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Analysis of fracture processes in structures of quasi-brittle concrete-like materials is here discussed on the
basis of discrete cohesive erack models and of a nontraditional boundary element method. This method,
called “symmetric Galerkin BEM”, is characterized by the combined use of static and kinematic sources
(i.e. traction and displacement discontinuities) to generate a symmetric integral operator by its space-
discretization in the Galerkin weighted-residual sense. Consistently, the discrete crack model is enforced
in a weak sense and expressed in terms of Prager’s generalized variables. On this basis, some of the main
aspects of a computational theory of quasi-brittle fracture mechanics are presented and discussed.

1. INTRODUCTION

This paper is intended to present a conspectus of a recently developed boundary element method
(BEM), named symmetric Galerkin method (SGBEM) in view of its use in nonlinear fracture
mechanics of concrete structures. Several models have been proposed in the literature for the
simulation, to engineering purposes, of fracture processes in concrete and other quasi-brittle (“dis-
ordered”) materials. The kind of fracture idealization assumed herein, and discussed only as for its
analytical description, is the discrete cohesive crack model (CCM) stemming from classical works
of Barenblatt (1962), Dugdale, Hillerborg and others.

This model relegates all nonlinearity to a discontinuity locus, say I'y, the dimensionali ty of which
is smaller by one with respect to that of the domain over which the analysis is formulated. The
consequent presence of a dominant linear-elastic background in fracture simulation problems based
on the CCM, tends to privilege BEMs over finite element methods (FEMs) and, in particular, the
SGBEM among BEMSs, mainly because of the reasons pointed out below. The following symbols
are adopted henceforth (boldfaces for matrices and vectors): x, & = Cartesian coordinates; I'y =
locus of (actual or potential) displacement discontinuities; w, p = displacement jumps and tractions
across I'y; p¥, Z(x, €) = tractions due to the given external actions and matrix of influence (Green’s)
functions of p due to w, respectively, in a purely linear elastic situation (i.e. in the absence of any
kinematic discontinuity).

With this symbology, the nonlinear response to external actions of the structure, idealized ac-
cording to the CCM, can be conceived as governed by the following relationships:

P(x,t) = flw(x,7;0 <7 <t)] x€Tly, (1)

pixt) = [ Z(x, Ow(E, 0T +pE(x,0) x €T, . )
T4
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Equation (1) symbolically formulates the analytical description of the adopted CCM, generally
history-dependent, ¢t and 7 being time instants, sce Sec. 5; Eq.(2) concisely captures geometry and
elasticity of the structure in point, and expresses superposition of effects, thus exploiting at most
the background linearity of the problem.

Clearly, whenever the unknown field w is computed by solving Egs. (1) and (2), any other
quantity of interest, in any other point of the domain Q occupied by the structure, can be evaluated
by customary linear computations, not of concern here.

It is worth noting that, if  were to coincide with the two- or three dimensional space (2o, then
Z would acquire simple analytical expressions (later referred to by symbol Gy,) emerged from the
mathematical theory of elasticity in the last century. In practical situations Z is not known and
an approximation of it is required for engineering applications of the above formulation of fracture
analysis, i.e. the integral equation (2) must be suitably approximated by a linear algebraic equation.
To this purpose the SGBEM appears to be ideally suited for the following three main reasons.

(a) The SGBEM involves only variables on the boundary I' and on the locus I'q. The former
variables can be condensed economically by inverting a symmetric matrix of coefficients, while
any FEM would involve domain variables as well and in traditional BEMs the matrix to invert is
non-symmetric.

(b) Unlike traditional (collocation) BEMs, the resulting discrete influence operator, say Z, pre-
serves the essential properties of the kernel Z in Eq. (2). These properties are: symmetry in the
sense that Z(x, &) = Z7(€,x), x # &, as it can be shown on the basis of Betti theorem of lin-
ear elasticity; negative definiteness of the associated quadratic form which has the meaning of the
opposite of the elastic strain energy due to the distorsions w imposed on I'q. The discretization
according to the SGBEM leads to a structural model with the mechanical features of the original
continuum and, hence, susceptible of a complete mechanical theory of remarkable computational
interest,.

(c) The SGBEM exhibits superior accuracy and convergence properties with respect to tradi-
tional BEMs, as it is now widely recognized, whereas the significant mathematical and numerical
difficulties related to the hypersingular integrations nowadays can be regarded as largely overcome.

The above points are substantiated in a growing literature on SGBEM in general, see e.g. [4, 14,
98, 36, 47, 49, 50, 51, 56, 57, 61], and on its fracture mechanics applications, see e.g. [9, 48, 50, 52|.
Some fundamentals of the SGBEM are covered by recent books on BEMs [3, 15, 37]; traditional
(nonsymmetric) BEMs applied to linear elastic fracture mechanics are comprehensively expounded
e.g. in [24, 25].

The present survey of recent and current developments in the title subject covers the follow-
ing topics: the generation of the integral equations (Sec. 2); their space discretization by a weak
weighted residual approach, to fracture analysis purposes (Sec. 3); a general procedure to compute
the double hypersingular integrals involved in the generation of the coefficient matrix (Sec. 4);
analytical descriptions of history-dependent (nonholonomic) CCMs (Sec. 5); special classes of holo-
nomic CCM (Sec. 10); a weak formulation of CCM in generalized variables (Sec. 7); overall stability
and bifurcation criteria emerging from the rate formulation (Sec. 8); time-stepping solution pro-
cedures (Sec. 9); history-independent (holonomic) analysis, multiplicity of solutions and numerical
algorithms (Sec. 10).

2. GENERATION OF A SYMMETRIC BOUNDARY INTEGRAL OPERATOR

Consider a two-dimensional (2D) or three dimensional (3D) elastic space {2 subject to external
forces f* (statical or “single layer” or “stress discontinuity” sources) and imposed displacement
discontinuities d* (kinematic or “double layer” sources or distorsions) distributed over its locus I'*
(a line in 2D, surface in 3D).
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Displacements u* and tractions p* due to these external actions can be expressed by superpo-
sition of effects (for x not on I'*) as follows:

060 = [ Guu(x P (Ele + [ Guplx, )" )
I‘. l—‘-

PPy = f G (x, €)F* (€)dTe + / G,p(x, £)d* (€)dTe. (4)
r‘- r‘-

Matrices Gy, contain Green’s influence functions for 2., once for all expressed by simple classical
formulae (simple for isotropic materials) available in textbooks, e.g. [15, 37]. Specifically: for k = u
Kelvin (1848) fundamental solution; for & = p influence functions for the effects of distorsions
(Gebbia’s kernel). Crucial mathematical features of these functions and their integrals will be
briefly discussed in Sec. 4.

Consider now the real structure contained in the domain Q = QUI" of Q. Its boundary I' consists
of two disjoint complementary parts I', and T',, subjected to given forces p and displacements 1,
respectively (external actions in Q are assumed zero for brevity). A frequently adopted starting
point of BEMs in elasticity is Betti’s identity involving the real elastic state (unstarred symbols)
and a fictitious one (starred symbols), the integration coordinate x being interpreted as running
on the “internal face” I'" of I' (i.e. x=x~ € '™, with I'~ denoting a set of points of © infinitely
close to I'). Here the locus I'y of possible kinematic discontinuities must be allowed for in Betti’s
identity, which reads

f pTu*dl; — / pTw*dl, = ] uTp*dr, — f wlp*dl;. (5)
r Iy r Ta

A usual path starts leading to conventional BEMs, see e.g. [3, 15, 37], when the fictitious elastic
state is identified with Kelvin's fundamental solutions: these are contained in function matrices
Guu and Gy, each column of which represents effects in £, due to a unit force acting in £ in the
direction of the relevant coordinate axis. Thus Eq. (5) gives rise to a classical Somigliana integral
equation.

Instead of the above traditional path, an itinerary leading to the SGBEM of concern here may be
initiated by choosing static sources f* acting on the constrained boundary I',,, and kinematic sources
d* on both the unconstrained boundary I', (denoted by 3*) and the discontinuity locus I'y (denoted
by w*). It is worth stressing that the real structure Q (Q = QUT') is conceived as embedded in Qo
when writing Egs. (3) and (4) for x€ Q, so that in Eq. (5) we have: I* =['UTy =T, UT, UT,.

Let now Egs. (3) and (4), specialized by means of the above provisions, be substituted into
Betti’s equation (5). Thus (argument (x, &) of kernels being omitted for brevity), Eq. (5) becomes:

0= [£7€){ [ [GL.p60) - Ghueo] dr. + [ Ghweodr. § dr
Tu I 3

+ @7 @)1 [ [6hpx) - GLu)] e + [ GLw(x)dr, §dr
1_-,{ i[[ pP(x pp“x} I:{m‘,wr:tc ¢

+ [wT©) [ [65p6) - Ghu(x)] dre + [ GLw()drs ~p(€) pdle. ()
T4 g Ta

Since Eq. (6) holds for any arbitrarily chosen source densities f*, d' and w*, the expressions in
parentheses {} must vanish individually and, therefore, they give rise to three integral equations.
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These generate the following three boundary integral equations (B1Es), when the data p on I';

and @ on I';, are entered in them, while p for x € Ty, uon I'; and w on I'y are recognized as
unknowns in the actual problem:

[ Glupedrs = [ GLuGodrs + [ GLw(T: = £u(€), e

. T I'y

~ [ GLp(drs + [ GhuGdrs — [ Ghw(x)drs = &,(©) ger,,
Pu P r

[ Ghpxdrs - [ GhuGdrs + [ Ghwe)dr: = £,(€) +p(€), geta )

Fu Og I'd

The vector-valued functions g on the r.h.s. of Eqs. (7)—(9) gather all data (boundary data p, u and
possible domain data, such as body forces and thermal strains, here ignored for brevity).

Betti theorem, Eq. (5), if suitably specialized and applied to Qe, induces in the influence
(Green’s) kernels G a reciprocity relationship with far-reaching consequences:

Gh(x,€) = Gun(£,x), x#&  hk=up. (10)

As a first consequence, it can be shown that [61], if all integrals on the Lh.s. of Eqs. (7)-(9) are
gathered in a single (linear, integral) operator, say L, which operates on the unknown boundary
ficlds, say y= {p’,u”,wT}T, this operator is “symmetric” (or self-adjoint) in the sense that,
denoting by <, > the bilinear form associated to it and by V the expression “for any”, we can write:

! " " ’ ’ "
Ey  Hy 3=y Ay VY& (11)

Suppose that tractions p in Eq. (9) are given along the discontinuity locus I'q (as, e.g., I'q were
a pressurized nonpropagating noncohesive crack). Then the solution y to the above BIEs would be
characterized by a variational (saddle point) property, straightforwardly derivable from Iq. (11) ,
see e.g. [61].

Suppose now that w is known, namely that it represents displacement discontinuities (or “dis-
torsions”) imposed along I'y by an external agency. Then Eqs.(7) and (8) are BIEs governing the
boundary unknowns p, u; their unique solution is characterized by the above variational theorem
concerning an integral operator L reduced accordingly. Then Eq. (9) is decoupled from Eqs. (7)
and (8), and can be subsequently used to compute the tractions p across I'y on the basis of the
boundary solution.

It is worth noting that in traditional BEMs the above symmetries and variational properties are
missing. However, the above formulation of symmetric BlEs has deliberately ignored the peculiar
difficulties arising from the “hypersingular” nature of kernel Gy, absent in BEMs. This issue,
satisfactorily understood and resolved only in the last few years, will be discussed in Sec. 4, since it
is crucial for both the mathematical rigour and the computational efficiency of the SGBEM adopted
herein.

3. SPACE DISCRETIZATION OF THE INTEGRAL EQUATIONS

Following well-established procedures, the boundary I' and the discontinuity locus I'y are now
discretized into boundary elements (BEs). Denoting by M the “master element” (e.g.: the unit
square {0 <m <1, 0 <y <1} or the triangle {0<m <1,0<m <m} in 3D; the unit segment
0 <n<1in2D), it is assumed that each boundary element, as an approximation of a portion of
I’ or Iy, is mapped onto M by means of a non-singular, one-to-one transformation z; = z;(m,n2)
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in 3D and z; = z;(n) in 2D, containing as parameters the Cartesian coordinates of suitably chosen
nodes on the BE.

On each BE, tractions, displacements or displacement discontinuities are interpolated from nodal
values using polynomial shape functions, as customary also in other discretization techniques like
finite element methods (FEMs). By defining each shape function pertaining to a node over the
whole locus where the relevant variable is defined (not only over the BE or over the “support”
of that node) and by collecting all the local nodal values in vectors Pr, Up and W, the global
representations of the modelled unknown fields p, u and w are, respectively:

P(x) = ¥p(x)Pr, x €Ly u(x)=T,x)Up, x€lp wx)=T,(x)W, xely (12)
It is worth noting that the assemblage of all local nodal values is implicit in Eq. (12). Continuity
CY has been assumed for u on I and for w on I'4, for reasons clarified later in Sec. 4.

The discretized equations of the SGBEM are then obtained by enforcing Eqgs. (7)—~(9) in a
Galerkin weighted-residuals fashion, i.e. by weighting them with the same shape functions adopted
for the modelling of u, p and w, specifically with: ¥ (¢), & € I, for Eq. (7); ¥T(¢), € € Iy, for
Eq. (8); T (€), € € Iy, for Eq. (9). Thus, the discretized version of Egs. (7)-(9) reads:

[ [ ¥ @ctwydrare | pr - [ ] ¥r©cheuxarare | ur
llr‘tt u ‘p

+| [ [ ¥h©chw,eoar.arg w:P/ W7 (£)g, (€)dr, (13)

2Ty

.. / / OT(6)GT W, (x)dTdl | Pr + f ] OT(6)GT @, (x)dl,dle | Up
/d

| [ [ ¥ @cnz.muarare | W = [l @r, (14)
Ip

pla

| [ ¥@chwedrare | pr- | [ [ ¥5e)chw . oaradre | Up

"¢ Tu aTp

+| [ [i©cneumaradre | W= [95@©)2©) + p@ldre.  (15)

ala I'g

The evaluation of the double integrals in Egs. (13)~(15) finally leads to an algebraic linear
system endowed with a symmetric matrix, as it can be verified by careful inspection of Egs. (13)—
(15), taking into account the kernel reciprocity relations Eq. (10). In view of the integrations to
perform, some special aspects arise, not considered here, in the transition from zones where unknown
displacements are modelled (I',) to those where tractions and displacements discontinuities are (I',,,
I'4). These details can be found in [49, 61]. Through self-evident definitions of the new symbols

(with superscripts) the algebraic system Eqs. ( 13)—(15) after the integrations can be re-cast in the
form:

& T i Pp G*

-G G -G#® |{ Up }= G (16)
U] PP 1

Gul _Gpt i || w G*+P
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where the upper indices in the system matrix refer to the boundary zones where actual variables
(u, p, w) and test functions must be integrated. In fact, if triplets {r, K',h} and {s, K, k} are
allowed to assume any of (and only) the values {u,p,u}, {p,u,p}, {d,w,p}, the double integrals in
Egs. (13)—(15) can be covered by the following unified expression which specifies the meaning of all
submatrices of coefficients in Eq. (16):

f= [ [ v 6Bl a7)
1% B
In Eq. (16) P are weighted averages of tractions or “generalized tractions” on I'y.
The 7 matrix mentioned in Sec. 1, which is intended to be a discrete approximation of the
Z(x, &) matrix of functions in Eq. (2), can be obtained from Eq. (16) by condensation of the Ur,

Pr variables concerning the boundary T'. This condensation leads to the compact algebraic linear
equation

[ #h@p(ere =P =2W - P%, (18)
Iy

where we have set:

2 dd i | G&
7-GH-[Gu -GriA” {_égp}, (19)
re
s = G* G _GK
PE=G“+A-1{ = } A:[ 8 w}. (20)
G —-G2 G

In Eq. (20), P represents generalized tractions on I'y due to external actions in the absence
of displacement discontinuities. Equations (16)-(20) give rise to the remarks that follow (partly
anticipated in Sec. 1) intended to point out some distinct typical features of the SGBEM adopted
herein.

(a) The coefficient matrix in Eq. (16) is symmetric, as a consequence of Betti’s reciprocity
Eq. (10) to be allowed for in the integrations (17). This symmetry directly implies the symmetry
of matrices A and Z through their definitions by Egs. (20) and (19).

(b) The three block-diagonal submatrices of coefficients in Eq. (16) are definite in sign. Specif-
ically: G is positive definite; GJ7, G% are negative definite, or at least semidefinite when the
relevant locus, I'y or I'y, is such that rigid body motion is possible (with some distribution of kine-
matic variables on them). In fact, Eq. (17) shows that the meaning of the quadratic form associated
to G * is the elastic strain energy in (oo when it is acted by a force field on I'y; those associated to
Gy and Gﬁ and reversed in sign, represent energy in Qe due to distorsions (displacement jumps)
in I', and 'y, respectively, see e.g. [56, 57).

(c) Matrix A concerning boundary variables, Eq. (20)p, is symmetric, as a principal submatrix
of that in Eq. (16), but not semidefinite in sign. Its inverse exists whenever the original “linear
background” b.v. problem, with w = 0 in I'; and its BE discretization prevent rigid body motions
and, hence, admit a unique solution both in stresses and displacements. The explicit inversion of
A to condense all boundary variables and generate Z, Eq. (19), is an option adopted herein, in
order to derive both numerical simulations procedures and overall stability and bifurcation criteria
in later Sections. As for the computational effort it requires, it is worth noting that the inversion
of A is done once for all, as long as A depends on the boundary I and its modelling (not on locus
I'y); moreover, it is made more economical by the symmetry compared to traditional BEMs, and
by the reduced size of A compared to FEMs (which would require condensation of variables on
both I', and Q).

(d) The influence coefficient matrix Z relating static generalized variables W on locus I'q to
the static ones there, turns out to be symmetric because of its generation, Eq. (19), and negative
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definite (semidefinite if material separation along I'y were to make rigid body motions possible).
The latter property stems from the well expected energy meaning of its quadratic form (to within
a change in sign, the strain energy in the given structure Q, subjected to distorsions along ['4).
Therefore we may write:

7' =7 —%WTZW > 0. (21)

It is well stressing that, as anticipated in Sec. 1, the properties of the above discrete influence
operator Z are the same as those of its continuum counterpart Z(x, £), Eq. (2).

4. DOUBLE INTEGRATIONS OF SINGULAR INTEGRANDS

As mentioned in Sec. 1, a crucial step in the SGBEM is the choice and implementation of a sound
procedure for the evaluation of the singular double integrals in Eqgs. (7)—(9). Denoting by r the
distance between the source point ¢ and the “field point” x where effects are considered, and by
O(:) the asymptotic behaviour for r — 0 (r = [(x — €)' (x — £)]1/2), the singularities of the Green
functions employed are specified by the following tableau.

G*™ O(logr) in 2D, O(1/r) in 3D GP*O(1/rP1) 22)

G"? O(1/rP-1) G™ O(1/rP) |’ (
where D = 2 in 2D and D = 3 in 3D. According to a popular terminology, kernel G, is said to be
weakly singular, G, and G, strongly singular and G, hypersingular.

The issue of the mathematical meaning and evaluation of such integrals has been addressed in an
abundant literature over the last few years. At least four ad-hoc procedures have been proposed in
the general context of BEMs: (a) the singularity isolation, proposed in [30] and so far implemented
only for collocation approaches; (b) the singularity subtraction technique developed in ([39]) based
on suitable use of simple solutions; (c) particular quadrature rules ([16]) apt to the direct numerical
computation in the spirit of customary Gauss formulae for nonsingular integrals but capturing
Cauchy’s principal values and Hadamard’s finite parts in the presence of singularities; (d) the
derivative transfer technique ([28, 61]).

Hereafter only the last method will be considered for the evaluation of hypersingular integrals,
since it seems to be the best suited approach for the SGBEM. Details can be found in [28, 61].
The main ideas and the “Leitmotiv” of the derivative transfer technique can be outlined as follows,
with reference to the hypersingular kernel G, to 2D problems and to the first implementations of
the SGBEM in elasticity [61] and plasticity [49] (where linear BEs and linear shape functions were
adopted, in [61] with a complex variable formalism): (i) express Gyp in terms of first derivatives,
with respect to each of two curvilinear coordinates over BEs, of an auxiliary kernel G, according
to an interpretation of Gy, proposed in ([55]); (ii) integrate twice by parts the integrand, thus
transferring the derivatives to the interpolation functions, chosen so that they make the generated
nonintegral terms vanish; (iii) perform, numerically or analytically, the weakly singular integra-
tion of the remaining integral term containing the auxiliary kernel G,. A general mathematical
description of this “regularization” technique by the derivative transfer is given below (cf. [14, 28]).

Let us consider, in tensorial notation, the integral over any I' (surface in 3D or curve in 2D):

I [ [wi©)Gis0x euhxdr.dre, (23)
B

where shape functions ¥} (&) and WX (x) defined over I' are assumed to be continuous and to vanish
on the boundary dI' of I. It can be shown ([14]) that

Gop(x,€) = RLRI[GEN(x,£)), (24)
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where Gfp’;‘“’(x, €) is a weakly singular kernel to be defined later and R, Rfc; are the surface rotor
operators at x and &, respectively. Considering the scalar field g(x) (f (&), respectively), and de-

noting by n (m) the normal versor to I' at x (§), R} (Ré) is the projection on n (m) of the rotor

of vector g(x)e; (f(§)e,), e; being the j* coordinate-axis versor, i.e.

Ag(x) ; af (&)

Ri[g(x)] = eqn—gg:’—m, Rg[f(8)] = cirs?é:""”n (25)
where and e, is the permutation symbol (ejrs # 0 for j # 7 # 8, €jrs = 1 for {j,m, s} = {1,2,3} or
any even permutation of it, ej-s = —1 otherwise). The surface rotors in Eq. (25) can be expressed
in terms of surface derivatives of shape functions, e.g.:

Ralg0)] = eqrs 2200, = (208 g3 25 0) 51, ), (26

where: m; and 7, are the “master element” coordinates on I' at x; a; and ag are the relevant
covariant base vectors and J the jacobian of the transformation z; = @i(m,n2). In 2D (where
j=q=3)if ¢, and £ are the arc length coordinates along I’ related to x and &, the surface rotor
operators reduce to the derivative with respect to ¢; and £¢, respectively, i.e.

R[g(x)] = %J—l(m) 5 275’ and  RY[(E)] = g‘ﬂ—ferw L ;igg (27)

Integration by parts of Eq. (23) making use of Eqs. (24) (25), transfers the derivatives to the
shape functions:

z= [ [ RUVLEIGEx, O RYPEITATe (25)
i BT O

It should be stressed that properties (26)(27) represent a prominent feature of the surface rotor
operator, according to which RZ[¥%(x)| and Rg[w;(g)] can be computed by just differentiating

Wk (x) and Wi (&) with respect to coordinates lying in the domain of definition of the shape functions
themselves.

In 2D, setting Gi¥ (x, £) = Gir¥(x, §)

while Eq. (28) becomes
OVL(E) ik OV (x)
Ti= — 2 G (%, &) ——dl dIe. (30)
i‘/ lf Of 0l

The explicit expression for the Gﬂﬁgp kernel in the general 3D case, as put forward in [55], reads

0 0

> o :
Gg&(&ﬁ) = H eiheekgsAejuqa_xbgé;[F(xv E)I! (31)
where, denoting by u the shear modulus, it has been set:
1 2 . 1 '
=———r°l 2D =——
F lﬁ?{ﬁ(l—b’)r ogr in 2D, F lﬁﬂp(l—u)r in 3D,

Acjoq = We;bng + 2(1 — v)(SeqBis + Sesdia)- (32)
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By specializing Eq. (32) to the 2D case ([28, 61]), namely by assuming e = s = j = ¢ = 3, and
denoting by A the Laplacian operator, we have:

2 s : 58

Gl o,€) = G2 () = ~402 [ AF(x,€) = 5= [P(x, )
= et Nl S PO 3
= G Jg) | PETR T T ¢ (33)

The main advantages displayed by this regularized formulation can be summarized as follows.

(i) Equations (28) and (30) contain now only weakly singular integrals which do not require
complicated interpretations (i.e. Cauchy’s principal values or Hadamard’s finite parts).

(ii) Integrals in Eqgs. (28) and (30) can be evaluated numerically by means of standard and
reliable numerical quadrature rules, since every single term in the kernels displays at most weak
singularities (not only the global expression as in the singularity subtraction technique).

(iii) Bxplicit expressions of regularized kernels G, (see Eq. (33) in particular) are easier to
compute than the lengthy explicit expression of G, not reported here for brevity (actually G;,’; =
E;jab Erped(0? | 0240€4) G2 njmyp, with E elastic stiffness tensor).

5. ANALYTICAL DESCRIPTION OF PATH-DEPENDENT COHESIVE CRACK MODELS

In what precedes the linear background of the fracture mechanics problem has been fully described,
in the sense that all elastic and geometrical properties of the structure in point and the external
actions have been allowed for in formulating the “symmetric” integral equations (BIEs) over the
boundary I' and the displacement discontinuity locus Iy, Sec. 2, Eqgs. (7)—(9). The Galerkin dis-
cretization and subsequent condensation of the boundary variables, led to the linear relationship,
Eq. (18), through the elastic structure, between displacement jumps w and tractions p along I'y.
The SGBEM has been discussed as a general and computationally attractive procedure leading
to a discrete approximation of Eq. (2) for the structure in point, originally interpreted as a solid
continuum contained in Q.

In order to complete the problem formulation the variables w and p on I'y are now to be
linked through a constitutive model apt to interpret, at an engineering-oriented phenomenological
level, the nonlinear mechanical events, in primis the fracture processes, confined to I'y by the basic
assumption of cohesive-crack models.

For a unified analytical description of most interface constitutions adopted in the literature, see
e.g. [17, 19, 31, 34, 38, 42, 59, 62, 64, 65|, we borrow from plasticity, e.g. [7, 43, and continuum
damage mechanics, [41], the following formulation based on concepts and symbols specified below:

w=w"+ wP, (34)
(4} on
P #(wels)! 9= g(we' s)l (35)
o -T
wP = aaip(pi q)i: 8= '_aa%‘(pf CI)/;\, (36)
A20, ¢(pa) <0, ¢TA=0. (37)

The displacement discontinuity w across I'y is assumed, through Eq. (34), as the sum of an elas-
tic w® and an irreversible (permanent or plastic) part w”. Internal variables in conjugate pairs,
gathered in vectors s of the kinematic and q of the static ones, are intended to reflect, at the
macroscale, dissipative phenomena. For concrete-like materials, fracture results from complex phe-
nomena occurring in a “process zone” in the vicinity of I’y (or of parts of it), at the micro- and
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meso-levels (such as microcracks and local plastic yielding related to the inhomogeneous texture of
“disordered” materials consisting of aggregates, matrix and interfaces).

In Eq. (35) a potential 7 (assumed as twice differentiable at least) represents the recoverable
(“free” Helmholtz’s) energy (per unit volume), encompassing the elastic strain energy % (if any)
and the energy 7% locked in the materials by rearrangements at the microscale reflected by s.
Both addends (not only the latter) are thought of as functions of the kinematic internal variables
s, so that interface damage in the sense of elastic stiffness degradation can be allowed for, where
desirable. Plastic potentials ¢ are adopted to describe in rates through Eq. (36) the evolution of
both w” and s by their gradients and non-decreasing plastic multipliers A. The yield criterion is
formulated in Eq. (37), by means of a vector ¢ of convex differentiable yield functions, the argument
of which contain, besides the traction p across I', the static internal variables q in order to describe
hardening or softening (softening understood here as shrinking of the elastic domain). Vectors ¢
and ¢ are assumed with same dimensionality and as convex functions of (p, q). They are generally
distinct, to reflect frictional behaviour by lack of normality (nonassociativity) in the p and w”
spaces superposed and/or in the q and § spaces superposed.

Equation (37) (called in plasticity Prager’s loading-unloading rule or “consistency” rule) requires
ortoghonality of vectors ¢ and A, but holds also componentwise (i.e. A = 0, Vi), in view of
their sign constraints. A dot means derivative with respect to any strictly monotonically increasing
function ¢ of chronological time, in view of the inviscid nature assumed for the mechanical processes
in point.

As an illustration, consider the simplest, frequently used CCM for mode I shown in Fig. 1a. It is
readily seen to be covered by Eqgs. (34)-(37) as a very special case for: w® =0, ¢ = ¢ = p—(pc+hw),
T = pes + 1/2hw?; whence ¢ = pc + hw, w = A = 8, h <0 being the modulus of linear softening.
Clearly, for w > w, (i.e. ¢ > 0) actual crack arises and the above nonholonomic description no
longer holds (p = 0, uncorrelated to w).

(a)

P, P,
NG
i v e B B
0 \; 0 W

P P I (b)

Fig. 1. Mode I, piecewise-linear cohesive crack models: (a) nonholonomic, (b) holonomic with break point B

Let us derive from Egs. (34)-(37) the relation in rates (dotted variables), i.e. in infinitesimal
increments (to within a common time increment dt). Equations (37) discriminate the inactive yield
modes (those for which ¢; < 0 and hence A; = 0) from those (with ¢; = 0 at t) which may be
activated (i.e. X\; > 0) in rate processes starting from the state t. Marking by primes the vectors

(¢, c}’, X') of variables pertaining only to the modes which can be activated and by bars the known
values of all variables at time ¢, the rate relations straightforwardly flow from Egs. (34)-(37):

W= W W, (38)

{E}Zl:ﬂ lff]{“:} (39)



Symmetric boundary element method for “discrete” crack modelling of fracture processes 211

T AT
O el . 0p . .
WP = — ' As S=r—=n—\P; A! (40)
= (p;q) 9 (P, q)
/ ! B
V20 ¢ =TpeSfaso, MW -0 (1)

In Eq. (39) the Hessian matrix of the potential 7(w*,s) is partitioned into submatrices k, of which
the instantaneous (tangent) elastic stiffnesses read:

o*r . O*r

ke = W(w :SL ky = asasp(w ) (42)

The energy dissipation rate (first-order external work minus free energy rate) must comply with
the thermodynamical requirement.:
ML T on or
D= i ptw— [ W )>0 43
ot B (awef dsT i)

Constitutive stability is understood here not in the more restrictive sense of Drucker [43], but in
the sense of no tendency to spontaneously quit the current state. According to a classical concept,
see e.g. [7, 43, 44], (statical) stability in this sense means semi-positiveness of the second-order work
%L performed by an external energy which promotes any kinematic disturbance (here dw) while
providing the static actions to preserve the balance between internal and external static quantities.
In symbols:

6L = T(w)wé£2 >0, Vw. (44)

Making use of Egs. (39)-(41), the se;cond order work can be given the expression:

Ta(,b T-.f

BT ql\

0L 2(6t7?) = wTk we + A

T ke%(&'—qs') ~kern (qs + )| A

o O

A kse._(¢ ¢’) (45)

It is worth noting that the matrix [in square brackets| of the bilinear form in Eq. (45) consists of
two addends: the former arises from nonassociativity (¢ # @), the latter from damage in the sense
of elastic behaviour influenced by internal variables (potential 7¢ depending on both w* and s, so
that kes # 0. The cooperative effects of elastic-plastic coupling (or damage) and lack of normality
on the flow laws of elastoplasticity have been pointed out and investigated in [45]. Though not
corroborated by physical arguments and often disproved by experiments on interface behaviour,
associativity, ¢ = ¢, and no damage, 7°(w®), are frequently assumed in the literature and will
be adopted henceforth herein in view of the remarkable simplification this assumption implies and
the insight it permits. In fact, for associated flow rules and no elastic-plastic coupling, the last two
addends in Eq. (45) vanish and the above sufficient and necessary stability criterion can be given
an easy and meaningful interpretation, since, when ¢ = ¢ and k., = 0, Eq. (45) reduces to:

; ! I
L2562 = wTk W Jr,\’"c,‘;""T a¢q A (46)

What precedes, centered on Eqgs. (34)—(37), gives rise to the following remarks.
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(a) When the elastic addend w® of displacement, discontinuity is accommodated in the model, the
potential 7 is assumed strictly convex in w® (and usually quadratic), i.e. the tangent stiffness matrix
k. is positive definite (and in particular independent from we, which means linear elasticity). The
internal variable vector s often affects k, through its (isotropic) damage variable D in the stiffness
degradation factor 1 — D, which does reflect observable aspects in some quasi-brittle processes,
see e.g. [11, 23, 41, 59]. In most CCM, however, (and in what follows) damage in this sense is
not considered and, as mentioned above, decoupling is assumed in the [ree energy potential: m =
7B (w) + 7L(s) (so that ke, = k%.=0). Quadratic locked-in energy 7"(q) implies linear hardening
or softening. Frequently adopted is the rigid-plastic CCM (and interface model), covered by the
specializations: w® = 0 (and, hence, 7¥ =0) and p uncorrelated to w°.

(b) For associative rigid-plastic (w® = 0) models, in view of Eq. (46), the constitutive stability
criterion, Eq. (44), in associative cases leads directly to the conclusion: sufficient condition for
the cohesive crack model (CCM) to be stable is the positive semidefiniteness of matrix k, (see
in Eq. (46), the latter addend), i.e. the convexity of the free energy potential 7 in the kinematic
internal variables s, see Eq. (42),. Therefore concavity of 7 in s is necessary for the constitutive
instability, i.e. for the softening behaviour. Softening is the central feature of the CCMs of concern
herein, since it represents damage in the sense of strength reduction up to material decohesion.

(c) In the rate formulation, Eqgs. (38)-(41), of the general CCM, other issues would be of interest,
such as criteria for uniqueness (or lack thereof) of the response to given w and the concept of Hill’s
“linear comparative solid” (see e.g. [11]). However, these issues are not discussed here, in view of
the mathematical analogies with familiar damage-plasticity constitutive theory (in terms of strain-
stress tensor instead of vectors w and p) and with subsequent developments concerning the overall
structural behaviour (Sec. 10).

(d) Within Ty, a priori defined in Q2 as the locus of potential or actual displacement jumps,
three portions must be distinguished at an instant ¢, in order to properly formulate a boundary
value problem in rates over : (i) crack (or union of cracks) I'G, where no interaction exists (p = 0)
and w cannot be correlated to p; (i) undamaged elastic material I'j, where A(r) = 0 for any
0 < 7 < t (assuming that ' = 'y at time ¢ = 0); (iii) process zone I, in each point of which
p # 0 and at least one yield mode can be activated (say the ith : ¢; = 0). Other local situations are
assumed to occur only on borders of transition between the above subloci, i.e. on parts of I'q with
lesser dimensionality compared to I'4. It is understood that the process zone ') includes possible
parts of ['; where contact (between two faces, say I'f and I';) has been restored after a crack has
been generated: in fact, frictional contact can be reasonably described by suitable specializations
of Egs. (34)—(37), see e.g. [50].

(e) In modelling interface behaviour, especially contact with friction and interlocking of asperities
of crack faces, associativity represents a dubious compromise between conflicting requirements of
computational simplicity and cost-effectiveness on one side and realism on the other. It can be
noticed, however, that some of the most undesirable consequences, such as excessive dilatancy, may
be attenuated, in an overall average sense, by the provision of multiple yielding modes. A popular
example of this fact in soil and concrete plasticity is provided by Drucker-Prager model “improved”
by a “cap” which becomes active for predominantly compressive states.

(f) The history-dependent (or irreversible, or “nonholonomic”) character of the class of models
considered so far is quite apparent in Eqs. (34)-(37). For evolutive (“marching”) numerical solutions
of the nonlinear initial boundary value problem over Q x T' (T' being the time interval of interest),
the approximation by a sequence of (still nonlinear) boundary-value (no longer initial-value) step-
problems is practically unavoidable. This means that, for the finite step problem, say over At =
[tnstny1], assuming as known (and, hence, by marking by bars) all variables at t,, a step-wise
holonomic version of it must be derived from the non-holonomic model Eqs. (34)-(37). This version
can be generated, e.g., according to the implicit backward-difference time-integration scheme well
known in plasticity, see e.g. [20, 43]) . Clearly, if the time step At coincides with the whole interval
T, a fully holonomic (i.e. nonlinear-elastic) model is arrived at, but this is not computationally
advisable (inaccuracy and, with softening, algorithmic instabilities increase with the step size).
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When single-step holonomic analysis is legitimate, and advantageous to engineering purposes, ad
hoc holonomic CCMs are suitable. Some of them are formulated in Sec. 6.

6. HOLONOMIC COHESIVE CRACK MODELS

In a number of engineering situations, especially when the main external actions can be interpreted
as varied by a load factor monotonically increasing in time, manifestations of irreversibility (such as
“local unloading”) can a priori be conjectured to play a minor role, if any, in the overall structural
response. In such situations, nonlinear material behaviours which actually are dissipative, (i.e.
history-dependent, nonholonomic) may be interpreted as reversible (i.e. holonomic) to structural
analysis purposes. Then in the present context of nonlinear fracture mechanics, when the locus
4 of possible displacement discontinuities (in particular, the crack propagation itinerary) can be
reasonably assumed a priori, structural responses implying fracture processes can be predicted
by single-step computations based on holonomic CCMs (in total variables), rather than by time-
stepping evolutive analysis, with obvious potential savings.

In order to discuss some typical aspects of non-evolutive simulations of quasi-brittle fractures,
we will focus first on the CCM for mode I processes depicted in Fig. 1. The reasons of the interest
in this particular CCM are as follows: (a) the bilateral softening branch (with break-point B) has
been found to approximate well accurate experimental results concerning concrete like materials
and seems to be advocated by several researchers in the field, e.g. [2, 65]; (b) its piecewise linear
(PWL) nature, besides possible advantages in marching solutions (Sec. 9), permits recourse to
special ad hoc algorithms with novel theoretical and computational features (Sec. 10); (c) the
nontraditional analytical description presented below in terms of a linear complementarity problem
(LCP) is analogue to the one typical of the rate relations of Sec. 5, and encompasses as a special
case the linear softening branch, so that some formal unification can be achieved.

The dependence visualized in Fig. 1; of normal tractions p = pn (n being the normal to locus I'y
assumed smooth) on opening displacement w = wn (in 2D problems) is defined by four material
parameters. These are, e.g the tensile strength of concrete pc; the coordinates wg, pg of the “break
point” B; the “critical” opening displacement w., above which the two faces (I'} and I';) do not
interact (or the fracture energy G, i.e. the area defined by the plot). Alternative choices of the four
parameters are: pc, pp, k, h* (k and h* being the negative slopes of the two descending branches
in Fig. 155 pc, pB, h1, h, having set h = kh*(k — h*)~!. The last choice is preferred here since
it simplifies the analytical formulation. Interpreted as holonomic, the CCM depicted in Fig. 2 is
a nonsmooth multivalued dependence p(w) or w(p), which can easily be defined in a descriptive
way, interval by interval, but not by a single function. A mathematical model, which provides
a suitable basis for theoretical and computational developments, can be generated by means of
auxiliary variables ¢1, @2, ¢3, A1, A2 and represented as follows:

b1 k+h k =k A1 0 Pc —PB
$2 p=—| k k =k A2 p+pg 0 3 — pc <0, (47)
@3 k k -k w 1 Pc

{A1 22,0} >0, $1A1 + a2 + daw = 0. (48)

The fact that Eq. (47) is an analytical representation of the graph of Fig. 1, in the inverse (compli-
ance) direction w(p), can be easily proved or checked by inspection. This may be facilitated by the
mechanical interpretation of the CCM as a combination in parallel (at any point of I'y, per unit
surface, in its normal direction) of an arrestor which forbids overlapping (w < 0) and an unstable
spring which is pre-stretched by force pc for w = 0 and is endowed with piecewise constant (neg-
ative or zero) stiffness. Still preserving its LCP format, Eq. (47) might be rearranged so that the
matrix in the linear equation between complementary variables becomes symmetric (whereas its
lack of sign definiteness is an unchangeable essential feature of the LCP in point). The same path



214 G. Maier and A. Frangi

of reasoning which led to the (LCP) description, Eqgs. (47)~(48), of the PWL model with break
point, Fig. 1b, leads to the one of the more popular CCM with a single linear descending branch
(which could also be described by a specialization of Eq. (47) for h — —o0). Recently, a nonlinear
complementarity problem (NLCP) format was proposed in [63] to describe a CCM for mode I with
generally curved convex softening branch.

(a) P} (b)

DR 2 o R
3

Fig. 2. Mixed mode, holonomic cohesive crack model [66]: (a) normal traction only (ps = 0), (b) shear only
(pn =0).

For mixed mode fracture processes PWL-LCP models are no longer practical and recourse to
other mathematical constructs is suitable. For example, for 2D situations in which non negligi-
ble shear tractions must be expected on the discontinuity locus I'q, a holonomic CCM (Fig. 2)
has been proposed in [66] (for simulations of quasi-brittle fracture processes in dynamics) in the
following form:

_1%n Wn ws\?
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where subscripts n and s refer to the normal and the tangential direction with respect to the locus
'y (assumed smooth) and the material parameters Gp, an, as have the following meaning: Gr is
the fracture energy in mode I; a, represents the abscissa of the peak of pn(wn) for wy = 0; ay, is
V2 times larger than the peak abscissa of py(w,) for w, = 0. Pros of this kind of CCM are their
analytical representation by simple functions. As cons, only increasing stiffness opposes overlapping
faces on I'y (unless wy,, > 0 is imposed explicitly) and face interaction vanishes asymptotically only.

7. COHESIVE CRACK MODELS IN GENERALIZED VARIABLES

In Sec. 2 the unknown work-conjugate fields of displacement jumps w(x) and tractions p(x) along
the discontinuity locus Iz, have been involved in the formulation of symmetric BIEs, Eq. (7). The
Galerkin discretization of these equations and the condensation of all the boundary unknowns Pp
and W have related through linear elasticity the Galerkin weighted averages P of the tractions
across 'y to the generalized variables W governing the modelled field of displacement discontinuities
along I'y. Vectors W and P originated from the expressions (in this section modelled fields will be
marked by a tilde):

W) = Tu@W, P = [#ep(odl.. (51)
L4
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In order to formulate a solvable space-discrete problem, the same variables P should now be re-
lated to W through the constitutive law adopted on I'y. To this purpose, it is fruitful to choose
interpolations ¥,(x) through which tractions on I'y are governed by vector P, Eq. (51),, and which
comply with the requirements discussed below.

If the CCM is non-holonomic (physically it is always so), the basic, core problem has to be
formulated in terms of rates (i.e., after space modelling in terms of ordinary differential equations
and inequalities). This formulatlon will be referred to below. Clearly, the modelled traction rates p
defined by vector P computed through elasticity by the SGBEM on the basis of a given vector W,
will generally not coincide with the traction rates, say p(w), computed through the locally imposed
CCM from the field w defined by the same given W. Therefore, in order to relate p p= ‘IJ,,P to w
through the mechanical behaviour of a locus of possible discontinuities, the CCM has to be enforced
in an approximate, average sense.

In Sec. 5 the scalar product p’ (w)w proportional to the local second-order work density 6°L,
Eq. (45), has been related to the important concept of constitutive stability. It is therefore natural
to adopt for modelling p shape functions ¥, which “preserve the dot product” (and its energy
meaning), i.e. such that:

BT — f pTwdr, VP, W. (52)

This requirement (referred to herein by calling the variables P and W “generalized in Prager’s
nse”) is complied with, if matrix ¥, for p is derived from its counterpart for w as follows (I
denoting identity matrix):

W, (x) = Wy (x) [‘I’:‘:‘I’w]_l . so that: -/II'F p(x)dI’ =1 (53)

The orthogonality expressed by Eq. (53)s, is easily seen to imply both Eq. (52) and the consequence
that the generalized relative displacements W become weighted averages of their local counterparts,
similarly to Eq. (51) for tractions, namely:

W f @, (x)W(x)dr. (54)

The general CCM described by Eqgs. (34)-(37), involves other pairs of conjugate variables (conju-
gate in the sense that in each pair the dot product intervenes explicitly and/or has a mechanical
meaning): w€, p; WP, p; s, q; A, ¢; A, ¢> In each pair, the shape functions for the former (kinemat-
ic) variable will be choaen arbltrarlly, under the continuity constraint set by the “regularization”
of singular integrals (Sec. 4); the shape functions for the latter (static) variable will be derived
according to the pattern adopted for the conjugate pair w, p, Egs. (53),

Denoting by capital symbols the generalized counterparts of the local variables in the same
lower-case letters, the relation set thus resulting from Egs. (34)-(37) reads:

W = W°* + W7, (55)
oIl a1l
P=-we(W58),  Q=—(W58), (56)
. a<1> . 99"
W= 5 B QA = - ) ——(P,Q)A (57)

A>0, @P,Q) <0, &TA=0 (58)
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having set:

[I(W*,S) = f #(#°,8)dT = f 7(Wu W, ¥,S)dI . (59)
I'q I'q

The following remarks are intended to clarify the meaning and implications of Egs. (55)—(58).

(a) The CCM was originally formulated (Secs. 5 and 6) locally, at any point of the process
zone I'") (or of the whole I'y if it is meant to cover by suitable adjustments undamaged material
and actual cracks). In what precedes, the local model has given rise to a CCM which represents
the behaviour of the locus [y in a weighted average, global sense. This global CCM is consistent
with the discretization of the BIEs governing the elastic context of the structure, (Sec. 3), because
it is formulated in terms of Prager’s generalized variables which include those introduced in that
(Galerkin) discretization.

(b) The essential features of the local CCM (while it is locally violated) are transferred to the
global CCM. In fact, the convexity (or lack thereof) of the free energy m in each subspace of
its argument (and, hence, the softening behaviour) implies that of II through its very definition,
Eq. (59). The convexity of @ (and, hence, that of the yield domain at any time) is entailed by
that of ¢, subject to the weak restrictions ¥, (x) > 0, Vx, as it may be shown on the basis of its
generation according to the above criteria, namely:

(P, Q) = [ ¥ $(¥,P, ¥, Q)dr . (60)
I'q

Since ® = ® clearly implies & — &, also associativity is preserved. Discussion on these and other
aspects of Prager’s generalized variables can be found with reference to plastic analysis by FEM in
[21, 22, 44], by SGBEM in [20, 49].

(¢) The approximate, global CCM, Egs. (55)-(58) could be generated by an alternative weak
enforcement of the local one, Eqs. (34)-(37)), through variational statements (see details in [11],
such as, e.g., the following one apt to generate Eq. (56)p:

/ 5s7 (g — %)dr —0, Vds=11,sS, (61)
Ta

Clearly, the above modelling procedure leading from local to global CCM applies unaltered both
to non-holonomic (in rates) and to stepwise or fully holonomic models.

8. RATE PROBLEMS AND CRITERIA FOR BIFURCATION AND OVERALL STABILITY

The formulation of the boundary value problem in rates, around a given state, is the very basis of
any quasi-static analysis of dissipative (non-holonomic) solid or structure, in plasticity as well as in
the present fracture mechanics context (which can be conceived as centered on softening plasticity
confined to the current process zone). This formulation is given below in (discrete) terms of Prager’s
generalized variables, merely by combining the following two ingredients, (i) and (ii), separately
resulting from what precedes.

(i) The condensed description achieved in Sec. 3 by the SGBEM for the linear background of the
problem, namely Eq. (18) re-written here in rates for the current process zone I'}) (the noninteracting
faces of the current true crack can be regarded as part of the unconstrained boundary, and the
relevant variables condensed):

P =2ZW+P”. (62)

(ii) The CCM expressed in a weak, weighted-residual fashion for the whole current I'" as discussed
in Secs. 5 and 7. However, besides associativity, the frequent hypothesis of no elasticity in interfaces
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(i.e. W® = 0) is assumed henceforth for brevity. Thus specialized, but still covering a fairly broad
category of CCMs, Eqgs. (55)—(58) in rates read:

. 1521 | i ;

Q= W(S)S = K.,S, (63)
Ao | Ldellein : o7 _ _ .

: 54 e U g", L

A>0, &<o0, @ A=o0. (66)

It should be remembered that in a rate problem only the “active” yield modes (such that ®; = 0 in
the starting state) are considered: a circumstance marked in Sec. 5 by primes, omitted henceforth
to simplify notation.

Now, let us substitute Eq. (64), into (62) and this into (65), Eq. (64), in Eq. (63) and this into
Eq. (65). Thus Eq. (65) becomes:

s 0Py e g %
P®=—(P,QP —-MA 67
7P, Q) (67)
having set:

M(P, Q) = %‘,I;K, (68)

. Pl o I8
Q gpt P
Equations (66) and (67) together represent a very compact formulation of the rate problem in
cohesive fracture analysis [50], as a counterpart of that in plasticity (44, 46, 51]. The following

circumstances are worth noting.

(a) This formulation amounts to a LCP, where the linear elastic stress response P” to external
action rates is the input which defines the vector of data in the linear equation (67), which relates
to each other, through matrix M, two sign-constrained orthogonal unknown vectors A, $.

(b) Matrix M, Eq. (68), is symmetric due to: its generation via SGBEM, Secs. 2 and 3; the
associativity of the CCM and its translation in terms of generalized variables. The former addend
in M is generally negative-definite or at least non positive-semidefinite : in fact, it reflects the main
constitutive feature of the adopted CCM, namely its softening which is mathematically expressed
by the negative definiteness or at least lack of positive semidefiniteness of matrix K, (concavity
of the internal variable potential IT). The latter addend in M reflects the constraint provided by
the surrounding elastic solid and its boundary fixity to the kinematic of the fracturing process in
I'g. Mathematically, this addend is positive definite, since —Z is so (Z is singular only when the
process zone is such that distorsions on it may give rise to rigid body motions, e.g. when a ligament
vanishes at the end of a fracture process).

(c) Bifurcation of a fracture process means herein a multiplicity of solutions to the rate problem.
For instance, at a certain stage of a four-point-shear test (or a four-point-bending test or a two-
notch-tensile test) the original polar (or reflective) symmetry (to within imperfections) either may
be preserved, or it may be disrupted by nonsymmetric tip advancements of the two developing
cracks. The experimentally observed process is what “nature chooses” for thermodynamical reasons
(see e.g. [7]) among the alternative ways of fulfilling equilibrium, geometric compatibility and
material model.

In fracture simulations, it may be important to recognize the onset of possible solution branching,
and to compute all incremental solutions, in order to capture the actual one. To this purposes,
matrix M is meaningful in the light of the available LCP theory. In fact, this theory directly

aa” ( 6cI>~8<I>T)
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provides, e.g., the following statements: the rate problem, Egs. (66) and (67), has a unique solution
when matrix M is positive definite (in mechanical terms: when the elastic constraints represented
by its latter addend prevails on the softening effect reflected by the former); it has a discrete number
of solutions, if and only if all principal minors of M are not zero.

Let us focus now on another mechanical issue centered on the LCP rate formulation, Eqgs.
(66) and (67). Clearly, thresholds of overall instability are crucial aspects of fracture processes in
structures and primary objectives of their analysis technique. The second-order-work criterion of
stability, adopted in Sec. 5 with reference to (local) CCMs, is widely accepted as thermodinamically
sound and practically useful (see e.g. [7]). For the whole fracturing structure in point, at a given
state of its evolution (I'; being the current process zone) in a continuum mechanics CCM setting,
the overall second-order work can be expressed by means of the following functional [50]:

52L 25172 = / / w7 (x)Z(x, £)Ww(€)drdr + f £)w(€)dr + / el (6)Be.(£)d (69)

The first and second addend on the r.h.s. of Eq. (69), in view of Eq. (1), are recognized as the
strain energy induced by a kinematic perturbation w, x € I'%, in the elastic structure and in the
current process zone, respectively.

The third term, E being the elastic tensor (in matrix formalism) of the undamaged material,
has the following meaning. Let 01 be any field of displacement rates, continuous everywhere except
across 'GUI™, causing no stress singularity at process zone tips and vanishing on I',. The perturbed
conﬁguratlon defined by 1 can be conceived as reached in two stages: first, by imposing distorsions
w which are compatible with 0 along '} and generate displacements 1, in €); second, by imposing
the complement . = 0 — 1, 10 0, with respect to 1. The domain integral in point represents the
elastic strain energy induced by the thus defined displacement field 1. A proof of Eq. (69) was
given in [50]. )

Since the third integral is a positive quadratic functional of u.(x), x € €2, to stability check
purposes it can be ignored, i.e. only the first one of the above two stages can be considered. As a
consequence, by using Eq. (46) (i.e. Egs. (45)-(46) specialized to associative (qb @) rigid-plastic
(w® = 0) CCMs), we can derive from Eq. (69) the following sufficient and necessary condition for
overall stability (cf. [44] for softening plasticity):

o i i
/,\T8¢ 89 Sip f/AT6¢Z( €) d’ 99 5drdr >0, VA>o. (70)

The discrete approximation Z of Green functions Z(x,£) (generated in Sec. 3 by the SGBEM) and
the corresponding discretization of the CCM in Sec. 7, permit now to directly translate the stability
condition (70) in generalized variables, account taken of Eq. (68):

%ATMA >0, VA>o. (71)

The above achieved result can be elucidated by the remarks which follow.

(A) The structure is stable if and only if matrix M is copositive. Copositiveness defined precisely
by Eq. (71), cannot be tested or established economically. Therefore, the subsequent (sufficient only,
more restrictive) condition has more practical value.

(B) The structure is strictly stable if matrix M is positive definite. Positive definiteness of a
symmetric matrix is ascertained if its least (real) eigenvalue, or a lower bound on it, is positive.
This confers a practical, operative value to the above statement.

(C) Since positive definiteness of M, which was found earlier to rule out bifurcations, is more
restrictive than copositiveness which characterizes stability, it can be expected that in a CCM
fracture simulation (where, as cracks propagate, the stabilizing effects of the second addend of M
decreases) the path-branching threshold precedes the onset of instability (i.e., e.g., the peak load in
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a force-controlled test). The same sequence is known to occur in elastoplastic buckling of Shanley’s
column, but with a continuum set of solutions, not with a discrete one like here.

(D) Conceptually and computationally notable appears now to be the role of matrix M. It
governs important features and condenses meaningful information on the current behaviour of a
CCM-idealized fracturing structure. This is subordinate to its symmetry, which the present SGBEM
provides, traditional BEMs do not. The size of M is relatively small, since it may equal the number
of the nodal displacement jumps in the current process zone only (unless part of the current crack
I'g is included in I' to avoid frequent changes of the matrix A to invert).

9. ON TIME-STEPPING PROCEDURES

This section outlines some aspects of quasi-brittle fracture simulations carried out step-by-step
because the crack path is not a priori known and /or nonholonomic CCM are required in view of local
unloading (e.g. under non-proportional external actions). Since abundant sources of information
are available on the general aspects of nonlinear marching solutions, only those which are peculiar
of (or influenced by) the approaches adopted in this paper will be considered below.

The assumption is made for simplicity that the external actions are governed by a load factor,
say a(t), which multiplies a reference distribution and, hence, all linear consequences of this, like,
e.g. the elastic response on I'y or I'}, say p” = ‘prf’E.

(A) Situations prone to the use of piecewise linear CCMs (like in Fig. 1) can be dealt with by a
very simple ad hoc procedure, which exploits the PWL nature of the CCM and the compact rate
formulation of Sec. 8. This technique can be summarized in its operational phases as follows [9]. (i)
In the current known situation formulate the rate problem (66) and (67) considering only the active
modes (®; = 0) and solve for & = 1 this LCP by one of the algorithms mentioned in Sec. 10. If
there are more solutions, select the one with minimum second-order work 0%L; if there is no solution
solve for & = —1. (ii) Scale linearly the above solution up to activation of a new yield mode, thus
determining the step amplitude Aa and, hence, the increments of all variables. (iii) Update the
LCP Egs. (66) and (67) accomodating in it the new yield mode. Further details and remarks on this
can be found in [9]. Its pros are: the bifurcation and overall stability checks of Sec. 8 are integrated,
not separate, parts of the evolutive analysis; no special provision is required by instabilities (normal
or snap-back); no further approximations are implied by the finite amplitude of the step. The main
disadvantages: steps may become very small for numerous variables; no generalization possible to
non PWL models.

(B) When general (non PWL) CCM have to be employed, say in the form of Eqs. (55)-(58), the
step-by-step fracture analysis becomes centered on the strategy adopted to formulate and iteratively
solve the (nonlinear) finite-step problem. This strategy has much in common with elastic-plastic
analysis in the presence of softening (cf. e.g. [51]) with two main differences: mesh-dependence is not
expected here (CCMs interpret localization at its limit and, in a sense, represents a “regularization”
provision); the search for the advancement direction of the process zone tips, to be commented upon
below at (C). Since time integration schemes in plasticity and in nonlinear fracture mechanics by
BEMs or FEMs are basically similar and are dealt with in an abundant literature, only a few
distinctive aspects are briefly mentioned below. (a) In fracture mechanics the most natural driving
variable is the tip advancement (in a pre-computed direction, usually iteratively adjusted) in the
spirit of the indirect displacement control approaches stemming from Riks “arc length” method [58],
so that the load factor increment Aa is an unknown and instability thresholds are easily overcome.
(b) The formulation of the step-holonomic nonlinear CCM in finite increments, say Ap = f(Aw),
or AP = F(AW)), is usually implicit, e.g. according to the backward difference scheme (i.e. with
unknown gradients, computed at the step-end), primarily in view of better algorithmic stability
property (even if softening makes only “conditional”, i.e. occurring for suitably small At, the
contractivity of disturbance along the step-sequence). (c) Obviously, CCMs are formulated in local
references, so that coordinate transformations are recurrent when, at each iteration, the nonlinear
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constitutive relation AP = F(AW) must be combined with the linear elastic one, namely with
Eqs. (18) in increments for the current I') (or [ U 'G) and with the tip advancement constraint.
(d) The imposed tip advancement means to add BEs in the direction dictated by the adopted
criterion, with possible local re-meshing and adjustments of the shape functions as mentioned in
the subsequent paragraph.

(C) When the locus I'4 of possible kinematic discontinuities is not known or conjectured a priors,
at each step of an evolutive analysis the search for the advancement direction of the process zone tip
is an important phase, particularly delicate in BEM. The frequently adopted criterion of “maximum
circumferential stress” entails the computation of the stresses at the tip of the process zone for the
determination of the direction 6. which maximizes the stress ogg, 0 being the angle coordinate in
a local polar reference system {r,0} centered on the tip.

In cohesive fracture mechanics, stresses at the tip of the process zone are finite and can thus
directly be computed resorting to Somigliana integral representation for stresses oi;. This reduces
to the evaluation of the displacement gradient since, through Hooke’s law and compatibility:
0ij = Eijia(0/02;)us. Actual displacements in any point of I can be conceived (like in Sec. 2)
as superposed effects of sources f* = p* —p~, d' = ut —u~ on I' and w* on I'y, provided that the
exterior domain is recognized as unstressed and undeformed (p* = ut = 0) and the data and the
solution of the current instant ¢ are entered (p~ =ponI'p, u” =uonly, u” =uon Ip: P~ =P
on I'y, w* = w on I'y). Thus the collocation displacement equation reads

u(@) = [ [GLpex) - GhuG]drs + [ GLwix)dr. (72)
I’ Ia
The displacement gradient is obtained by differentiating Eq. (72) with respect to coordinate &x:
ue) _ r[oGh .\ _ 9Cm [ 0G,, :
T / [ %, p(x) — 5%, u(x) | dl'z +P 5%, w(x)dI'z. (73)
d

If BEq. (73) is collocated at the crack tip without any additional hypothesis on w, the last hy-
persingular integral does not yield a finite value. This is physically correct only in linear fracture
mechanics where strains are not bounded at crack tips (e.g. [25]). In cohesive fracture mechanics, on
the contrary, it is well known that not only the displacement discontinuity does vanish at the crack
tip, but also its tangential derivative. Let w be C1 continuous at the crack tip, i.e. |w| = O(r'*®)
with 0 < a < 1. Then (8/0&;)Gpuw behaves like O(r*~!) (i.e. it is only weakly singular) and
can be integrated. This implies that nonconventional modelling of the w field has to be employed
at process zone tips: e.g., cubic Hermitian shape functions or suitable combinations of quadratic
Lagrangian shape functions.

10. HOLONOMIC ANALYSIS AND MULTIPLICITY OF SOLUTIONS

In Sec. 6 some path-independent CCMs have been considered for the analysis of structures in situ-
ations where the locus of possible discontinuities I'; can be assumed a priori and “local unloading”
in the process zone can be reasonably conjectured as negligible, in view of the monotonous and
proportional history of the external loads. Typical examples of such situations are three-point-
bending (3PB) tests and, often but not always [52], two-notch-tensile (2NT) tests, referred to in
what follows for illustration.

As an appealing alternative to customary but expensive time-stepping (evolutive) procedures,
the holonomic, single-step analysis of the structural response (including cohesive cracks) to given
external actions, can be carried out in the spirit of nonlinear elasticity, but exploiting peculiar
features of the fracture mechanics problems of concern here.

Let us consider first piecewise-linear (PWL) holonomic CCMs for mode I fracture, specifically
the one with break point of Fig.15. The interest of PWL kinds of CCM rests on the following
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circumstances: (a) mathematically, they lead to overall analysis formulations analogous to those
for rate problems, namely to LCP; (b) computationally, they are especially apt to an investigation
of the important issue of multiplicity of solutions, [12].

The possibility of a discrete number of solutions was mentioned in Sec. 8 with reference to rate
problems and bifurcations (i.e. to branching of equilibrium path). Multiple solutions to holonomic
analysis problems are frequently expected. E.g., in simulations of 3PB tests, for a given external
force we may have no solution or two solutions. In 2NT test simulations, for assigned force below
the peak load four solutions may be possible for some geometries: symmetric (with respect to the
specimen axis) on the ascending branch of the tension-displacement plot; symmetric on the post-
peak descending branch; unsymmetric with deflection on one side; unsymmetric on the other side,
cf. [7, 12).

The analytical description, Egs. (47) and (48), of the local PWL holonomic CCM with break-
point, re-written in matrix notation with self-evident meaning of the new symbols, reads:

¢=hA+cp—-d<0, A>0, o¢"A=0. (74)

It is assumed that the locus I'y is along a symmetry axis (say axis 2) of the considered solid, so that
there is no shear (ps = 0; p = p,), like in the 3PB and in the 2NT tests. This drastic restriction is
dictated by two facts: this CCM was proposed and experimentally corroborated for mode I, while
its extension to mixed modes is questionable; local-global transformation of coordinates can be
ignored for brevity.

The transition from the local CCM (74) to its global, weak approximation over I'y, follows the
pattern discussed in Sec. 7, leading to a LCP qualitatively analogous to Eq. (74), but in generalized
variables (capital symbols):

®=HA+CP-D<0, A>0, ®T'A=0. (75)

The meaning of the new symbols flows from Sec. 7: e.g. considering vector c containing material

parameters: C = [ Wycdl'. Since W is a subvector of A and can be extracted by multiplying A
La

by a Boolean matrix, say W = BA, the substitution in Eq. (75) of the generalized tractions P by

the linear equation (18) generated by the SGBEM, leads to:

®=MA+V<0, A>0, ®TA=0 (76)
having set:
M=H+CZB, V=CPEZ-D. (77)

This compact formulation, Refs. [9, 10], of the holonomic analysis exhibits some peculiar features:
due to the PWL nature of the assumed CCM it is a LCP, precisely as the rate formulation, Eqgs. (66)
and (67), based on a much broader category of CCMs; matrix M there was symmetric, not so is
M here; M is generally not positive definite, whereas M is first positive definite and then (with
spreading damage) it ceases being so, thus permitting path bifurcations and overall instabilities as
seen in Sec. 8. Hence multiple solutions to holonomic analyses of fracturing processes are expected
both from a mathematical and a mechanical standpoint (as shown by 3PB and 2NT tests).

How to compute numerically all solutions (or prove that none exists)? This question, already
formulated in Sec. 8 for rate problems, appears to be at present a challenge in this and in other
contexts of nonlinear mechanics (and probably of applied mathematics as well). A partial answer
is given concisely below on the basis of recent investigations (8, 9, 10, 63].

(A) For any LCP and, hence, for bifurcation problems in rates with general CCM and for holo-
nomic analysis with PWL models, there are so-called enumerative algorithms [12, 35] which do
provide all solutions through a sequence of linear programming (LP). The pros are: finite termi-
nation (i.e., like in LP, all solutions are attained exactly, to within round-off errors, after a finite
number of arithmetic operations); proof that no solution exists (and, hence, computation of peak
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loads) can be achieved very efficiently. The cons: the algorithm is combinatorial (governed by a
binary graph) and, hence, the computing time grows exponentially with the number of variables
(not so serious contra when the variables concern process zones only, i.e. for bifurcation analysis);
extensions beyond the LCP area cannot be expected.

(B) Optimization algorithms are by far more versatile and generally more efficient than the
above enumerative techniques. However, the solution, if any, achieved in a run (with asymptotic
termination) depends on the initialization vector. Unfortunately, scanning the feasible domain in
the space of variables by diverse initializations does not guarantee to produce all solutions, un-
less mechanical insight and engineering judgment help in some circumstances [12]. The following
alternative strategies were examined so far to [racture analysis purposes, in the writers’ knowledge.

(B1) It is readily seen that any LCP is equivalent to a nonconvex quadratic programming (QP)
problem. E.g., the LCP one formulated by Eq. (76) is equivalent to:

mgn{ATMA —CA} =0, (78)

subject to: MA-C<0, AZ>0. (79)

It can be easily shown that the solutions necessarily form a subset of the vertex set in the (hy-
per)polyhedron defined by (linear) inequalities (79). Equations (78) and (79) can be solved, not by
classical (e.g. Lemke) QP algorithms, but by various algorithms for nonconvex constrained mini-
mization, e.g. by those mentioned in (B2) and (B3) and by sequential quadratic programming SQP,
which is a first-order algorithm solving a convex QP at each step.

(B2) It was proved (Robinson, 1992) that solutions of any complementarity problem, say F(A) <
0, A >0, FTA = 0, are closely related to the solutions of the following (nonlinear) equation:

F(Ag)+(A—Ag)=0 (80)

where: F is any mapping of the vector space A on itself (in particular, for LCPs like Eq. (76), the
linear mapping through matrix M); subscript E means Euclidean projection (replacement by zeros
of all negative components of a vector). The Euclidean norm of the Lh.s. of Eq. (80) is a nonsmooth
function of A, to be minimized by a recent extension (called “path search method”) of the classical
Newton method [10, 12, 27].

(B3) Genetic algorithms, applicable to both minimization problem generated in (B1) (con-
strained, smooth) or (B2) (unconstrained, nonsmooth), form a well-known fascinating class of
numerical procedures of zero order (i.e. no derivatives are taken in the process). They turned out
to be a practical tool for the inverse problem of parameters in CCM in [13], but not apt to capture
multiplicity of solutions.

So far in this Section PWL holonomic CCMs for mode I were considered and (implicitly, by
analogy) general nonholonomic CCMs in rates. Focusing now on Egs. (49) and (50) as representa-
tive of mixed-mode holonomic CCMs (Fig. 2), it is worth noting that Eqgs. (49) and (50) can be
interpreted as partial derivatives with respect to opening wy and sliding w, relative displacement,
respectively, of the following potential [66]:

m(w) = GF [1 - (1 + 1;}—:) exp (—%:-) exp (— (%)2)] ; (81)

This can be interpreted as energy density on I'; associated to displacement jumps w. It may be
proven in general (proof omitted here for brevity) that the stable deformed configuration of a frac-
turing continuum idealized by a holonomic CCM model under given external actions (which are
captured by the tractions p” they cause on Iy in the undamaged, linear-elastic solid) is character-
ized by the minima (global and local) of the following functional:

£ )= —% / wT (x)Z(x, £)w(€)dT + f x(w)dl — f wlpEdr . (82)
La 'y I'4
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Clearly, the lack of convexity arises from the second integral into which Eq. (81) has to be substi-
tuted if the CCM of Egs. (49)-(50) is accepted. The algebraic approximation Z of kernel Z(x, €)
by the SGBEM (Secs. 2-4) and the discretization in terms of generalized variables of functional £
according to Sec. 7, reduce £ to a function of W. The unconstrained minimization of this (non-
convex, nonsmooth) function can be carried out by the general techniques mentioned in (B), i.e.:
SPQ; classical conjugate gradient nonlinear programming procedures; genetic algorithms.

Obviously, other general techniques are available for nonconvex (and constrained and nons-
mooth) minimization, and might be useful in the present context. According to recent compu-
tational experience (cf. [10, 12]), the path solver (cf. B2) turned out to be especially versatile
and efficient in all situations, also because it was implemented in a sophisticated computer code
(PATH, [27]). In closing, it is worth noting the fundamental role of the SGBEM in preserving both
the essential features of the first integral in Eq. (82) and its energy meaning.

11. CLOSING REMARKS

In this paper, first a symmetric Galerkin boundary element method (SGBEM) has been briefly
presented in linear elasticity, in view of its application to nonlinear quasi-brittle fracture mechanics
centered on cohesive crack models (CCM). Then certain classes of such models available in the liter-
ature have been mathematically described (without discussing their origin and experimental basis).
Finally, the SGBEM and CCM have been combined with some peculiar algorithms of mathematical
programming (not considered here in any detail).

Some issues with mathematical and/or computational interest have been critically presented,
and are believed to corroborate the potentialities of the recently developed SGBEM in fracture
analysis of concrete and other quasi brittle materials and its presumable advantages, at least with
respect to traditional BEMs, in fracture simulations. In this respect, it is worth noting that either
“zoning”, see e.g. [25], or the “dual approach”, see e.g. [40], [19], are required in traditional BEMs
for fracture simulations, while they are not needed in SGBEM.

Among the related topics not covered in this paper (and still subjects of current research) are:
overall stability criteria with nonassociative CCM; extension to dynamic fracture, e.g. in view of
the seismic vulnerability assessment of concrete dams with cracks; indirect identification of material
parameters in CCM.

The last issue (inverse problems) appears to be timely and especially pertinent in the present
context. A particular but representative inverse problem in this area is the identification of the four
parameters in the piecewise linear CCM with breakpoint. It was shown in [13] that such parameter
identification can be efficiently carried out in practice by 3PB tests, displacement measurements
(via speckle techniques) and minimization of a suitable computed-measured discrepancy norm,
through one of the techniques mentioned in Sec. 10 (B), based on a mathematical model combining
SGBEM with the PWL holonomic CCM of Sec. 6.

APPENDIX A. EXPRESSIONS OF KERNELS IN PLANE STRAIN ELASTICITY

Guu(x, €): i*" displacement component in x due to the j** static source component in &, in isotropic
elasticity:
- 1 ar or
j Sesdeplg ot deel iR i sie fptt LS8
G:m(xs E) 167&’(1 = U)p'. [(3 u)éij lOgT axi amjl (83)
where v and p denote the Poisson’s coefficient and the shear modulus, respectively,
Gpu(x,£): " traction component in x due to the j* static source component in &:

. 1 1 ar or | or or or
1] et ) Slliaaa s = » 2 R TN ety = S N SN
GP"(X!E) - 4?1,(1 s V) r { l(l 2V)63_? = 231:' 6.’5_,] awknk + (1 2”)(83" 1 ax_? nl}} (84)
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Gup(x,§): ith displacement component in x due to the jt* kinematic source component in §:
Gip(x,€) =
1 1 or or | oOr ar or
e — i 20— — | =— o il —m; — —m 5
ax(l —=v)r {[(1 200 3 263; B.rj B:ckmk ( 21})(69:51"1J B.rjm )} (83)

G,p(x,€): ith traction component in x due to the j** kinematic source component in §. As for
the kernel G, peculiar of the SGBEM of concern here, its lengthy explicit expression can be
formulated in terms of Gy, as follows:

a 2w oGk G, 9Gk
j ] up P P
Co(68) = T —2) 0z T H | O | 0w | (86)
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