rates t with respect to
the displacement discontinuity rates [d]. Below, the differences between two forms of material
description are prescribed by the sub-indices ¢ and d. Thus, the respective constitutive equations
are given as

t = D [d], & = Dyé, (15)



New predictor-corrector method used as a solver for decohesion problem 405

where D, denotes the elasto-plastic stiffness matrix for the material within the cracks, while the
matrix Dy describes the diffuse plasticity.

Let M denote the number of unknown nodal displacements u within the structure. The vector
of nodal displacements u® within a specific element may be derived from u by means of the relation

u® = A, (16)

with A® being known as a Boolean matrix. The rates of displacements and strains at any point
within the element, where the diffuse plasticity evolves, are presented in the form

d=Nga¢, ¢&=By°, (17)

where N, and B, denote the matrices with the respective interpolation functions. Decohesive
cracks are modeled by the interface elements characterized by zero thickness and doubled nodes.
The displacement discontinuity rates related to nodal displacement rates are given as follows

[d] = B.u®. (18)

Hereby, the matrix B, encompasses the interpolation functions taking into account the nodes,
which belong to the upper and lower interface surface. The element internal forces F,. and Fy in-
duced within the deformed structure are obtained by the virtual-work method. They are calculated
through integration of stress rates

b

F.fa) = f B! ( /ﬂ i;dn) ds.,”” Fia) = f B ( f c:-dn) V. (19)
Se 0 Vi

0

The above relations underline that the displacement discontinuity rates within the interface ele-
ments correspond to the classical strain rates, and the most important difference between modeling
of diffuse and localized plasticity is hidden within the constitutive equations.

Let us introduce an M-dimensional reference vector F given as

FZZAET

f NTEQV + f NchdSp] , (20)
Ve Se

where f and p denote the prescribed constant body force per unit volume and the prescribed surface
tractions, respectively. The summation over the second integral within the brackets is performed if
the element boundary S¢ constitutes a portion of the loaded surface S, of the discretized structure.
Within the considered problems it is assumed, that the global external forces are proportional to
F scaled by the loading factor A. The global internal forces F are obtained as

Fu) =Y ATF(u), (21)

where the element internal forces F,. and F; are now denoted by F¢, In view of continuation meth-
ods discussed below it is important to note, that the internal forces are continuously differentiable
functions of the nodal displacement vector u. The relation between the nodal displacements and
external loading is sought through the equilibrium condition between external and internal forces

G(r) =F(u) - A\F =0. (22)

In the literature, it is natural, that the loading factor is identified with the independent param-
eter, whereas the displacements constitute dependent variables. Thus, the incremental system is
usually presented in the form

Kéu = & + Fo), (23)



406 M. Kowalezyk

where € = AF — F(u) denotes the residual nodal forces and the square (M x M) matrix K is
known as tangent stiffness given as

A°. (24)

K=Y A% L/B‘*Tf)B"dV

The details concerning the finite element method and the derivation of equilibrium equations can be
found in the literature (see, for example, [14, 15, 17]). Here note, that the equations (22) constitute
a particular form of (36) with the vector r composed of (M + 1) state variables u and A.

3.2. Diffuse plastic zone

Particular form of the elasto-plastic stiffness matrix Dy depends on the constitutive relation adopted
for the element. Consider additive decomposition

&= £&° + P, (25)

where £° and &P are elastic and plastic components of strain rate. In the present paper, the elastic
stress-strain relation is given by the Hooke’s law, while the plastic strain rate follows from the
associated flow rule as

=Dy, &= /id%% (26)

where A4(> 0) is the proportionality factor. For the analyzed thin sheet the Huber-Mises yield
condition

Ha(o) = \/3_.]2 —op=20 (27)

is considered in the plane stress. Thus, the second invariant of the deviatoric stress tensor is given

as Jo = 3(0}; —on1022+0% +30%,). The material stiffness matrix Dy for a perfectly plastic material
model is of the form

i OHa\T 0Hy
(“5? 99 0 f Hy=0, Ag4>0
Dy I- i =
d Hy (aﬁd)T 1 d ) d >,
ity p N |t A
Oo do

Haq <0,
Dy = £ v 1 0 if i %
Mz =10, /idSO.

In the present paper, the above tangent stiffness matrix was implemented into the simplest 3-node
uniform strain elements.
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3.3. Localization zones treated as discontinuity interfaces

Denote by n the normal vector to localization zone. Within the local reference frame defined by
n the constitutive model for decohesive crack may be effectively derived following the classical
plasticity theory. First, the additive decomposition is assumed

[d] = [d]° + [4]”, (29)

where the displacement rate discontinuities are expressed as the sum of the elastic (reversible) part
[d]© and a plastic (irreversible) one [d]?. For the elastic part the constitutive law is assumed as

= D.[d]*. (30)

Note, that the matrix of elastic stiffnesses D, has the dimension of a force per unit length. As there
is no adequate experimental data, in practice, D, can be taken as diagonal, i.e. coupling between
normal and shear tractions can be neglected. Also the unilateral effect can be taken into account
using different stiffnesses for tension and compression, i.e. Doy = E} for t, > 0 and D¢y = E;;
for ¢, < 0, where t,, denotes the normal traction to the decohesive direction. The associate flow
rule for plastic displacement rate discontinuities

8’Hc
P
4P = 4. (31)
is obtained using the interface yield condition
He(t, [d]”) <0, (32)

where A. > 0 denotes the scalar parameter. Herein, H, depends on the plastic part of displacement
discontinuities taken as damage variables. It can be found using the compatibility condition

oM.
oldJr

[d] + 52" =0 (33)

that the elasto-plastic tangent stiffness matrix for the interface material is given as

( OMHN\T OH,
(%) mP -
D.|I- i He=0;, A0
OH. (Wc)
" Le+ ——D.
D, = ot o (34)
D1 0 Ha<.D, or
D= if ]
{ 0 D H.=0, A, <0.
OH? (OH\T
where L, = — o] (W) is the hardening modulus for the interface material. The constitutive

model derived from the general scheme presented above may render the main characteristic neces-
sary to the modeling the decohesive crack evolution: the unilateral effects, irreversible deformation
and anisotropic damage.
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3.4. Onset of localization and Rankine’s criterion

One of the crucial aspects of decohesion is the onset of localization. There is extensive literature
devoted to hardening and softening materials, where in general decohesion is considered as a phe-
nomenon resulting from the bifurcation of equilibrium states within diffuse plastic zone. The onset
of discontinuous localization takes place when the so-called acoustic tensor is singular, i.e. there
exists a solution to the eigenvalue problem

Qici= (nf)dn) c=0 (35)

where ¢ determines the mode of deformation. For associative plasticity and for plane stress, it can be
shown (see [11, 10]), that the bifurcation may occur only for zero hardening modulus. However, the
preliminary example indicates that decohesion may also occur within the elastic-perfectly plastic
structure as a result of inadmissible infinite increase of normal strain. In such a case the post-critical
states within the structure are described by unique solution.

For the tests on the new numerical method described below even simple discretization, which
renders the main physical aspects of interaction between diffuse and localized plasticity, are satis-
factory. For the same reason the analysis of the acoustic tensor is abandoned. It is assumed, that
the decohesion proceeds if the respective loading condition within the localization zone is satisfied.
Once a decohesion starts to evolve, no matter whether this occurs within material which exhibits
hardening or perfect plasticity, the overall behavior is governed by the behavior within the band.

The interface elements and the material response used in the present paper are presented in
Fig. 4. The 4-node interface elements with initial zero thickness were used for modeling the decohe-
sive cracks. The tangential discontinuity is neglected and only opening mode is studied. Thus, the
cracks evolve when the stresses attain a limit strength curve corresponding to Rankine’s criterion:
the resistance of the material is limited to its uniaxial tensile strength og. To avoid penetration of
the interface element into the adjacent material, the compressive interface modulus E; is assumed
much larger then the tensile modulus E;}. The first phase of the process (for o, € [0,00] and
[dn] = 0) is approximated by a penalty function, so the decohesion starts for [dy] = [dn1]. When
[dn] > [dn2], the normal stress vanishes and the interface opening occurs.

Fig. 4. Discretization and material characteristic within interface element.
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4. INCREMENTAL-ITERATIVE APPROACH TO NONLINEAR PROBLEMS

Let us briefly describe a general framework of continuation methods in order to underline the
similarities and distinctions between the well known schemes and the control variable selection
method presented in the subsequent Section. Consider a nonlinear problem defined by a set of
equations

G(r)=0 (36)

with r being the vector of N state variables r; (i = 1,...,N) and G denoting the vector field
specified by M = N —1 real functions G,,(r) (m = 1,..., M). The solution set of the problem (36)
constitutes a manifold. Using continuation techniques, the shape of this manifold is revealed by
a series of points R;. The sub-indices i = 0,1,... establish a connectivity among the determined
points. Calculations begin from a known solution point Rg and the coordinates of the consecutive
points R; satisfy the relation

w
Tyl =Ty + Ary, =19 + Z Ar;. (37)
i=0

The increments Ar,, are obtained from a series of sub-increments dr”. Among any two solution
points, say R, and R, 1, a series of the approximating points R” (for v = 0,1,...) are established.
The coordinates of two consecutive points R and R¥1! are related as

ot = e (38)

Denote the difference between r” and r? as the increment Ar”. This increment can be presented
as follows

0 for v=0

ArY =p¥ —p0={ v-1 39
> érd for v>0. (39)
j=0

In a predictor step (for v = 0), the last determined point is taken as an initial approximation,
i.e. R® = R,,. The vector r° = r,, and the initial sub-increment dr° establish the first approximation
R', which usually does not satisfy the equation (36). The solution has to be improved iteratively
during a corrector step (for » > 0). If the iteration proceeds successfully, then the increments
Ar” converge to the sought increment Ar,. The convergence means that Jim [[E]] = 0 (here [|(-)]]

denotes the Euclidean vector norm and & = —G(r¥)).
The calculation can not be endless, so in practice, the process is terminated in three basic cases:

L. if ||€]| <&, i.e. the specified numerical tolerance ¢ is achieved;
2. if ¥ > Vpax, i.e. the number of iterations exceeds the specified maximum v,y

3. if Ar**1 ~ ArY, i.e. the sub-increment ér” is too small.

In the first case, the sought solution point is identified with the last approximation, i.e. R¥ = Roa:
In the second case, the convergence is too slow or the iteration diverges. Usually, the predictor step
has to be repeated with the shorter step length ||Ar!||. The third case can be caused, for example,
due to confined representation of numbers in computers. More details concerning the step length
adjustment and termination problem can be found in Seydel [13] or Crisfield [14].
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The sub-increments dr” are calculated from an augmented incremental system composed of the
linearized form of the system (36) and the constraint equation. The linearized incremental system
can be obtained from a Taylor series expansion

St =G0 + %? or’ +© (40)

(here © denotes the sum of higher order terms). Using two assumptions

Gr'*)~0, ©=0 (41)
the linear truncated form is achieved

Gér” = €, (42)

where G denotes the (M x N) rectangular matrix with the rows composed of gradients g, =
0G/or|;,. For v = 0, the entries of € are negligible small, so the system (42) can be treated as
homogeneous

Gor’ =0 (43)

but, for v > 0, the system (42) is non-homogeneous and it has more unknowns then equations.
Additional linearly independent equation is required in order to calculate the sought vector dr”.
The incremental system is augmented by a so-called constraint equation.

There is no physical prerequisites for constraint equation, so a great variety of continuation
schemes can be found in the literature. The well known methods relay on some arbitrarily assumed
physical or geometrical conditions. For example, the Newton-Raphson method at a fixed load level
has been used in [20], the work-increment control in [21] and the arc-length control in [22, 23, 24].
The constraint equation is used in the explicit form, which can be presented as follows

An, for v = 0,
gnor’ = (44)
0 for v > 0,

where gy is the vector of assumed coefficients and An,, denotes the prescribed increment. The path
parameter is switched from 7, to 1,41 = N, + An, at predictor step (for » = 0), and it remains
unchanged during subsequent iteration at corrector step (for » > 0). The pictures shown in Fig. 5
are widely used in the literature in order to visualize the well known continuation schemes.
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Fig. 5. Graphical interpretation of continuation schemes: a) Newton-Raphson method at a fixed load level,
b) spherical method.
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5. CONTROL VARIABLE SELECTION METHOD

The new compatible continuation method (cf. [18, 19]) is based on the incremental system (42)
rewritten in the form

Gx* — SxNH 0, (45a)
Ty =1, (45b)
with the simplified notation x* = ér” for » = 0,1,... . The constraint equation is not prescribed

explicitly. The equation (44) is recalled in a sequel only, when an idea of linear superposition of
the ultimate correction sub-increment is introduced. The crucial features of the control variable
selection method arise from the following obvious observations.

The auxiliary equation (45b) constitutes the scaling condition for an arbitrary vector X =
{x, Zn41}, which satisfies the homogeneous system

Ajx=0 (46)

with A; = [G, —&|. Indeed, if X constitutes a solution to (46), then the vector X* = kX (with &
being a scalar parameter) also satisfies (46). In particular case, X* = {x*, 1} contains the solution
to (42). The equality z7, fyie= = 1 implies x* = x/z,,, for any known X. The solution vector X* (or X)
belongs to a nullspace A'(A ;). Any basis of the nullspace consists of the vectors X, fora = 1,..., K,
where K = N — p+ 1 and p = rankA,. Taking into account the size of A;, the inequality p < M
holds true, so at least two distinct vectors X, exist. Further, the nontrivial solution to (46) exists
and it is not unique. Any solution to (45) can be presented in the form of linear combination

s T (47a)
K

Tysr = X Calanssy (47b)
=1

where e, denote the coefficients of linear dependence. The incompatibility of the system (42) can
be detected, if zoy,; =0 fora=1,...,K.

The control variable selection method splits the incremental procedure into two parts. In the
first part, basic solutions to the homogeneous system (46) are determined. In the second part,
the vectors x, scaled by the coefficients e, are used in (47) in order to determine the ultimate
sub-increment dr”.

5.1. Gaussian elimination applied to homogeneous system

The solution vector X consists of dependent and independent parts denoted by @ and p, _respec-
tively. They can be revealed by the Gaussian decomposition with pivoting performed on Ay. The
decomposition procedure can be presented in the form

LA =AM, n=12... (48)

where n denotes the number of Gaussian transformations successfully accomplished, _and I}, and
IT;, denote the matrices of column and row permutation, respectively. The matrices L,, and AnH
have characteristic structure

" L 0 -
i l (L), ] i

49
(L21), Inf—n (49)

[—Jn+l Pn-l*l
0 Qu+l ,
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where the important sub-matrices, (L;;1), and f[m,l, are the (n x n) lower unit triangular and
the (n x n) upper triangular. The sub-matrices Pp41, Qn+1 and the identity matrix Irr—, have
decreasing dimensions (R X N —n +1), (M —n x N —n+1) and (M —n X M —n), respectively.
The decomposition is terminated for n = M — 1 or, whenever the subsequent pivot n;aéx abs(Qpg)n

(forp=1,....M —nand ¢ = 1,...,N —n + 1) is in the order of relative machine precision.
The estimator of condition numbers proposed in [27] can be easily calculated for the matrices C,,
defined in the form

Cp=(L11), Unya: (50)

It is assumed, that the rank of A; can be detected using the following rules

(51)

n if cond C,<x:, and cond C,41 2> Xy,
p —]
M if cond Cys < x¢,

where x; denotes a threshold value.
After decomposition, the non-homogeneous system can be automatically derived in the form

Uptati = =P, (52)

The dependent vector u is uniquely determined by the above system for any independent vector
p. Let i, denote a-th column of (K x K) identity matrix Ix. Using an assumption p = ia, the
solution vectors X, are given in the form

¢ Za

ia: {ﬁa, L}#iazng...np'ni—”n (53)

Herein, the vectors X, are normalized to unit length, but any other normalization can also be
utilized.

In a sequel, it is assumed for simplicity, that the matrix G has full rank p = M = N — 1 in both
steps, predictor and corrector. Thus, K = 2 and two basic solutions X; and X2 can be uniquely
determined from (52) and (53). The purpose of the first part of control variable selection algorithm
is to determine these two vectors.

The above presented Gaussian elimination procedure is not very effective, as it does not exploit
all the information which comes from knowing the structure of the underlying problems. In the
case of nonlinear mechanical problems, the symmetry and bandness of the tangent stiffness matrix
is not utilized. If these two features are taken into account and K is nonsingular, then the block
elimination algorithm (A.2) is much more efficient. The latter reveals a basis in the form

il — [e, 0, ll

Xz = [f, 1, 0] (54)

C,\,} =K o {

In the case of ill-conditioned stiffness matrices, the numerical accuracy of the above two vectors is
doubtful. The block elimination algorithm (A.2) can not be utilized whenever det K = 0.

5.2. Sub-increments obtained by linear superposition

Any effective algorithm, which provide a specific basis of the nullspace A (A;), can be used in the
first part of control variable selection method. During the second part of the algorithm the ultimate
sub-increment dr" is determined by linear superposition (47), while the idea of constraint equation
is abandoned.
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At predictor step, the vector € has to be moved into P M+1 in (52), as the nonsingular matrix
Car can not contain columns composed of zeroes. As a result, the auxiliary variable z ., , is assigned
to the entries of p. The second free parameter in p and the respective column of P M1 are revealed
after the decomposition performed on the rectangular matrix G. Regardless of the problem, which
state variable is selected as a second free parameter, two basic solutions to (46) can be anticipated
in the form %X; = {0, 1} and %o = {x, 0}. It is seen, that ||dr°|| = e2 (because ||%2| = ||x2|| = 1),
whereas e; does not influence the vector dr’. The ultimate vector obtained from (47) is given in
the form 6r° = e;x,. Only the length of initial sub-increment has to be established and this assures
the consistency at predictor step.

At corrector step all columns of G and the nonzero vector € are subjected to Gaussian
transformations (48). In such a case, the values z1,,,, Z9,,, can not be predicted in advance
(I%all = [IXall =1 = Zay,, € (—1,1)). These two numbers influence a freedom in selection of the
coefficients ej, ez in the relations (47). Following the idea of constraint equation, the coefficients
e1, ez could be determined from the following system

gnxie; + gnxgez = 0, (55a)
Tiyp €1+ Zoy, €2 = 1. (55b)

The first equation is obtained using (47a) together with the constraint equation (44), whereas the
second follows from (45b) and (47b). Note, that the vector gn is used only for the calculation of
two scalar products in (55a), i.e. gnx; and gyxz. Thus, instead of the explicitly assumed entries
of gn, simply two numbers ¢, ¢2 can be selected, and the system (55) can be rewritten in the form

q1€1 + gaez = 0, (56a)
Tiy41€1 + Toy, 62 = L (56b)

Such an assumption means, that the vector gn does not depend on dr” and the constraint equation
(55a) is linear. The consistency of correction method requires, that a determinant of the system
(56) should be non-zero. It is seen, that this condition can be easily satisfied in all cases, whenever
the inequality z% A +23, 41 > 0 holds true. The values of two unknowns e;, e; are given as follows

F— _Q2 62 — q]
Q1T2n4y — 02331”.“ , q1T2p5 4y — 2T 54,4
The simplest method arises from an assumption g, = 8,3, where d,4 denotes Kronecker’s delta. The

subindex /3 is selected in such a way, that the inequality zg,,, # 0 holds true, so x* = xg/xgy,,.
The step-length ||Ar,| between two consecutive solution points, r, and r,y1, is initialized

el

(57)

at predictor as [|Ar!|| = ||0r%| = As, and it is not directly controlled during corrector step.
The final value [|Ary| = ||Ar”| results from the sum of all consecutive sub-increments dr” for
v =0,1,... . The variation of the step length As (> 0) is controlled by some input data and the

step-length algorithm, which have been described briefly in [19].

6. NUMERICAL EXAMPLES

Several problems were solved successfully using a program based on the new continuation algorithm.
The solver does not exploit yet all the informations which come from knowing the structure of the
underlying incremental homogeneous system, like bandness and symmetry of the tangent stiffness
matrix. This confines the size of examples, which can be solved. Nevertheless, the important physical
aspects of the decohesion process within thin sheets can be assessed. The numerical examples
included below illustrate also characteristic features of the new solution approach. The following
sheet thickness and material parameters were assumed: H = 0.001 m, E = 2.1 x 10° MPa, og =
500 MPa, v = 0.3.
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6.1. Circular disk

As a first example, the circular disks were considered with free inner edge r = a and the tensile
traction p = Aog applied at the outer edge r = b (see Fig. 6a). The localization zones modeled
as a thin interface were assumed to follow the radial lines. The effect of number ¢ of localization
zones has been studied for @ = 0.05 m, b = 0.09 m. In view of symmetry condition, only a half of
the portion of disk between two cracks was analyzed. Figure 7a presents a typical mesh addopted
in the performed calculations (here, ¢ = 4). The propagating radial crack was simulated by seven
interface elements placed on the line BC, while the nodes on radial line AD modeled the symmetry
axis.
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Fig. 6. a) Circular disk, b) Infinite strip with periodic initial cracks.

The numbered nodes in Fig. 7a correspond to the degrees of freedom automatically prescribed as
control variables. It is evident, that the solution algorithm selects the control variables, which have
an important physical meaning within the considered problem. The selection follows the evolution
of propagating crack along the line BC and, in fact, the process is controlled by the displacements
near the tip of the crack. The pattern composed by numbered nodes is typical for the considered
problem.

The variation of condition numbers of the selected matrix C, and the tangent stiffness matrix K
versus integration step number are presented in Fig. 7b for ¢ = 4. These two curves allow to assess
the numerical quality of the obtained results. It is seen, that the algorithm is numerically stable
during the whole calculation process as the condition number cond C, remains on approximately
the same level. However, in the case of circular disk, the selected matrix is better conditioned then
the stiffness matrix only near the load limit point and at the end of the process, when the crack
approaches the outer edge and the stiffness matrix becomes numerically singular. This means, that
the utilized Gaussian elimination with complete pivoting does not guarantee, that the matrix C,
attains the possibly lowest condition number among all square matrices of the same size embedded
in the rectangular matrix of the homogeneous incremental system.

Figure 8a presents some of the consecutive configurations of the deformed disk contour (the
displacements are multiplied by 50). It is seen, that the radial displacements near symmetry axis
are higher than near the radial crack. The diffuse plastic zone starts to evolve near the inner edge
AB before the load limit point is passed. Within the coarse mesh utilized, only the first layer of
elements were plastified, while the remaining portion of the disk remained elastic during the whole
deformation process. For the assumed geometrical data the diffuse plasticity did not influenced
considerably the ultimate displacements. The differences in radial displacements decrease at the
end of the crack evolution, when the external loading is reduced to zero.

The configurations varied similarly for all analyzed crack numbers. Figure 8b presents the effect
of number c¢ of localization zones on the response curve of load factor versus displacement of the
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node lying on the outer disk edge and symmetry axis (point D in Fig. 7a). As it is seen, when the
number ¢ of localization zones increases, the required load level and displacements are higher. For

convenience, the results for elastic-perfectly plastic disk without decohesion are also presented. It
is seen, that such a case the maximal load level is overestimated.
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Fig. 7. a) FEM mesh (numbered nodes are those, at which control parameters were selected), b) Condition
number versus integration step number; ¢ = 4.
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Fig. 8, a) Consecutive contour configurations for ¢ = 4, b) Effect of number ¢ of cracks on response curve of
load factor versus displacement.

6.2. Infinite strip with periodic initial cracks

As a second example, the infinite strips with periodic initial cracks and periodically distributed
tensile traction p = Aop applied on both sides of the sheet were analyzed (see Fig. 6b). The
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localization zones were assumed to develop between the tips of two neighboring initial cracks. In
view of symmetry condition, only a quarter of each section was modeled and the effect of the
height L, was studied. The horizontal length Lj, the initial crack length L. and the length of
loaded edge L, were assumed: L, = 0.5 m, L, = 0.1 m, L, = 0.2 m. Figure 9a presents a typical
mesh adopted in the performed calculations (here, L, = 0.25). The crack was simulated by fifteen
interface elements placed on the line AB, the nodes on line BC' modeled the initial crack, while the
external forces were applied to DE. In all figures, where the response of load factor is presented
below, the vertical displacement of point D is taken into account.
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Fig. 9. a) FEM mesh (numbered nodes are those, at which control parameters were selected), b) Condition
number versus integration step number; L, = 0.25 m.

Similarly as in the first example, Fig. 9a and b present the nodes, where control parameters
were selected, and the variation of condition numbers versus step number, respectively. The former
allows to assess the physical meaning of selection performed by the algorithm, while the later
illustrates the numerical stability of calculations. It is seen, that also in this case the process was
controlled by displacements of the points near the tip of propagating crack. Similar pattern was
obtained for other values of L,. Note, that this time the stiffness matrix is much worse conditioned
than the matrix, which correspond to the selected control parameter. The discrepancy between the
considered conditioned numbers decreases for higher values L,.

The evolution of crack length during elasto-plastic process can be recognized in Fig. 10a from the
deformed configurations of the disk contour (the displacements are multiplied by 50). Figure 10b
allows to compare the response curves for three processes: elasto-plastic, elastic with decohesion
and elasto-plastic with decohesion. As in the previous example, the diffuse plastic zones start to
evolve before the load limit point is passed, however this time their impact results with a visible
discrepancy between the post-critical response. When only decohesion is taken into account, the

1
final displacement is equal §H (as a result of the adopted interface constitutive relation (14))

and the secondary load limit point exists before total collapse occurs. The evolution of diffuse
plastic zones flattened the response curve within post-critical loading phase and increased the
displacements.

The complexity of stress redistribution within the disk during propagation of the decohesive
crack can be anticipated, when the patterns of diffuse plastic zones presented in Fig. 11a and b are
compared. It is seen, that without decohesion the plastified elements create a band below applied
external forces, when the limit capacity is approached. In the same region only few elements were
plastified, when the decohesive cracks evolved, while the secondary plastic zone appears near the
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symmetry axis AF. The later arises due to bending and tension of the deformed strip. This effect
is more pronounced for lower values of L,. In the case of L, = 0.2 m the whole cross section AF
was plastified before it was approached by the crack. As a result, the limit capacity below the
load limit point was reached. From the numerical point of view the limit state was revealed by the
numerically singular tangent stiffness matrix along the whole flat part of the response curve, see
Fig. 12b. At the same time the selected matrix C, was still well conditioned.
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Fig. 10. a) Consecutive contour configurations, b) Response curves of load factor versus displacement;
Ly = 0.25 m.

e

Fig. 11. Diffuse plastic zones within thin sheet made of: a) elastic-perfectly plastic material (decohesion
neglected), b) elastic-perfectly plastic material; L, = 0.25 m.

A B c

The last two figures, Fig. 12a and b, allow to compare the processes for different widths L.
The underlined differences between two kind of processes, i.e. when diffusive plasticity is neglected
and when it is taken into account! can be recognized for all presented curves. It is seen also, that
in both cases the load limits are lower, while the displacements at the turning points increase for
narrower strips. The higher displacements result from the stronger impact of diffuse plasticity. Note,
that the radius of curvature of the graphs near the displacement turning points decreases with the
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decreasing width L,. In the extreme case for L, = 0.2 m the ultimate zero load level could not be
determined. In the case of elastic process, the algorithm could not overcome the sharp corner in
the vicinity of turning point, while in the elasto-plastic process the limit capacity was reached as
mentioned before.
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Fig. 12. Response curves of load versus displacement: a) decohesion within elastic sheet, b) decohesion
within elastic-perfectly plastic sheet.

7. CONCLUSIONS

In this paper, the problem of interaction between diffuse plasticity and decohesive cracks is solved
using the control variable selection method. The problem may be considered as a good benchmark
test, in which the structural tangent stiffness matrix often become ill-conditioned. The numerical
experiments indicate, that using the new method the problems with the ill-conditioned matrices
are automatically overcome, thus the method is numerically stable. The control variable selection
algorithm is based on the rank analysis of the rectangular matrix of the incremental system, which
is presented in a homogeneous form. The solved examples reveal the important physical meaning
of the idea of control variable selection. In the case of crack propagation problems the process is
controlled by the displacements near the tip of the crack. The most important advantage over the
well known algorithms is, that the calculations can be conducted to the ultimate structural collapse.

In all performed tests, the onset of localization was followed by the load increase during stable
response before the load limit point was reached. Then, the crack propagation induced the post-
critical response with complicated stress and strain redistribution. The local loading/unloading
effects resulting from simultaneous development of the localized plastic flow and the diffuse plas-
tic zones were observed. The interaction of two forms of plasticity is exhibited by the ultimate
deformation of the sheet and the maximum load level achieved during the loading process. Both
effects depend on geometrical and material parameters. The obtained results indicate, that even
in a simple structure the primary load limit point may be followed by the subsequent load limit
point during post-critical phase. Thus, the highest load level should be determined by the complete
elasto-plastic analysis conducted to the ultimate failure. It can be expected, that in the case of
complicated structures and for more realistic constitutive models the primary load limit level may
not necessarily coincide with the structural capacity.
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APPENDIX - WELL KNOWN CONTINUATION SCHEMES

The positive features following from symmetry and bandness of K can be exploited using the
block elimination algorithm proposed by Schweizerhof and Wriggers [25] and by Batoz and Dhatt
(26]. The displacements are represented in the form of linear combination

u’ =e+foN”. (A.1)
The auxiliary vectors e and f are defined as follow
e=K1E, f=KIF (A.2)

and they are independent on the unknown sub-increment §\”. By splitting g into two parts g., g,
which correspond to du” and \”, respectively, the sub-increment of loading factor is determined
by the constraint equation rewritten in the form

Any, for v =0,
(8uf + gr)ON” + gue = (A.3)
0 for v > 0.

It is a common practice in the literature, that the constraint equations are explicitly defined by some
geometrical or physical interpretations. The following defines the several known predictor-corrector
schemes mainly used in practice:

e Newton-Raphson method at a fixed load level [20]:
g. =0, n=1 At = A (A.4)

e Spherical arc-length method [16]:

T
gy = (Au" + Au""‘l) , g = AN + ANH, An, = As,. (A.5)

o Cylindrical arc-length method [22]:

T
8u = (Au" +AuH)", gr =0, An, = As,,. (A.6)

In the above, As,, is the specified arc-length measured along the solution path in the displacement-
loading factor space in the case of spherical arc-length method and along the respective projection
of the solution path in the space of displacements in the case of cylindrical arc-length method. It
is known, that the explicit formulations may result with the incompatible augmented incremental
systems.
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