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The behaviour of planar Newtonian and Non-Newtonian polymeric jets is investigated in the context of
injection mould filling. The incompressible Stokes flow model consistent with the application of injection
mould filling is described together with the shear rate dependent fluid viscosity for a typical polymeric
melt. The numerical procedure for the solution of the nonlinear system is briefly discussed as well as the
mesh generation and the melt front tracking algorithms employed.

In the analysis, the buckling behaviour of Newtonian and Non-Newtonian jets are firstly compared.
Thereafter the behaviour of Newtonian jets are analysed for various values of the aspect ratio in an attempt
to study the validity of the Cruikshank buckling conditions for planar Newtonian jets. It is argued that the
Reynolds number of highly viscous polymeric nfelts is relatively low and the aspect ratio condition is the
critical condition dictating the buckling behaviour. Finally, an aspect ratio design criteria is established
for buckling-free and folding-free flow of polymeric jets.
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1. INTRODUCTION

Jetting of polymeric melts may occur in the injection mould filling process, especially when the melt
enters the gate of the mould or when it enters mould cavity chambers via narrow constrictions.
The jetting behaviour cannot be modelled by the Hele-Shaw flow model which is used widely
in commercial applications of injection moulding of thin parts. The reason is that the potential
flow model produces an equipotential free surface which requires slip along the solid boundaries.
The resulting free surface is too inaccurate to model the jetting phenomenon. Furthermore, most
commercial applications employ an Eulerian formulation in which the finite element mesh is fixed to
the domain. The free surface is then tracked using techniques such as the control volume approach,
resulting in further inaccuracies in the free surface position.

Many researchers, as reviewed by Tomé et al. [13], have produced experimental evidence pre-
dicting the buckling of thin viscous jets hitting a rigid plate. However, a rigorous two-dimensional
theory for this behaviour has yet to be established. Nevertheless, certain criteria based on exper-
imental and approximate theoretical results have been developed for the prediction of buckling
of planar viscous jets. In particular, Cruikshank [5] has proposed that buckling will occur if the
following restrictions are satisfied:

Re < 0.56 and H/D > 3n

where Re is the Reynolds number based on the gate width D, and H is the height of the gate above
the normal obstruction.

In the case of Newtonian behaviour, the Reynolds number can easily be established. However, in
injection mould filling where highly viscous polymer melts flow with considerable shearing, the Non-
Newtonian behaviour in which the viscosity is a function of the shear-rate cannot be ignored. This
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makes the Reynolds number vary locally and is therefore difficult to establish effectively. However,
it will be shown that, for typical polymeric melts, the Reynolds number is extremely small and,
even for very high shear-rates, satisfies the above condition locally. The aspect ratio condition is
therefore the critical or deciding condition affecting the buckling of polymeric jets.

Whilst the Cruikshank conditions dictate the buckling of planar viscous jets, they do not take
account of the folding of the free surface. Folds may occur, especially in the case of highly viscous
polymeric melts, even in the absence of buckling. The phenomena of buckling and folding are
undesirable in the injection mould filling process. They result in numerous weld lines in the moulded
part which lead to reduced part strength. The aim is therefore to establish a suitable aspect ratio
condition which may be used in the design of injection moulds to prevent the buckling and folding
of polymeric jets. At the same time, the validity of the Cruikshank conditions for highly viscous
(Stokesian) flow will be investigated.

The computational simulation of the buckling of planar jets has been investigated by Tomé
et al. [13], but for relatively high Reynolds number. The buckling of low Reynolds number jets
was simulated by Ken-ichiro Mori et al. [11], but for the application of metal injection moulding.
Although the latter is close to the application of polymer injection moulding, no clear design criteria
were provided for the avoidance of buckling.

2. THE PROBLEM FORMULATION
2.1. The flow formulation

The principle of conservation of momentum applied to a general fluid continuum yields the Navier-
Stokes equation:

o
apv=(v-V)pv—Vp—V-'r+pg (1)

where v is the velocity vector, p the hydrostatic pressure, T the stress tensor, p the fluid density,
and g the gravitational acceleration vector. Since most injection moulding applications involve the
moulding of thin sections, use of a two-dimensional model is sufficient in which the velocity vector
is described as v = v;e;, i = 1,2, where e; is the unit vector in the ith component direction. The
assumption of incompressible Stokesian flow with no gravitational influence is also consistent with
the physical problem of mould filling, as is that of isothermal conditions. The equation for steady
state flow therefore reduces to:

V-r=0 (2)
where the total stress tensor 7 is given by
=p0+T (3)

where & is the unit tensor. For Generalised Newtonian flow, the constitutive equation relating the
stress 7 to the rate of deformation tensor 4 for incompressible flow is

Ta= —27”% (4)
where
# & % [Vv + (VV)T] : (5)

Also, the viscosity 7 is a function of the scalar deformation rate s, the latter defined as the scalar
invariant /27 : % which gives

O Tfu\E | (owm\? . (8w w2 (ow)?, (0w)?]"’
s [(3032) +(3$1> +<0x1+6:1:2> +(EE—I) +(5$—2> ' (©)
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In addition to Eq. (1), the incompressibility condition
Ny =1 (7)
must also be satisfied.

2.2. Boundary conditions

The boundary I" of the domain Q is subdivided into non-overlapping subsets I, 'y, and I'y, as
shown in Fig. 1, with boundary conditions:

Y=, on e (entrance boundary) (8)
v=0 onI'y, (non-slip boundary) 9)
Ta D = e

R(L'y) } on [y (free surface boundary) (10)
Tt =]

where 7, denotes the total stress vector on a plane normal to the boundary. The vectors n and t
are the unit normal and tangential vectors on the free surface, o is the surface tension coefficient,
and R is the radius of curvature of the free surface which can be found using

1 ' dt

R(Ty) — |dTy

Fig. 1. Tllustration of the boundaries in the injection moulding filling process

The kinetic energy of the fluid flowing across the free surface boundary is given by the following
expression:

1
/§p|v|2v -ndl’ .
v’

On the other hand, the energy in the free surface which acts as a resistance to the outflow of the
free surface fluid particles can be called the strain energy due to surface tension. This is given by
the expression:

o
———v.ndl’.
/ R(T'y)
Ty

Owing to the high velocities prevalent in the type of unsteady flow problem considered here, the
kinetic energy of the free surface particles is much higher than the strain energy due to surface
tension, as can be seen by the form of the above two expressions. The influence of the surface tension
on the form of the free surface is therefore negligible. This results in the assumption of zero stress
vector, or traction, on the free surface boundary. All models on injection moulding referenced in
this study employ this assumption. In fact, Tomé et al. [40] refer to an “absence” of surface tension.

The boundary conditions (8)-(10) are sufficient to solve the flow formulation with explicit time
integration for the advancement of the free surface.
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2.3. Material characterisation

In the mould filling process, the Non-Newtonian behaviour of the polymer melt is characterised
by the viscosity dependence on various flow conditions. These conditions are as follows: the shear
rate 4, the fluid temperature 7', and the fluid pressure p. In addition to this, the temperature
and pressure also depend on the fluid density (or specific volume), but this dependence may be
neglected because of the incompressibility of the polymer melt during the filling stage. Polymer
melts generally exhibit a shear thinning behaviour, as depicted by the rheological curves in Fig. 2,
and this can be well represented by the following Cross-type model:

nO(T’ p)

2 1-n °
1+ (770;73)
54

N(¥s, T, p) = (11)
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Fig. 2. Viscosity versus shear rate profile for the polystyrene grade Dow Styron 685 (from the resin
database of C-MOLD Injection Moulding Simulation Software)

Here, no represents the viscosity at zero shear rate, n corresponds to the power-law index, and
7* represents the shear stress level of the transition region between the Newtonian and power-law
asymptotic limits. All these parameters can be derived from rheological data obtained experimen-
tally by viscometric analysis. A set of rheological curves obtained by viscometric analysis is shown
in Fig. 2 for a particular material.

For large values of n, the Cross model can be shown to reduce to the more familiar power-law
model:

n(’ys,T,p) = m(Ta p)(;ys)n ¢
Perhaps the simplest accurate representation of 7o (7', p) is in terms of an Arhenius-type temperature
sensitivity and pressure dependence such as

m(Tp) = B exp (72 ) exp(p) (12)

In this case, Eqs. (11) and (12) represent a five constant (n,7*, B, Tj, ) model for n(¥s, T, p), also
known as the Cross-Exponential viscosity model. For the filling stage, the fluid pressure is relatively
low and Eq. (12) may be reduced to

no(T,) = B exp (%) : (12a)
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As an example, the constants for the Cross-Exponential viscosity model for Polystyrene Dow-Styron
678D, is given in the table below.

Table 1. Summary of the Cross-Exponential viscosity model constants for the Polystyrene grade Dow
Styron 685 (from the resin database of C-MOLD Injection Moulding Simulation Code)

MATERIAL: PS Dow Styron 685

n 0.27988
™ (Pa) | 1.484 x 107
B (Pas) | 5x 1075
Tp (K) 13520
B(PaTl)| 35x10-°

In most injection moulding cycles, the filling stage is relatively quick so that isothermal conditions
can be assumed. This means that 7o is a constant (since 7' is constant) and can simply be found
from the rheological curves given in Fig. 2 for a particular polymer.

3. NUMERICAL IMPLEMENTATION
3.1. Solution procedure for the nonlinear Stokes flow formulation

The non-linearity in the Stokes flow formulation arises out of the dependence of the viscosity on the
flow kinetics. For the solution of the non-linear system, the flow formulation is posed as a convex
functional ¢(v) and minimised using a Newton-Raphson scheme. This gives

do

— = : 13

dv a 8
This is exactly the incompressible Stokes flow formulation, as shown in Appendix A. The Newton-
Raphson iteration scheme for the minimisation of ¢(v) is based on the following Taylor expansion

do\* 501 P

e, o
where i denotes the iteration count. The tangent matrix in the above equation is simply the stiffness
matrix K in the finite element formulation of the Stokes formulation. The non-singular requirement
of K is satisfied by the positive-definiteness of the convex functional . The non-linearity does not
affect the positive-definiteness nature of K.

The Stokes formulation (2) and the incompressibility condition (7) may be posed variationally,
with a penalty parameter introduced in the incompressibility condition (nearly incompressible
approximation), resulting in a mixed formulation. It is, however, more convenient to substitute
the pressure variable in the flow formulation with that in the penalised incompressibility condition,
resulting in a single bilinear form. Four-noded quadrilateral elements with continuous bilinear
velocity interpolation are used in the finite element formulation, with reduced integration of the
penalty term. This scheme is equivalent to the mixed formulation using the Q; — Py element [7].

In the solution of Eq. (14), the velocity field is initialised as the zero shear-rate (Newtonian)
velocity field v9. This requires the calculation of the zero shear-rate viscosity using Eq. (12a).

After solving the velocity increment Av?, the velocity field is updated according to the incremental
equation

vitl — vt L AVE . (15)

After the updated velocity field is calculated, the elemental shear-rates are calculated according to
Eq. (6) which allows the viscosity field to be updated. The iterative process is then repeated until
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the energy norm of the residual (found by multiplying the first term of Eq. (2), the residual, with
the velocity field) is small enough compared to the strain energy (found by multiplying the second
term of Eq. (14) with the velocity field).

3.2. Automatic mesh generation

The need for automatic mesh generators (whether quadratic or triangular) was driven largely by
the introduction of adaptive mesh refinement schemes. These schemes require the regeneration of
meshes during the iterative process of equalising the error distribution.

In recent years, a variety of schemes for the generation of triangular meshes were developed.
Some of the most widely used schemes are those developed by Cavendish et al. [2] using Delauney
triangulation, Bachmann et al. [1], using the modified quadtree and modified octree techniques, Lo
[9] using the front technique, and Peraire et al. [12] using the advancing front technique. The main
advantage of triangular mesh generation is that triangles are the easiest elements to generate in
the discretisation of arbitrary shaped domains. But, in terms of the incompressible flow problem
described in Sec. 2.1, the linear velocity-constant pressure triangular element shown in Fig. 3(a)
violates the Babuska-Brezzi condition and can easily be shown to lock. (Note that the order of the
velocity interpolation must be at least one degree higher than that of the pressure interpolation in
order to satisfy the convergence criteria). Only if the degree of velocity interpolation is increased
to quadratic (i.e. the quadratic velocity-constant pressure triangle shown in Fig. 3(b)) can the
compressibility (or nearly incompressibility) condition be satisfied. On the other hand, the bilinear
velocity-constant pressure quadrilateral element shown in Fig. 3(c) does not lock. This means
that quadrilateral elements, compared to triangular elements, allows the use of coarser meshes
for a desired accuracy in pressure interpolation. At the same time, the quadrilateral mesh will
exhibit fewer nodes which means less computational storage. Also, the quadrilateral element allows
optimum rate of convergence compared to the triangular element of Fig. 3(b). For these reasons,
it is far more advantageous to use quadrilateral elements compared to triangular elements to solve
the incompressible flow problem.

e velocity node (0] pressure node

Fig. 3. Various element configurations showing velocity and pressure interpolation nodes

This apparent need for quadrilateral mesh generators lead to the advent of techniques such as
isoparametric mapping and transfinite mapping for the generation of quadrilaterals. These tech-
niques involve the manual subdivision of the domain into simpler subregions which are then mapped
onto regular grids. As the element sizes are controlled by the subregions, these methods are not
suitable for adaptive analysis which often requires meshes with vastly differing element sizes.

The method proposed by Zhu et al. [14] for the automatic generation of quadrilateral meshes
has thus far proved the most computationally viable technique and is suitable for use in adaptive
analysis for the generation of optimal meshes. The method is based on the following facts:
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e A region can always be subdivided entirely into quadrilaterals if the polygon which forms the
boundary of the region has an even number of sides.

e A quadrilateral can be formed by two triangles which form a common side.

These facts, together with the use of the advancing front technique developed for the generation
of triangular meshes by Peraire et al. [12], are used to develop an algorithm for the generation
of quadrilateral meshes. A “background mesh”, or the previous mesh, which contains values of
nodal densities obtained via adaptive analysis, is used to determine the nodal mesh densities using
interpolation methods.

This method has been shown to generate meshes for highly irregular domains with large vari-
ations in element size distribution. Also, the fully automatic technique can be used for problems
requiring moving meshes. Unlike previous grid generation and stretching techniques which were
constrained by the number of elements in the initial mesh leading to unacceptable element distor-
tion, this technique can be used to generate entirely new meshes at each iteration or integration
step and is therefore suitable for problems with large changes in domain size.

3.3. Free surface (melt front) advancement and solid wall penetration

In advancing the free surface using the predictor
e ks (16)

the free surface may penetrate the solid wall boundaries of the domain. Different approaches have
been used to counter this. Hieber and Shen [1] used a method in which the time step is reduced by
the equivalent distance of encroachment of the free surface displacement vector. For the Hele-Shaw
model, this method works well since the fluid slips along the solid walls and encroachment mainly
occurs when the flow encounters inside bends or corners. In the Stokes model, the flow near a solid
boundary is towards the boundary. Encroachment will therefore occur frequently resulting in very
small time steps for fine meshes.

More sophisticated methods have been developed. These include the boundary pressure reflection
method of Lee et al. [37]. This method, developed for the Hele-Shaw model, is based on the iterative
adjustment of the pressure at the fluid-solid wall interface until the fluid flux (or pressure gradient)
normal to the boundary is zero. The pressure adjustment is based on the pressure drop across the
penetrated fluid. This method conserves the mass and therefore does not require any adjustment
of the time step. An equivalent method for the Stokes model has not yet been developed. Other
methods based on the use of penalty functions have been developed for metal forming problems.
These may be adapted for the injection mould filling problem.

The technique used in this study is simply to move any encroached nodes back onto the boundary.
The time ¢ is adjusted to account for this flow reduction, thus ensuring mass conservation. The
encroachment is detected by searching for the mapped position of each advanced node within the
mapped (master) element of each element, using the isoparametric mapping technique.

3.4. The computational algorithm

The computational algorithm to be used in the analysis of planar viscous jets, depicted by the
flowchart in Fig. 4, consists of the following sub-algorithms:

e The generation/regeneration of the finite element mesh.

¢ The nonlinear (Non-Newtonian) solution of the Finite Element flow formulation.

¢ The explicit advancement of the free surface and the tracking of the solid boundaries.

This is part of a code developed specifically for injection mould filling analysis. Although the
features of adaptive mesh refinement and implicit free surface correction are available in the code
10], they will not be employed in the buckling analysis.
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Fig. 4. Flowchart of the computation algorithm used in the analysis

4. SIMULATION OF THE BUCKLING OF NEWTONIAN AND NON-NEWTONIAN JETS

In the following example, a polymer melt at a temperature of 200°C and with the viscosity char-
acterisation of Fig. 2/Table 1 is injected into the 50mm X 50mm square mould cavity shown in
Fig. 5. The gate width is 4 mm giving an aspect ratio H/D = 12.5. The Reynolds number for the
Newtonian flow can be calculated using the following:

)
Re:v

4]
where v, is the uniform inlet velocity and vg is the zero shear-rate kinematic viscosity given by:
™
p

The zero shear rate fluid viscosity 1o can be calculated using Eq. (12a) together with the values of
the Cross constants given in Table 1, giving mo = 1.303 X 10° Pa.s. The density p of the polymer

4]
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Ve = 500 mm/s

Gate width D JTIL

height H

cavity thickness = 2mm

Fig. 5. Mould geometry for the simulation of Newtonian and Non-Newtonian jets

melt can be found by using the well known Tait Model which relates the density (or specific
volume) to the pressure and temperature. The details of the model, including the parameters for
a polystyrene melt, are presented in references [38, 39]. The effect of pressure on the planar jet is
minimal and the density, at 200°C, is found to be 960 kg/m3. Using these values in the above two
equations gives the kinematic viscosity vo = 135.7 m?/s and the Reynolds number Re = 1.5 x 104,

Both the Cruikshank conditions are therefore satisfied for the Newtonian case and the jet is
expected to buckle. In the present Stokes flow model, the inertia effects are neglected. However,
this will not affect the results because the Reynolds number is extremely low. In the case of Non-
Newtonian flow of polymer melts, the Reynolds number is still relatively low. Even in the case of
high shear rates, of the order of 10* s™, the fluid viscosity # for the Polystyrene Dow Styron 685
polymer melt at 200°C reduces to about 50 Pa.s. This gives a local Reynolds number Re a 0.4
which still satisfies the Cruikshank condition. The predominant (or effective average) Reynolds
number may still be much lower than this value, and the Non-Newtonian jet is also expected to
buckle.

The buckling of the Newtonian and Non-Newtonian jets are shown at comparative times in
Fig. 6. A constant mesh density of 1 mm is used with a time step of 0.002 seconds. The buckling
is initiated by the slight asymmetry in the finite element computations produced by the non-
symmetrical mesh. There is no need therefore to introduce an artificial imperfection in the material
or a slight skewing of the jet.

It is evident that the Non-Newtonian jet starts to buckle earlier, as seen at ¢ = 0.14. This is
because the Non-Newtonian jet tends to be narrower, whereas the Newtonian jet tends to bulge
outwards, accommodating more fluid. The Newtonian jet forms a wider arch and folds later than
the Non-Newtonian jet, as seen at ¢ = 0.200. Only the Newtonian jet is shown at ¢ = 0.240 because
the free surface of the Non-Newtonian jet has already welded.

In the case of lower viscosity fluids, the Non-Newtonian jet is expected to buckle less (or even not
at all) compared to the Newtonian jet [13]. This is because the high shear rates near the obstruction
lead to greater lateral mobility. Unfortunately, this comparison cannot be illustrated here because
the Stokes flow model cannot be used to model the lower viscous (higher Reynolds number) flows.

To test the validity of the Cruikshank aspect ratio condition, the length of the cavity is reduced
to 40 mm giving H/D = 10.0. The Newtonian jet is still expected to buckle, and this is verified
by the results in Fig. 7. In this case, the jet develops wider and tends to offer more resistance to
buckling, but the overall performance is similar to that in the previous case. Less folds are expected
because of the shorter distance between the gate and the normal obstruction.

The cavity height H is further reduced to 28 mm, giving H/D = 7.0. This is below the Cruik-
shank value of 37. The corresponding behaviour of the Newtonian jet is shown in Fig. 8. As predicted
by the Cruikshank conditions, there is no occurrence of buckling for this case. The Cruikshank
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(a)

(b)

Fig. 6. Buckling of a Newtonian jet (left) and a Non-Newtonian jet (right) for H/D = 12.5 at comparative
times (a) ¢ = 0.140, (b) ¢ = 0.160(continued)
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Fig. 6. (continued) Buckling of Newtonian jet (left) and a Non-Newtonian jet (right) for H/D = 12.5 at comparative
times (c) £ = 0.200, (d) ¢ = 0.240
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(b)

Fig. 7. Buckling of a Newtonian jet for H/D = 10.0 at different times (a) t = 0.130, (b) t = 0.160, (c) t =
0.200, (d) t = 0.240
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conditions appear to be valid, but they cannot be expected to be critical values. These conditions
are based upon experimental and approximate theoretical results, and may therefore have a degree
of uncertainty. Nevertheless, they may be used to predict the buckling of Newtonian jets.

Although buckling does not occur for the case H/D = 7.0, the development of “kinks” on the
free surface is evident. These may lead to folds in the melt, as seen at ¢ = 0.250, causing undesirable
weld lines in the moulded part. It has been observed from numerical simulations that Newtonian
jets tend to fold easier than Non-Newtonian jets. The reason for this is that the Non-Newtonian
Jets tend to flow more easily along the free surfaces because of the lower (shear rate dependent)
viscosity in these regions. This increased fluidity aids lateral flow away from the jet which tends to
minimise the initiation of folds on the free surface. An aspect ratio criterion for folding-free flow
derived by analysing Newtonian jets will therefore also apply to Non-Newtonian jets.

A further reduction of the cavity length to 25 mm, giving H/D = 6.3, results in no buckling of
the Newtonian jet (as expected), nor folding of the free surface. The behaviour of the two Newtonian
jets, at H/D7.0 and H/D = 6.3, are compared in Fig. 8.

Fig. 8. A Newtonian jet for H/D = 7.0 (left) and H/D = 6.3 (right) at comparative times (a) t = 0.100, (b)
t = 0.150 (continued)
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Fig. 8. (continued) A Newtonian jet for H/D = 7.0 (left) and H/D = 6.3 (right) at comparative times (c) t = 0.200,
(d) t = 0.250

5. CONCLUSIONS

Past investigators have shown that Non-Newtonian jets have less tendency to buckle compared to
Newtonian jets. In these investigations, flow with relatively high Reynolds numbers were simulated.
The reason for this behaviour was explained as follows: the inertia of the shear-thinning Non-
Newtonian jets results in greater lateral motion which decreases the tendency to buckle.

In the present investigation, where highly viscous flows with Reynolds numbers commonly of the
order 10~% — 10~ were simulated, it was found that Non-Newtonian jets have a greater tendency
to buckle than Newtonian jets. The reason for this reversal in behaviour can only be explained
qualitatively as follows: the shear-thinning along the sides of the Non-Newtonian jets results in a
narrower inner core. This decreases the effective width of the jet, increasing the effective aspect
ratio. The tendency to buckle will therefore be greater. In high viscous flows, the effect of inertia
is negligible, and the lateral expansion of the jet is insufficient to reduce the tendency to buckle.
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The Cruikshank conditions were shown to be valid for the case of highly viscous Newtonian
Jets. In particular, it was shown that the Reynolds number condition is always satisfied for both
Newtonian and Non-Newtonian polymeric jets under typical injection moulding conditions. The
aspect ratio condition is therefore the critical condition dictating the phenomenon of buckling.
However, as discussed previously, the aspect ratio condition for buckling of Newtonian jets cannot
be used as an injection moulding design criteria where Non-Newtonian behaviour is present. This
will depend on the particular polymer used and should be lower than the value of 37 specified by
the Cruikshank condition.

It was shown in the case of Newtonian jets that, although buckling does not occur for aspect
ratios below 3w, folds on the free surface may still develop resulting in undesirable welding of
the polymeric fluid. In fact, an aspect ratio of approximately 6.3 (or 27) was shown to produce
buckling-free and folding-free behaviour of Newtonian Jjets.

It was observed that the shear-thinning Non-Newtonian Jjets have a lower tendency to develop
folds on the free surface. The reason for this is that the increased fluidity along the free surface
tends to iron out any kinks and prevents the initiation of folds. A design criteria against free surface
folding based on Newtonian behaviour will therefore suffice for the case of Non-Newtonian Jjets.

Although it is difficult to specify an ultimate injection moulding design criteria for both buckling-
free and folding-free behaviour of Non-Newtonian Jets because of the diversity of polymers available
and the range of possible operating conditions, it can be concluded that an aspect ratio of 6.3 is a
good estimate for this purpose.

APPENDIX A
An equivalent minimisation problem for the solution of the Stokes problem

The aim here is to show that the minimisation of the energy functional

@(v):/V-(w-v)dQ
Q

is equivalent to solving the classical Stokes formulation for some fixed domain . Substituting for
the total stress tensor and expanding the integrand gives

2(v) = [ V-8 +7) v]do
Q

:/V-V-T+v-Vp+T:Vv+pV-de

—v- V- [Vv+ (V)] —wv- V(V-v) -7 (Vv + (VO] : Vv = (V- V)V - vd2

U
=1V [Vig + Vigl; = wvi(vig)s = 5 Vi + Vsl [Vig + Vil — wvi,jvjedQ

where the unit tensor has been written as §. Note that the pressure p has been replaced by —wV v
where w is a penalty parameter. This serves to enforce the incompressibility constraint while at the
same time eliminating p from the computation.

The minimisation of & implies setting its first variation to zero. The first variation of @ is
given by:
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0P = / 8V [Vig + Vial ; = Vi [Vig + Vidl j — w0vi(Vig)g — wvid(Vis).g
Q
—325 [Vij + Vi [Vi,j + Vil — w0(vii) vy — wviid(v4,)dSd
= / —ndv; [Vig + Vil j = 10 Vi + Vil s = wov;(Vii)g — wvid(Vii) s
Q
_8(vig) [Vig + Vig) = m0(v5) Vi + Vil = wo(vii)vjj — wvid(vj,)dQ
Integrating the last four terms by parts gives

0f = / —nov; [Vigi + Vil — V50 [Vigi + Vil —wdvi(visg) — vid(Viis)
Q

+ndv; [V,',jj + Vj,ij] + ndv; [Vi,ji s Vj,ii] + wO‘V,’(Vj,ji) + wvi,,-jé'v]-dQ

+ / ndv,-nj [Vi‘j + V]',i] + T](Sani [Vi,]' + Vj,,'] + wévin,-(vj,j) -+ wn]-v,-,,-b'vde‘
' iy
= / —nv ;6 [Vigi + Vil — wvi0(vigj)) +novi[Vigj + Vil +wdvivjidQ
Q
+ / 2775v,-nj [Vi,j + Vj’i] -l— 2w(5Vi(ll,'Vj,j)dF
b %)
= / —8(n [viji + Vil +w(Vigg))Vs + (Vigi + Vil +wvii)ovidQ
Q
+ / 2(nnj [Vi,]' + Vj,,'] -+ wnivj,j)b’v,-d[‘
I

where n; are the components of the unit outward normal on the boundary. Rewriting the above
equation in non-index form gives:

o6 = / (7 - [Ty + (V)] + V@V - v) v + (V7 [Vv + (V)] + V(@9 - v)) - 6vdQ
Q
+ / 2n - (n [Vv + (VV)T] +wV - v))-ovdl
1 g

= /—6(V (T +pd)) - v (T +pd))- 6de+/2n- (T +pé) - ovdl’
Q r

o= /—(5(V-1r)-v+(V-7r)-5de+/2n‘1r-6vdI‘
Q T

Since the variation of velocity is arbitrary in {2 and imposed as zero on I', and since the domain of
integration is arbitrary, the non-trivial solution is given by

Ve =0 on 2 (A.1)

Mp:o#{n-w:ﬁ, oo v=v onl (A.2)
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Equation (A.1) implies that the minimisation of the functional & is equivalent to solving the classical
Stokes formulation, subject to the boundary conditions (A.2).
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