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The paper presents the axiomatic approach for solving the multicriteria optimization of thin-walled struc-
ture such as vertical cylindrical reservoirs subject to pitting corrosion. The probabilities of derivation of
the compromise optimal project based on MaxMin principle are investigated. The analytic dependencies
for estimation of the partial criteria weighting coellicients are obtained. The project consists of the optimal
thickness of reservoir shell along its height.

1. INTRODUCTION

The multicriterial problems appear in the majority of real design problems. It contains a compromi-
se — the complex respect of uncountable factors and properties of optimal mechanical systems. The
reason of compromise-optimal design use is closely connected with obtaining and utilisation of some
additional information from the initial formulation point of view. This information particularly deals
with the properties of many criteria and models of compromises, preferences and relative importance
of these criteria [1, 3, 4]. For the approach to solution of multicriterial problems of structural design,
proposed in this paper, such an additional information is uniqueness and axiomatic properties
(optimality by Pareto and symmetry) of the solutions, obtained on a base of MaxMin (3, 4]. Using
these properties it is possible to get the estimation of the weighting coefficients of particular criteria,
(with information about analogies and prototype of the structure [5]), and also to define the effective
multistore optimization procedures. In the paper the possibilities of multicriterial optimization
methods and the approach based on utility point of view with an example of optimal design of
cylindrical reservoirs with respect to corrosion of external layer are compared.

2. FORMULATION OF THE PROBLEM

The vector of partial criteria of reservoir optimality consists of F(X) = {B(X) = f1(X halle(X) =
fo(X), L(X) = f3(X), E(X) = fa(X)}, where B(X) is the average income expected from the
operation of its designed period of life 7" with regards to a possible failure at the moment of time
Ty <T, Hy(X) is the initial cost, L(X ) is the loss due to the structure failure, E(X) is the coefficient
of the cost of operation of structure for the period of life T'.

To find a vector of the optimal structural parameters X maximising the function \(X)

{AMX) = min [A\;(X)]} - max, j =1...4 (1)

with the constraints in feasible domain:

Dx = {PAT) 2 P Por(X) <[o]) 2 Pusl < by < 42}, (2)
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is the objective function, where

M(X) = () = HIGE - M0 = (] - XD - £ i=2.4

Pr(T), Pi((0;) denote the reliability functions and P, is the value of the assumed reliability [1, 2J;
Pr(T) denotes the reliability of the structure relatively to the corrosion process of the external layer
of the reservoir and P;(o;) is the reliability of non-exceeding of the strength constraint, o is the
effective stress in the i-th sheet and h; are the values of thickness along reservoir height, i = 1,..,n,
T is the designed service life of the structure, T! < T < T?, [0] is the allowable value of stress;
/ ]-2, f]-l are the highest and the lowest estimations of f;(X) in Dx (2).

The vector of variable parameters is assumed as follows

X = {hhi T fﬁ, n; T}T T {wlv '--axn,$n+l;rn+2}a ('3)

where n is the number of variable thickness belts into which the reservoir is divided.

The general reservoir dimension are the radius R and height H. It is subject to hydrostatic
internal pressure of a liquid corrosive medium of density p [1].

The formulation of the problem (1)-(3), using A;(X) instead of f;(X ), it allows one not to define
the values for some complicated coefficients of f;(X) [1].

3. CALCULATION ASPECT OF THE PROBLEM (CALCULATION METHODS)
Now let one to consider the calculation aspect of the determination of the values included in (1)—(3).

The functions of an average income B(X) and the value of the losses reduced to the present time
L(X), the initial cost of the structure H; are introduced in [1]. They are as follows

B(X) = E(_?I\j—_ﬂ_ {[0.5 —&(a —a1)] —exp (—bl + %i) [0.5— &(a — al)]} ) (4)

L(X) = LrNexp (—bl + f‘g) (0.5 — ®(a — a1)], (5)

He(X)ie {Cm —1.07 (zn: CipileatGi 1.5G) } 10, G (6)
=1

In (4) and (5) b denotes the annual income in the absence of failure, N denotes the total number
of pitting formations on the surface of the whole reservoir, r is the interest from the capital;

1 [ ¢
&(a) = 75_; / e 'Tdy is the Laplace integral and
0

hi —C,'h,i —b,'t
1 s G 3 GL WS TRST

Py b; = a+ fo; (7
Fiodngl r)hi(1 —c1) _In(1 +r7)czhi 4 (z’ R
e i e O] "
hi =k+Vk2+l, i=1l.n, (9)
where
K at = BiH pRt

T 2l—-ci—ca)’ = n(l-ci—cea)’
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and ¢ presents the period of reservoir operation 7} < t < T3; c1,c2,0,3 ; are the constant coeffi-
cients, characterising the corrosion process [1].

In (6) C; = 0.62\/G,, denotes the cost of the structure’s manufacture, C,, = 0.641\/G,, is the
cost of the reservoir assembling, Cy, = 1.1406[1.005(Com, + C; + 2.66)] is the structure’s cost, Cops
is the whole sale price of sheets for i-cost of main structure’s part, G =}, Gy; G; = 2nRh;Hvy/n
is the weight of the i-th part.

It is necessary to note that the thickness distribution along the height of the shell {hi} (9)
is determined by the expression Pr = (P)V in such a way that the reliability of each sector is
constant (equally reliable).

The exploitation expense parameter of the structure (X) is determined as follows:

E(X) = E1S(t — Th) + E2S%(t — E3), (10)
where Ej = const, (j = 1,2,3) and

0, t<T
Su_n_{t—TtZT
Let one determine the function of the reliability of the boundary stress (2) as: Pi(0i(X) < [o]) >

P,. One denotes the initial depression of the values of [o] as a random variable with normal density
N(A/[[a]) U[a])

V(o)) = Jﬂ‘—["]} (1)

V2roy, e { 2[o] [2a]

In this case one can found a fixed value of [0], from the equation P, = 0.5 + &(Z) where
o]« = M)
R SR b 4}

s . Thus the condition (2) is satisfied if the deterministic strength constraints

0i(X) < [o]« 2] are satisfied. As a calculated value of the external layer thickness one accepts the
larger value of h; (9) and o;(X)/[0]s, i =1, ...,n.

Having current calculated values B(X), L(X), H;(X), E(X), {hi} we draw our attention directly
to the multicriteria optimization (MCO) of the reservoir.

4. AXIOMATIC ASPECTS OF THE MULTICRITERIA OPTIMIZATION

Problems of mutually conflicting criteria usually occur in practice but one does not know some
formulation of this MCO property. This is the problem investigated in this paper. Let us restrict
ourselves to the consideration of the axiomatic approach to the MCO for the explanation of the
model of generalized objective function described in (1). The axiomatic approach peculiarity is the
following: it is formulated a priori as specific properties of compromise — the optimal structures
on a base of which the models of compromise — the partial criteria {f;(X)} and methods of the
optimal solutions calculation X* [3, 4] are developed. Giving required properties for compromise
criteria means the introduction of the definite classification of MCO problems. Let one further
consider the possibility of the axiomatic method for the model MinMax (1), (2)-(3). This function
is axiomatically introduced to the MCO of the structure considered in [3, 4]. In paper [4] the class
of the MCO problems has been defined for which the compromise-optimal solutions satisfy the
following conditions:

e Al) X* € P, — Pareto’s optimality [2, 3J;

® A2) A\p(X*), Vp,q € [1...n] - the symmetry.

The symmetry condition A2 is basic one when the MCCP problems are being formulated. As
the condition A2 is concern it can be interpreted as follows: the relations between all {f;(X)} are
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such that when the estimation of one (anyone) of the criteria in the compromise is reduced the
estimations of the remaining criteria f;(X) might be improved:

TR g Mk e

Here in the basis as a basis of classification the mutual conflict of the partial criteria { fj(X)} is
understood. One calls such problems MCO as problems with mutual conflict criteria (MCCP).

Formally, the properties of conflict of some criteria {f»(X), f(X)} can be presented as follows.
If the coefficients C, > 0 are such that D,(Cy) # 0, (2)-(3) then

[p(X*) = max fplX)
X eDx = fX*)=Cq (12)
fa(X) 2 Cq

In (12) Dz(C,) = Dz N Dy, where Dy = {X/ fo(z) = Ca} -

MCCP means that the property (12) is satisfied for all p,q € [1..m]. In this case the use of (1)
guarantees the obtaining of unique compromise-optimal project, satisfying axiom A1) and A2) [4].

Establishing a new separate class of problems with A2 which have the unique compromise
solution of (1) gives one a new additional information about {f;(X)}n compromise which was not
previously used when MCO problem has been formulated.

As it is well known [2], the formulation of MCO problems must satisfy many requirements,
among which there are the completeness and the unredundantly set of the optimization criteria
Tm(X). The property of MCCP can be used for the normalisation of unredandentness of fm(X)
in such a way: in MCCP vector of Fm(X) is unredundant. Some examples of MCCP are given in
[3]. One should note that -1) model of MCCP has a local character: the relations (12) are satisfied
in some domain of estimations {f;(X)}; -2) problem (1)-(3) does not satisfy the properties (12).
A simple variant of step-by-step procedure allowing one to solve more general MCO problems is
further considered.

In many cases when objectives {f;(X)}m like (1) [2-4] are being formed as an additional source
of information the relative importance of the partial criteria is used. For the model (1) it means
the introduction of the coefficients 4; = A\j(X)v; 271 vi =1 % >0 (the partial criteria rate coef-
ficients). The analytic dependencies for such coeflicients estimation are obtained from the problem
[5], which use an information about analogies and prototypes of the reservoirs constructions types
being considered, for the values {~j}m. Taking into account the fact that reservoir prototypes in

a compromise domain f; : [ f]-l, ff] , i =1,..,m are MCCP or these projects are obtained using

model (1) one can get the analytical dependencies for the estimation of coefficients {~y; }m as follows:

Let | be a number of structural prototypes, I be an information independent from the prototype
parameters ;

= {¥0 g = tm, 0 =miny? - 85 7 = mipy;” +ai},

and ;\gr) = (Yj(r) - f;l)) / ( f;z) - f;l)), 8; is a constant. Then the coefficients of importance +y; are
defined by relations given in [5].

l m l m
o= 10 (R ()} =/ 2
r= =1 \r= =1

Presented formula (13) describes the expert estimation of the weight, expressed through the pro-
totypes of the structure.
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5. STEP BY STEP OPTIMIZATION PROCEDURE

Now let us consider the procedure of the solution (1)-(3), keeping in mind that in the domain
of compromise criteria {f;(X*)} the values A = {A]- = (f} - f})_l} are defined by the value

m
tradeoffs [2] — the compensation measure unit f,(X*) on unit f,(X*),p,q € [1..n]. In this case if
symmetry conditions A2 are not satisfied it means that the assumption about values of coefficients
A are also not satisfied. Let one to define assumption about values of coefficients A nonsatisfaction
degree obtaining new values fq1 :

fa=@=27[frxn -2, (14)

when for X* project the equality A2: fq(X i /\?(X *), Ao is the solution of (1). If A, solved using
(14) satisfy the relations [A; — Ag| < €4 then the assumption about value tradeoffs A are satisfied
and X* is a solution of (1)—(3). ‘

Let us define the following step by step optimization procedure for MCO problem (1)—(3). Let
S be a current procedure level. Then the procedure itself can be defined as follows:

P0. $= 0, D(,) = D(x).

P1. Evaluate parameters Dg) : {f}, I3 Aj} .

m

P2. Evaluate (1) Ms), X053 {Xs)s fits)} .

P3. U {/\2(3) - /\?(5)| <€z DqE€E [L,..,m], then PG.
P4. Evaluate (14): fql(S) = Cq(s);Aq(s);q € [1,..,m].
P5. Set constraints fql(s+1) > Cys),S «— (S +1); to P1.
P6. X" = Xsy; g F(X°). End of procedure.

Let us consider the calculation procedures P1, P2. In general the task (1)—(3) is discrete problem
of nonlinear programming. Because of assumption of equal reliability condition for reservoir external
belts [1] Pr(t) = P} and technique of respect of strength constraint presented in Sec. 3, the task
order is reduced to two: (n,T), where n is the number of reservoir belts. For double parametric
problem solution the method of full enumeration has been used.

6. NUMERICAL EXAMPLE

Let us consider the solution of the optimization problem (1)~(3) with following reservoir initial data:
R=2m, H=4m,p=08x 10% kg/m3 o = 0.6 cm/year, f; = 0.085 cm/Ton-year, C; = 0.05,
Cy=0.1; N =48, P* = 0.99; b = 10%, Ly = 10* USD, r = 10%: Myo) = 170 MPa, oy, = 20 MPa;
the ranges of changes in variable parameters are 1 < n < 10, 10 years < T' < 30 years.

The results of the multicriteria optimization of the reservoir shell are given in the Table 1.

In the table f(s)» A(s) are the values of the objectives on a procedure step S; fql(s) are e-
valuated according to (14) boundary values of the partial criteria where in the nominator the
values (14) and in the denominator the accepted at P5 values fql(s) are given. The end condi-

tion as A2 and equality )\g(s)(X ) was already active on the second step of the procedure P0-P6.

The calculations showed considerable dependence of the optimization results on H; characteris-
tics. For example, if one chooses instead of Hj its component Cy, — the cost of the materials,
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then the optimal reservoir project has n = 10 sections with following thickness h; distribution:
h = (1.63,2.11,2.48,2.79, 3.07, 3.32, 3.55, 3.76, 3.96,4.16) (cm) when the cost was reduced about
95%. Tt should be noted that the difference estimation Cy, and the result presented in [1] which
characterizes in this case utility function change (20-24%) have very close values. In the numeri-
cal investigations the influence of the external layer corrosion processes on the optimal reservoir
projects appeared to be active (most considerable) because of low level of 0;(X) stresses.

Table 1
I | BX) LX) Hi(X)  E(X) (T*,n*)  hi o1(X)
& |wmmo 2 129 0.5
) 112170 116 389 41.5
f& | 17830 306  17.0 11 (20;1)  4.16cm = 0.2 MPa
Ay 0723 0723 0.842 0.744
flay | 12770 782  27.7/244  38.3/27.7
[ |0 182 244 27.0
f& | 17500 330 166 9.0 (19;1) 404 cm ~0.2 MPa
A2 0.676  0.676  0.692 0.675
faay | 12770 782 244 26.8

7. CONCLUSIONS

The results presented in the Table 1 gives one the opportunity to characterise considerable aspects
of multicriteria approach to the problem of reservoir optimal design, including the technique (1).
Normalisation procedure, switch from the parameters f;(X) to A; (X) allows one to estimate a
relative change of the partial criteria f;(X) without giving hardly defining coefficients pre-set values
[1]. Here the potential features of the optimization show up, structural variable parameters domain
becomes clearer. Table 1 shows that in this particular case the change of all f;(X) is considerable,
the compromise-optimal solution is a priori not defined.

The axioms system A1-A2 put in a base of the model (1), the opportunity of any compromise-
optimal project X* € P, solution with respect to the errors of initial A and the results X* as
boundary correction (14), simple analytical form of introduction into (1) the information about the
coefficients of the partial criteria importance (13) make MaxMin optimality principle be used in
the practical MCO problems. In some cases, set with axiomatic properties (12), the model (1) is
the only one to be used.

We understand that after all in practise one uses such models of compromise and MCO proce-
dures for which the results of their application are most understood for designer and predictable.
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