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This paper presents a practical algorithm for on-line parameter identification of squeeze-film bearing of
multi-mode rotor-bearing system. The identification procedure is based on modeling each of the bearing
pedestal by applying a multi-frequency excitation force on the rotor and frequency transfer function data
are used. It suggested that accurate identification coefficients with reduced standard errors can be achieved
without resource to full or reduced-order rotor system measurements. The approach can be applied to
rotor-bearing system with any degree of complexity and other types of bearing. Simulation and experimen-
tal investigation show that the identification algorithm developed in the paper will considerably simplify
the measurement and calculation task for testing work in laboratory and industrial environment without
any lost of identification accuracy. The experimental results of stiffness and damping characteristics of the
squeeze-film bearings for different rotating speed are also presented.

LIST OF SYMBOLS

Cez; ete. bearing damping coefficients

C.., etc. damping coefficients of pedestal supporting

Gze, Gye transfer function

E error vector

f external force applied to the estimate pedestal

I ot bearing stiffness coefficients

K., etc. stiffness coefficients of pedestal supporting

m m bearing pedestal mass

k,n, N integers

X Yo absolute displacement of bearing pedestal in z and y direction respectively
5, I S relative displacement of the pedestal to the rotor in z and y direction respectively
Wpr matrix of observations

L3 matrix of unknown coefficients

Bz By force coefficients

w frequency

wo fundamental frequency

()T, (0)i, real and imaginary components at w = wn,

1. INTRODUCTION

One of the most important factors governing the dynamic behaviors of rotating machinery is the
dynamic characteristics of the rotor supports. Adequate knowledge of the support dynamic is
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important in analyzing the vibration problems of rotor-bearing system. Squeeze-film bearing is
the most commonly used support in rotor-bearing system by incorporating squeeze film damper to
control the stability. However, in practical application, the behaviors of squeeze-film bearing cannot
be accurately predicted in the design stage. Experimental determination of squeeze-film bearing
dynamic coefficients in practical conditions is necessary. Considerable research efforts have been
devoted to the problem of bearing dynamic identification. The approaches can be classified into
two categories: time domain techniques and frequency domain techniques.

Parameter identification based upon discrete-time modeling and multiple regression analysis
[2] are capable of producing good estimations in the ideal case of noise-free measurement and
providing the sampling rate is correctly chosen. But in the presence of noise, the error of coefficient
identification can become large. However, these errors can be significantly reduced by undertaking
parameter identification in the frequency domain [3].

The use of discrete harmonic excitation to identify journal coefficients is well established [11].
The sensitivity of the experimental data with respect to cach parameter differs with the excitation
frequency. Therefore it is very unlikely that good estimates can be obtained with discrete frequency
testing. Nordmann [9] had applied impact force technique to the frequency response functions.
The results of the method are better than those of others but facing difficulty in the rapidly
decayed response in a well-damped system and the difficulty of exactly reproducing the input
disturbance during successive tests. C.R.Burrows [3] used PRBS (pseudo-random binary sequence)
as the input form of exciting force, overcoming the problem of impulse and step testing. A least-
squares identifier is used to product meaningful coeflicient estimates from noisy data and to filter
“any unwanted harmonic components in the measurement system. But the technique was restricted
to the study of a rigid shaft. Later work of [4] took into account of the shaft flexibility. The full model
method used by the author to estimate coefficients can obtain very good results, but suffers from
tedious measurement task. For the simplified model method proposed by the author, the validity
of simplification cannot be justified analytically and constrained to a very special situation.

The frequency-domain techniques presented in this paper by studying each of the bearing
pedestals is capable of getting accurate identification results with less measurement and calcu-
lation. An on-line frequency domain parameter identification algorithm using frequency transfer
function data of the bearing pedestal and an identification test rig were developed. It is shown
that the technique developed here provide a much more easy way to reliable on-line parameter
identification for rotor-bearing system in a laboratory and in a plant.

.

2. IDENTIFICATION ALGORITHM

The dynamic characteristics of squeeze-film bearing and pedestal can be represented by the
system shown in Fig. 1. The relationship between the force transmitted through the squeeze-
film bearings can be usually expressed by the linearised squeeze-film coefficients, i.e. stiffness
and damping coefficients Kzz, Kzys Kyy, Kyz, Coz, Cay; Cyy and Cyg [5]. The bearing pedestal is
mounted on flexible foundation which may be expressed as stiffness and damping coefficients
Kl By B Clz) Coys Coyys Cye- The coordinate system oxy is erected with its initial point
attached at the center of journal when the pedestal is in static equilibrium position.
The dynamic equation of the system in the z- and y- direction are described as

m¥, + CL X + CLYe + KL X + K. Ye )
+Cx:z:Xeb =+ C;;yYeb 7t Kszeb -+ I(z:y)/eb = ﬂa:f)

m¥, + ClyYe + Clho Xe + Ky Yo + Ky Xe @
+Cszeb + nyYeb + Kszeb =} KyyYeb i, .Byfa

where f is the multi-frequency PRBS perturbation force applied to the rotor. The symbols 3; and
B3, are denote the force transducer coefficients.
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Fig. 1. Bearing pedestal system model

Expressing equation (1) and (2) in the frequency domain and write in matrix form as:

coabwm B g e Kl KL Xe(jw)
(““ {0 m}““[c;z o |7 | kL KL () | Yew)

+ ‘ Y+ L : = : . 3
(jw) [ Cyz ny :l l: Kym I(yy :I) [ Yeb(]“") ﬁyF(Jw) ( )
Defining the Fourier coefficients of the transfer function as
: Xeb(jw) : Xe(jw)
G.’ze W)= ey Gze w) = 7 (4)
and
: Yeu(juw) : Ye(jw)
1) — § R 5
Gyeb(J‘b) F(Jw) ) Gye(.?"") F(_](AJ) ’ ( )

where Xep(jw), Xe(jw), Yep(jw) and Ye(jw) are the displacements and F'(jw) is the Fourier trans-
form of the applied force.
Equation (4) can then be expressed as

 SOMRIS W) ol 2L 0 Ky el Gze(jw)
(W [0 m}+JW{CII/$ Czlly 7 Kz//x Kz’/y Gye(jw)

s e el HH. B Nl caln] In
f(ela &l S E]- 5] @
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Taking the transpose of equation (6) and rearrange, it can be shown that

[ Ca:z Cyz W
CE’.‘I ny
; TR : { . Koz Kig
[chzeb(Jw) jw'Gyeb(Jw) Gzeb(Jw) Gyeb(Jw) oty rr 1)] X KXY I(Zy
NN
Ko

T T
m 0 9.8 4 KoK
= [Gae(jw) Gye(w)] x | w? [ } - jw [ T A ] — [ et e
» 0 m Clz"V0gy Kl Ky
The complex transfer function can then be separated into real and imaginary parts and expressed
in column vectors as

| Greliw) g I ok
e gL [ enen) } - { iChe(i) } ’

(8)

o L ) o) = | Cuelw)
Gzeb(ju«) = \: JG;:b(Jw) :l ) Gyeb(JUv) = \: JGL:b(Jw) ] )

where superscripts r and 1 represent the real and imaginary parts of the Fourier coefficient. Then,
decomposing equation (7) into its real and imaginary term and replacing w by now to indicate the
use of digital data analysis techniques, where n is a integer in the range 1 to N, it becomes:

[ —nwoGi.e —nwoG’;e G;eb G;eb o iz‘y f{yy
—nwo G;e —Nnwo Gr Glx G’i o o yzT
3 il e i o KE7 K

ﬁ T ﬁy

Ty ye

(n2w2m — K.;)Gi, — KL G + nwo(CrzGhe + CoyGle)

zyye

B [ (n?wm — K.,)Gr, — K. GTg + nwo(Ch,Ghe + oy Ghe)

Ty ye

(nzwém - K!,/y)G;e - KéxG’;e + nwo(C,’fyG;e + CI’I,ZG"R) : ©)
(n%wgm — K,)Gye — KyzGre + nuwo(Cyy Gie + CliGad) 5, A0
Equation (9) can be written in the standard form as
Wpdp = Cp, (10)

where W is the 2N x 5 matrix and Cp is the 2N X 2 matrix containing the Fourier coefficients
of the transfer function. @ is the 5 x 2 matrix of the coefficients to be identified.

Taking into account the error in modeling and random measurement noise, from equation (9) it
is generally not possible to determine the set of coefficients &1 exactly satisfying all 2N equations
(9). An identification of the coefficients ®p based on the least-square theory is proposed here.
Define an error vector E = (Ey, Fa, ..., Ean)T as follows:

E=Cpr—Wgrop. (11)
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Now we will determine the coefficients & r in such a way that the criterion J
2N oS
J = 5" pHo g (12)
i=1

is minimized. To carry out the minimization, differentiate J with respect to ® and equate the

result to zero to determine the conditions on the identification coefficients $r that minimizes J.
Thus

o1
0P

. =—2W§Cp + 2WEWrd . = 0, (13)
o=

from which the least-squares identifier ¢z for the coefficient matrix can be solved as:
-1
p = (Wliwp) WECE. (14)

Thus, the support stiffness and damping coefficients acting on a rotor at any arbitrary station can
be identified by measuring only the linear displacement at the station and the external force applied
to the station.

As can be seen, the least-square identifier defined in equation (14) was derived by assuming that
the bearing pedestal supporting parameters K’ , K A e g 8 Cays Cyy, Cyz are known.
From the motion equation of bearing pedestal (1)-(2), we can observe that by isolating bearing from
the rotor shaft, bearing supporting structural parameter can be easily identified using the same
parameter identification technique as described before. Experimentally, this can be fulfilled by not
activating the squeeze-film bearing, that is setting the rotor speed zero, hence approximately zero
squeeze-film bearing parameters Kz, Kuy, Ky, Kya, Cag, Cay, Cyy, Cys are being introduced into
the system. Therefore, from the bearing pedestal motion equations (1)—(2), the matrix equation
Wr®r = Cr can be deduced as described before, where the matrix Wy and Cpr contains the
Fourier coefficients of the transfer function of bearing pedestal displacement and applied force. The
@ matrix contains the unknown bearing pedestal supporting structural parameters, which can be
then identified by the least-square algorithm.

3. EXPERIMENTAL INVESTIGATION

The developed parameter identification procedure has been programmed for practical applications.
The adopted identification test installation is shown in Fig. 2. Mathematical model of the testing
rotor-bearing system is shown in Fig. 3. The details of the shaft parameters are given in Table 1.

St3
(Station 'b'")
St 1 St2 St 4 St5
KXX:". - ny
St 6 :

(Station 'e') Kx - Cy

Fig. 2. Mathematical model of the test rotor-bearing system
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The shaft is supported on one ball bearing and one testing squeeze-film bearing with both ends
carrying one rigid disc. Both bearing pedestal masses are flexibly supported by 4 triangular hooked
springs to idealize a point and uncoupled effect of the support system. The spring preload in the
y-direction can be adjusted by means of the stud. The lubricant of the testing squeeze-film bearing
at one end of the rotor is supplied to the circumferential groove by a pump and discharged to
atmosphere at the bearing extremities. The shaft speed is continuously adjustable by means of the
variable speed, 2.2Kw electric motor through a belt and pulley system. The system was excited
about the equilibrium position at a rotated angle of approximately 45° by a stinger rod attached
to a MB Dynamics Model 50 electromagnetic shaker on the ball bearing pedestal. This shaker was
supplied with a period of 1.0 sec (fundamental frequency of 1 Hz) and cut-off frequency of 100 Hz

Intel486 Computer
plus Interfaces

ii

DT 2839
A/D & D/A Converter

AAAA T
Charge
Y Amplifier
Power A
Amplifier
" Force
\l« Transducer
Electromagnetic \
HEr Shaker T )
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'i!' i g
2
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/

Fig. 3. Diagram of the measurement instruments for squeeze-film bearing

Output -
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Table 1. Shaft parameters and rigid discs (see Fig. 2.)
Station No. L mm! R mm~!
1 70.0 25.0
2 265.0 25.0
3 20.0 125.0
4 268.0 25.0
5 50.0 25.0
6 2 T
Station No. Mass kg ! Iy x 1073(kg m?)~!
1 0.27489 0.12298
2 1.04064 6.13064
3 1.96350 1.98293
4 1.05243 6.34028
5 0.19635 0.04858
6 1.75838 —
Supporting Stiffness and Dampings of Squeeze-Film Bearing
Kzo(Nm™') [ 79.797E+3 [ Ko,y(Nm~1) [0.0 | K,,(NmY) | 77.362E+3 | K,z(Nm~1) | 0.0
Czz(Nsm™1) 0.0 Cry(Nsm™) | 0.0 | Cyy(Nsm™?) 0.0 Cyz(Nsm™1) | 0.0

Schroeder-phased harmonic signals. The applied force was measured by the squartz load cell, while
the journal-to-bearing displacements in both the z- and y-direction were measured using the four
eddy current probes of BENTLY NEVADA 7200 series proximity system. The DT2839 AD/DA
conversion board was installed in an PC computer to acquire data simultaneously from five channels,
as shown in Fig. 3.

The transfer function of the real and imaginary Fourier coefficients for each direction was used
instead of the displacement signals considering the repeatability of the sampling digital signal.
Averaged signal of 10 periods was also used resulting in the smoothness of the time domain signals
and frequency response plot. A typical set of time-domain displacement response at rotating speed
12.383Hz is shown in Fig. 4. After an application of the FFT algorithm to time-domain signal in
Fig. 4 the transfer function of the bearing pedestal was determinated by equation (4)-(5) and shown
in Fig. 5.

During the signal digital process, the full bandwidth of 1 to 100 Hz was used to determine the
bearing coefficients, however, the results yield poor goodness of fits of around 0.5 to 0.8 in both in
z- and y-direction. The investigation attributed it to out-of-balance vibration at the rotating speed
and oil-whirl in the neighborhood of 25 Hz. The further test excluding these frequency values in the
identification procedure showed that high goodness of fit can be obtain. The identification results
of the squeeze-film bearing operating at the rotating speed of 743.00 rpm are shown in Table 2. The
very high goodness of fit of 0.98 and 0.93 in z- and y-direction, respectively, provide a quantitative
measure of the method validity. Together with a standard error and T-ratio with each parameters
which is a measure of response sensitivity with respect to individual parameters, this statistical
test proved the efficiency and accuracy of the identification method.

Characteristics of squeeze-film bearing coefficients varying with rotating frequency were tested
by changing the rotating speed range from 300 rpm to 2100 rpm. The solid line in the Fig. 6 shows
the values of the identified stiffness coefficients K, ..., Ky, against rotating frequency. The dashed
line in Fig. 6 is the stiffness value calculated by Reynolds equation with preload of [10, 13]. As
can be seen from the Fig. 6, the experimental identified stiffness increased with the increase of
the rotating frequency. At the rotating frequency about 25.36 Hz, there was an abrupt drop of
the experimental by identified stiffness. The investigations show that this was due to the rotating
frequency coincided with the rotor critical frequency which leads to resonance. In this case, the
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Fig. 4. Time domain plots of Xe, Ye, Xb, and Yb signal at shaft rotating frequency 12.383 Hz
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Table 2. Identification results from experimenting data

Parameter Est. Val. St. Err. T-Ratio Significant
Kzz(Nm~1) | 7.916864E4+05 | 8.512774E404 9.299982E+-00 Yes
Kuy(Nm™') | —3.389130E+05 | 1 J713157E404 | —1.978295E+01 Yes
Kyy(Nm™!) | —1.368744E+05 4.764145E4+04 | —2.873011E+00 Yes

)
)

Kyz (Nm™? —2.527951E+05 | 9.587624E+03 | —2.636306E+01 Yes
Cop(Nm™! —6.689119E+03 | 9.956176E+01 | —6.718562E+01 Yes
Cay (Nsm™ 1) | —1.561077E+02 9.928806E+01 | —1.572270E+00 Yes

C’yy(Nsm_l) 3.966185E+02 | 5.571933E+01 | 7.118141E+00 Yes
CyI(Nsm”l) —2.223026E+02 | 5.556622E+01 | —4.000679E+00 Yes
Bz —8.439057E-01 | 4.201372E-01 | —2.008643E+01 Yes
By 5.391219E-02 2.351283E-02 | 2.292884E+00 Yes
Goodness of Fits 1 9.785227E-01 9.310106E-01
Standard Deviation . 2.043645E+00 2.573385E+-00
Frequency Band Used : 0.00 Hz to 100.0 Hz

Speed Band Excluded : 11.88 Hz to 12.88 Hz and 20.0 Hz to 30.0 Hz
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Fig. 6. Variation of squeeze-film bearing stiffness coefficients with rotating frequency

thin film of oil between the journal and bush of the bearing could be formed due to the excessive
resonant vibration and the bearing was functioning in an unstable operating regime. It leads to
abrupt decrease of stiffness. Passing through this rotating frequency, a trend of increasing stiffness
with the rotating frequency was seen again in Fig. 6. This conformed to the trend of the calculated
stiffness coefficients. However, the short bearing approximation [14] indicated to the difference
between the calculated value and experimentally identified value. Figure 7 shows the identified
damping coefficient values Czz, ..., Cyy plotted against rotating frequency. As can be seen that
the values of the damping were comparatively low and no obvious relationship were shown with
the rotating frequency. But at the rotating frequency 25.36Hz, similarly, there was a decrease in
damping value due to the resonant vibration.
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Fig. 7. Variation of squeeze-film bearing damping coefficients with rotating frequency

4. COMPUTER SIMULATION

The accuracy and reliability of the identification method are demonstrated by computer simulation
in this section. A flexible shaft mounted on two flexible bearings with three discs is employed here
to simulate the rotor-bearing system, as shown in Fig. 8. The detailed parameters of the system
are presented in Table 3. The identification procedure of dynamic parameters previously described
and depicted in Fig. 9 can be described briefly as following;

(i) apply the FFT algorithm to the time domain signals X(k), Ye(k), Xep(k), Yep(k) and f(k)
where k denotes the sampled forms of X (t) etc.;

(i) fill the matrices W and Cp with the transfer function of the Fourier coefficients;

(iii) implement equation (14) in a discrete form to obtain estimates for Kzzy:vCozy B and B;

(iv) perform statistical evaluations on the estimated coefficients, i.e.. goodness of fit, standard
error and significant tests [8].

St5
St.7
St.1(b) it ) %
St.2 St.4 St.6 St.8
[ ] [ ] @ [ ] ® @ ® [ {
é Kxx Cxx etc. é
St.10 @ St
s *

© é Z K'xx, C)'(x eto.
% i

Fig. 8. Mathematical model of a flexible rotor-bearing system
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Fig. 9. Computer flow chart for identification procedure

Table 3. Shaft parameters and rigid discs (see Fig. 8.)

Station No. L mm™! R mm~!
1 40.0 50.8
2 400.0 25.4
3 50.0 100.0
4 400.0 25.4
5 35.0 126.4
6 400.0 25.4
T 50.0 100.0
8 400.0 25.4
9 40.0 50.8

Station No. | Mass Kg! | Ir x 1073 (Kg m?) !
1 0.64859 0.191
2 1.62146 21.685
3 3.14159 2.618
4 1.62146 21.685
5 3.51352 3.867
6 1.62146 21.685
7 3.14159 2.618
8 1.62146 21.685
9 0.64859 0.191
10 2.0 -
11 2.0 -

As mentioned in the previous section, to identify the bearing parameters, it is necessary to apply a
multifrequency disturbance force on the rotor. The Schroeder-phased harmonic signal (SPHS) with
bandwidth of 1-100Hz containing 100 harmonics 8] was used on station 11 to excite simultaneously
all of the system modes. The comparison of the theoretical and identification values is shown in
Table 4. The results obtained by C.R. Burrows [6 | using full model are also listed in Table 4.
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As can be seen in Table 2, a close agreement between the theoretical and identified coefficients
can be obtained. The error in all parameters identified was approximately zero. The goodness
of fit is equal to 1. A comparison of the estimate values between the improved method and the
method of C.R. Burrows shows that the presented method gives more accurate results with a
significant reduction in the standard error. This confirms that the proposed parameter identification
method developed here using only one bearing pedestal as the object of study is capable to produce
extremely good results with less measurement and calculation task by measuring only four linear
displacement at the bearing station.

Table 4. Comparison of theoretical values with the identification results obtained by the identification
method and by Burrow et al

Para- Kazz Ky Kyy Kyz Cuz Cay Cyy Cyz
Nm™? Nm™! Nm™? Nm™? Nsm ™} Nsm ™} Nsm ™} Nsm ™!
meter
Case A
Theo.Val. | 279911 279911 148252 | —21756.0 | 1500.0 482.0 505.0 482.0
Est.Val. | 279911.4 | 293241.9 | 148251.6 | —21755.9 | 1499.98 | 482.0005 | 505.0001 | 481.9998
St.Err. 0.402410 | 0.591307 | 0.117060 | 0.172009 | 0.00184 | 0.003101 | 0.000536 | 0.000902
R 1:1.000000 1:1.000000
Case B
Est.Val. 279910.9 | 293242.6 | 148250.8 | —21755.3 | 1499.99 | 482.0011 504.9978 | 482.0005
St.Err. 0.459933 | 0.663494 | 0.376577 | 0.261043 | 0.002147 | 0.00340 | 0.001930 | 0.001218
R 1:1.000000 1:1.000000

Case A Estimation by using the improved identification method.
Case B Estimation by using the method of C.R. Burrows [6].

R Denotes goodness of fit.

5. CONCLUSION

In this paper, a frequency-domain technique for identification of squeeze-film bearing coefficients
for on-line application has been developed. Unlike the previously described frequency-domain al-
gorithm for squeeze-film bearing coefficient identification, which can produce meaningful results
from noisy data compared with the time-domain algorithm, but suffering from large measurement
and calculation task in on-line identification of laboratory and industry environment, the on-line
frequency-domain identification technique presented here can be carried out on one of the bearing
pedestal with no relation to the number of mass station used to represent the rotor or the number
of support bearing. Thus, it can be used to identify the coefficient of the bearing at any arbitrary
station along the practical flexible rotor system with any degree of complexity and other types of
bearing by measuring only four linear displacements. This has a significant effect on the parameter
identification problem in industry environment. In the algorithm, the frequency transfer function
data of the system was used instead of the frequency response data because of its good data quan-
tity and completeness of the information in the frequency range of interest. It was also capable
of filtering unwanted resonance components in the experimental data and producing meaningful
coefficient from noisy data inherent to the frequency-domain algorithm. The whole identification
procedure can be realized on-line by just applying multi-frequency test signal on the rotor without
any interruption to the rotor system. Successful results obtained from computer simulation and ex-
perimental test prove that the technique developed in this paper is quite effective and reasonable.
It is suitable for on-line or in-situ identification, monitoring and diagnosing of rotating system in
industry environment.
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